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Abstract: With continuous population growth and decreasing cultivated land area, China’s food
security is greatly threatened. Additionally, coal mining in China is primarily underground mining,
which causes land subsidence and destroys existing cultivated land. This effect aggravates the
contradiction between a growing population and a shrinking area of cultivated land. The purpose of
this study was to introduce a method of filling reclamation with Yellow River sediments to restore
farmland and realize the sustainable utilization of cultivated land. The properties of the soil and crop
yields in reclaimed farmland were assessed. This study examined farmland reclaimed with Yellow
River sediments at an experimental site located in Jining City, Shandong Province, China. Filling
reclamation procedures with Yellow River sediments were applied. The reclaimed farmland (RF) and
unaltered farmland (CK) were continuously monitored for three years, and the soil was sampled six
times. A total of 180 soil samples were collected from RF and CK. The soil properties were measured
at three depths: 0–20 cm, 20–50 cm, and 50–80 cm. Crop yields were monitored regularly. The results
indicate that filling reclamation with Yellow River sediments is an effective method for restoring
farmland. The RF and CK soils were weakly alkaline, non-saline soils. The RF soil was suitable for
the growth of local crops. With an increasing number of farming years, both the quality of cultivated
land and crop yields have increased. Therefore, filling reclamation with Yellow River sediments is an
effective way to realize the sustainable utilization of cultivated land.
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1. Introduction

China has a large population and relatively scarce cultivated land resources. The cultivated land
per capita is approximately 0.1 ha, which is far lower than the world average of 0.28 ha [1]. This results
in a significant imbalance between the availability and demand of cultivated lands [2]. Nevertheless,
due to the rapid increase of the population in China, the imbalance has been further aggravated,
significantly undermining the improvement of social equity and environmental sustainability [3,4].
Although the government has adopted a series of measures to protect cultivated land, farmland
has been decreasing for various reasons. Coal mining is mostly underground mining in China,
which inevitably damages the land through subsidence [5,6]. By 2017, the area of coal mining
subsidence was 2 × 106 ha, of which 60% was cultivated land or other agricultural land in China [7].
Because the mining area in eastern China is an important grain-producing area and coal-production
base with a high water level, land subsidence causes water accumulation in a large area and leads to
the loss of cultivability of a large area of productive, cultivated land [8,9]. The mining subsidence area
is increasing at a rate of 70,000 ha per year [10], and the loss of arable land because of subsidence will
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continue to increase. This trend exacerbates the above contradiction. Therefore, reclaiming the arable
land damaged by coal mining subsidence is imperative.

Previous studies have discussed technologies for reclaiming land degraded by coal mining
subsidence. These technologies include deep-digging and filling reclamation areas with solid mine
waste, such as coal gangue and fly ash or lake mud. Deep-digging means digging to extensive depths
with mechanical equipment to fill shallow areas. Coal gangue, fly ash, and other industrial waste
have been basically recycled in mining areas, used to generate electricity due to their calorific value,
or made into multi-purpose building materials due to their physical properties [11,12]. However,
there is not enough coal gangue or fly ash available for use as filling material. The clay content of
lake mud is relatively high, resulting in high water content, poor permeability, and slow seepage of
reclaimed soil. The muddy layer is thick, which easily forms a marsh. The time required for drainage
and consolidation is relatively long. The recovery rate of farmland using the technique of digging
deep to fill shallow areas is low. The technique of filling reclamation with coal gangue and fly ash
involves the risks of inadequate filling materials and potential pollution [13,14]. The consolidation and
drainage time for filling reclamation with lake mud [15] is too long, and the land cannot be cultivated
until two to three years after reclamation. Previous reclamation methods cannot effectively address
the dual challenges of a large population but scarce land resources.

The sediment load in the Yellow River is among the world’s largest [16]. The Yellow River has
a total length of 5464 km, and its drainage area is approximately 75 × 104 km2. It is the fifth longest
river in the world. Because the middle reaches flow through the Loess Plateau, where vegetation has
been seriously destroyed and the soil is loose, sediment flows into the Yellow River due to erosion
induced by rain. The Yellow River is famous for its high sediment content and produces 16 million
tons of sediment annually [17]. The accumulation of sediment causes the downstream to become a
ground-suspended river. To ensure the safety of the lower reaches of the Yellow River, the government
invests a large amount of money every year in dredging, and the dredged sediments occupy a large
amount of land. Filling reclamation engineering projects using sediments from the Yellow River can
prevent the sediments from occupying land and address the shortage of filling materials for coal
mining subsidence. For coal mines along the Yellow River, using Yellow River sediments to fill and
reclaim coal mining subsidence land holds considerable promise. The results of a previous study [18]
showed that Cd and Hg were not detected in Yellow River sediments. The contents of heavy metals
such as Cr, Cu, Zn, Pb, Ni and As did not exceed the second and third standard values of the soil
environmental quality standards of China [19]; thus, Yellow River sediments are not a source of
pollution. Hu et al. [20] proposed the idea of a filling reclamation process with Yellow River sediments
and verified the feasibility of using Yellow River sediments as a filling material.

Reclaiming subsidence land with Yellow River sediments appears to be a promising method for
restoring farmland [21]. However, the soil properties and crop yields after reclamation are still unclear,
especially over the course of several years. In this study, reclaimed farmland (RF) and unaltered
farmland (CK) were continuously monitored for three years, the soil was sampled six times, and 180
soil samples were collected. Additionally, crop yields were monitored regularly. The objectives of this
study are as follows: (1) to introduce a new filling material (Yellow River sediments), which can be
used to restore the cultivated land lost due to coal mining subsidence and to describe the associated
filling reclamation process, and (2) to assess the soil properties and crop yields after reclamation.

2. Materials and Methods

2.1. Experimental Site

The experimental site is located west of Pengnali Village, Dalukou Town, Liangshan County, Jining
City, Shandong Province, China (Figure 1). The region has a semi-humid continental climate with an
annual average temperature of 13.5 ◦C and an annual precipitation of 601 mm [22]. The experimental
site was a coal mining subsidence area with a maximum collapse depth of 1.5 m and an area of
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approximately 48.67 ha. The experimental site was approximately 7 km away from the Yellow River.
We chose this site to test the filling reclamation process with Yellow River sediments.
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Figure 1. Location of the experimental site. The red triangle represents the location of the experimental
site. The photo on the right represents the location and sampling distribution of reclaimed farmland
and control farmland. RF, reclaimed farmland; CK, unaltered farmland.

2.2. Filling Reclamation Process

The construction of the experimental site began in February 2011 and was completed in July
2011. The process for filling reclamation with Yellow River sediments (Figures 2 and 3) was as follows:
(1) Layered stripping of topsoil and subsoil: water was drained from the subsidence land, and then the
topsoil (0–20 cm) and subsoil (20–50 cm) were stripped layer by layer using mechanical equipment.
The stripped soil was placed nearby. (2) Extracting a water-sediment mixture from the Yellow River:
A cutter suction dredger was used to extract the water-sediment mixture at a rate of 1100 m3·h−1.
(3) Transporting the water-sediment mixture to the subsidence land: An ordinary steel pipeline with
an inner diameter of 350 mm was selected to transport the water-sediment mixture to the experimental
site. The length of the pipeline was approximately 7 km, and the pressure pump was set up 3.5 km
away from the suction dredge to ensure that the mixture could be transported to the destination.
(4) Deposition of Yellow River sediments: The sediment was allowed to settle at the experimental
site, and excess water was discharged into the nearby drainage ditch. (5) Placing the stripped soil
onto the sediment: When the sediment appeared to be consolidated, the stripped topsoil and subsoil
were placed layer by layer onto the sediment. The total thickness of topsoil and subsoil was 50 cm.
(6) Improvement of the soil quality in the reclaimed land: Measures were taken to improve the quality
of the reclaimed soil, such as the application of fertilizer and farm manure each year. The total cost
of the experimental site (48.67 ha) construction was approximately 7 million CNY (approximately $1
million USD).
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Figure 3. Actual technique of filling reclamation with Yellow River sediments. 1—subsidence land;
2—layering stripping topsoil and subsoil; 3—extracting a water-sediment mixture; 4—transporting
the water-sediment mixture; 5—removing excess water; 6—deposition of Yellow River sediments;
7—placing the stripped soil onto the sediment; 8—reconstructed soil profile; and 9—after reclamation.

After reclamation via this process, the farmland area reached 95% of the experimental
site, essentially encompassing the entire area except for field roads, drainage ditches and
other infrastructure.

2.3. Experimental Field Management

To facilitate management, 3000 m2 of reclaimed farmland (RF) was selected from the experimental
site to monitor soil properties and crop yields. Similarly, 3000 m2 of nearby unaltered farmland (CK)
was selected to monitor soil properties and crop yields (Figure 1). Unified management of RF and CK
was carried out, including planting and fertilization.
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Local agriculture uses a double-cropping planting structure with winter wheat and summer
maize. After the construction of the experimental site, the same crop rotation was carried out for RF
and CK. The planting density of summer maize variety Chenghai 605 was 50,000 plants per hectare
and the plant width was 40–80 cm. The seeding depth was approximately 5 cm. Wheat variety Jining
22 had a planting density of 1.8 to 2.2 million plants per hectare. The seeding depth was approximately
3 cm. The first crop of wheat was planted in October 2011, followed by maize in June 2012, wheat
in October 2012, maize in June 2013, wheat in October 2013, maize in June 2014, wheat in October
2014, maize in June 2015, wheat in October 2015, maize in June 2016 and wheat in October 2016.
Chemical fertilizers were applied uniformly for RF and CK. Fertilizer was applied before maize and
wheat sowing; during the maize and wheat growing period, fertilizer was applied with irrigation
according to soil moisture and crop growth. Farmyard manure was used as fertilizer after the maize
was harvested. The specific amounts of fertilization per year were as follows: 800 kg of urea per
hectare, 150 kg of P2O5 per hectare, 150 kg of K2O per hectare, 15 kg of ZnSO4 7H2O per hectare and
45 t of farmyard manure per hectare. During the planting process, crop wastes (straws and stalks)
were returned to the fields after harvesting wheat and maize every year.

2.4. Soil Sampling and Analysis

Soil samples were collected in February 2012, September 2012, April 2013, September 2013,
April 2014 and September 2014, and for every sampling, two areas were sampled, i.e., the reclaimed
farmland filled with Yellow River sediments (RF) and the original, unaltered farmland (CK).
The locations of the sampling points are shown in Figure 1. Five soil sampling points each were
set at the RF site and the CK site. The distance between each sample point was approximately 20 m.
Each soil profile (2 × 1 × 0.8 m) was excavated at each sampling point. Samples were taken from three
layers of the topsoil layer (0–20 cm), subsoil layer (20–50 cm) and deep soil layer (50–80 cm). Fifteen
soil samples were collected at each sampling time for both RF and CK. Thus, the samples were divided
six times for a total of 180 soil samples, of which 90 were from RF and 90 were from CK.

The samples were analyzed for soil water content, acidity/alkalinity (pH), electrical conductivity
(EC), organic matter, total nitrogen, available phosphorus and available potassium.

The soil samples were air-dried under natural sunlight for an extensive period of time to make
their water contents constant (approximately 1–3%). Some soil samples were then sifted through
a 10-mesh screen (screen size of 2.00 mm) and retained for sample analysis of pH, EC, available
phosphorus and available potassium. Other soil samples were then sifted through a 100-mesh screen
(screen size of 0.15 mm) and retained for sample analysis of total nitrogen and organic matter.

The soil water content was measured according to an oven-drying method [23], the soil pH value
was measured with a glass electrode pH meter [24], and the soil EC was measured with a conductivity
meter [25]. The soil total nitrogen content was determined using a semi-micro-Kjeldahl method [26].
The available phosphorus content (extraction using 0.5 mol·L−1 NaHCO3) was determined with a
molybdenum antimony colorimetric method [26,27]. First, reagents were prepared; 42.0 g of NaHCO3

was dissolved in 800 mL distilled water, and a 0.5 mol·L−1 NaOH solution was used to adjust the pH
of the extract to 8.5. Then, extractions were carried out. Air-dried soil samples were passed through
a 20-mesh (screen size of 0.85 mm) sieve, 2.5 g of the sample was weighed into a 150-mL conical
flask, and 50.00 mL NaHCO3 solution with the concentration of 0.5 mol·L−1 was added; a spoonful of
phosphorus-free activated carbon was added. The stopper was tightened, and the bottle was shaken
for 30 min on an oscillator [28]. Soil available potassium content (extraction using 1 mol·L−1 NH4OAc)
was determined with a flame photometer [29]. Again, reagents were prepared; 77.09 g of chemical
pure ammonium acetate (CH3COONH4) was diluted with water; the volume was fixed to nearly
1 L and adjusted to pH 7.0 with NH4OH before dilution to 1 L. Extractions were also carried out;
air-dried soil samples were passed through a 18-mesh (screen size of 1.00 mm) sieve, 5.00 g of the
sample was weighed into a 100 mL conical flask, and then 50.00 mL neutral NH4OAc solution with
the concentration of 1 mol·L−1 was added. The rubber stopper was tightly plugged, and the bottle
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was shaken for 30 min. The sample was filtered into a 150-mL triangle bottle with dry ordinary
filter paper [28]. Soil organic matter content was determined according to a potassium dichromate
volumetric method [30].

2.5. Data Analysis

The SPSS 19.0 program was used to calculate the standard deviation (SD) of each sample. The SPSS
19.0 program (one-way ANOVA at 0.05 level) was also used to calculate the significant difference
among different samples.

3. Results and Discussion

3.1. Soil Water Content

The soil water contents of RF and CK are shown in Table 1. The soil water content of the topsoil
layer (0–20 cm) of the reclaimed farmland with Yellow River sediment (RF) changed from 16.8% at the
initial stage of reclamation to 14.1%, 18.8%, 14.8%, 17.1% and 18.0% on the subsequent sampling dates.
Overall, the soil water content showed fluctuating changes. The changes in the soil water contents
of the subsoil layer (20–50 cm) and deep soil layer (50–80 cm) at the RF site were similar to those of
the topsoil layer (0–20 cm) and showed fluctuating changes. The main reason for this pattern may be
related to the climate and irrigation frequency. In most agroecosystems, the soil water content changes
rapidly following rainfall, particularly after high-intensity, short-duration events [31]. Compared
with that of CK, the water content of RF was significantly lower. With an increase in the reclamation
time, the difference in the soil water content between RF and CK gradually decreased. This difference
existed because the Yellow River sediments are sandy and have a weak water-holding capability [18].
The water content of RF was higher due to increased irrigation frequency.

Table 1. Soil water content, pH, and EC of the RF site and CK site.

Depth Time
SWC (%) pH EC (µs·cm−1)

RF CK RF CK RF CK

0–20 cm

Feb. 2012 16.8 ± 1.2 cde 23.1 ± 1.7 a 7.61 ± 0.13 a 7.54 ± 0.12 a 135 ± 4 c 152 ± 4 a
Sept. 2012 14.1 ± 1.5 e 17.4 ± 1.4 cd 7.55 ± 0.18 a 7.66 ± 0.14 a 140 ± 2 bc 146 ± 4 ab
Apr. 2013 18.8 ± 2.2 bc 22.7 ± 2.2 a 7.52 ± 0.11 a 7.62 ± 0.16 a 126 ± 3 d 136 ± 5 c
Sept. 2013 14.8 ± 1.2 de 20.0 ± 2.3 b 7.66 ± 0.22 a 7.67 ± 0.17 a 127 ± 6 d 140 ± 7 bc
Apr. 2014 17.1 ± 1.4 cde 23.1 ± 2.1 a 7.74 ± 0.11 a 7.52 ± 0.10 a 139 ± 6 bc 149 ± 6 a
Sept. 2014 18.0 ± 1.4 bc 21.0 ± 1.0 ab 7.71 ± 0.09 a 7.77 ± 0.07 a 147 ± 3 ab 145 ± 3 ab

20–50 cm

Feb. 2012 24.4 ± 1.5 e 29.4 ± 0.8 ab 7.72 ± 0.08 abc 7.76 ± 0.09 abc 165 ± 5 de 181 ± 2 bc
Sept. 2012 19.9 ± 2.4 f 26.6 ± 1.6 cde 7.82 ± 0.11 abc 7.69 ± 0.10 abc 182 ± 6 bc 190 ± 6 b
Apr. 2013 26.4 ± 1.0 cde 29 ± 1.4 abc 7.68 ± 0.09 bc 7.64 ± 0.09 c 171 ± 8 cd 162 ± 5 de
Sept. 2013 23.9 ± 1.2 e 31 ± 1.7 a 7.84 ± 0.06 ab 7.73 ± 0.09 abc 158 ± 8 e 164 ± 7 de
Apr. 2014 21.2 ± 2.1 f 27.7 ± 0.9 bcd 7.87 ± 0.09 a 7.7 ± 0.09 abc 162 ± 103 de 186 ± 10 b
Sept. 2014 21.6 ± 2.3 f 25.8 ± 1.5 de 7.78 ± 0.06 abc 7.82 ± 0.07 abc 179 ± 106 bc 201 ± 6 a

50–80 cm

Feb. 2012 18.1 ± 0.6 cd 29.1 ± 2.3 a 7.91 ± 0.07 abc 7.76 ± 0.08 c 102 ± 8 e 174 ± 8 b
Sept. 2012 15.2 ± 0.9 d 25.9 ± 2.0 b 8.02 ± 0.14 a 7.88 ± 0.13 abc 124 ± 6 d 192 ± 8 a
Apr. 2013 17.2 ± 0.8 cd 27.4 ± 1.7 ab 7.89 ± 0.07 abc 7.79 ± 0.13 bc 116 ± 6 d 153 ± 7 c
Sept. 2013 16.2 ± 0.8 d 27.4 ± 1.7 ab 7.98 ± 0.15 ab 7.73 ± 0.09 c 95 ± 9 e 168 ± 9 b
Apr. 2014 19.3 ± 1.4 c 30.2 ± 2.0 a 7.83 ± 0.08 abc 7.79 ± 0.12 bc 94 ± 6 e 192 ± 8 a
Sept. 2014 17.4 ± 2.0 cd 28.1 ± 2.1 ab 7.89 ± 0.05 abc 7.73 ± 0.09 c 103 ± 9 e 179 ± 9 b

Note: SWC, soil water content; RF, reclaimed farmland; CK, unaltered farmland. Values are means ± standard
deviations of five soil samples. Values with the same letter for the same depth of different treatments (RF and CK)
are not significantly different at the p < 0.05 level.

3.2. Acidity/Alkalinity (pH) and Electrical Conductivity (EC) of Soil Solutions

3.2.1. pH Value

The soil pH values of RF and CK are provided in Table 1. There was no significant difference
between the soil pH values of the topsoil layer (0–20 cm) of the RF and CK at the 0.05 level, and the
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same was found in the subsoil layer (20–50 cm) and the deep soil layer (50–80 cm). The pH values
of the samples were higher than 7, which indicated that the soil of RF and CK were both alkaline.
The sediments of the Yellow River were derived from quaternary sediments of the Loess Plateau,
which was similar to the loess of the midstream of the Yellow River in particle size distribution, organic
matter content and mineral composition [32]. Therefore, the Yellow River sediments were weakly
alkaline, which was consistent with the pH value of loess (7.5–8.6) [33]. Maize and wheat are the main
local crops. The suitable pH value for the growth and development of the local crops ranges from 6.5
to 8.0 [34]. The soil pH value of RF ranged from 7.5 to 8.0, which is suitable for the cultivation of the
main local crops.

3.2.2. Electrical Conductivity (EC)

Soil EC is an index for determining soil water-soluble salt, which is a factor that limits seed
germination and crop growth, and is an important property of soil [34]. As shown in Table 1, the
soil EC of topsoil layer (0–20 cm) of RF was lower than that of CK except in September 2014. The
soil EC of the subsoil layer (20–50 cm) of RF was lower than that of CK. The soil EC of the deep soil
layer (50–80 cm) of RF was significantly lower than that of CK at the 0.05 level. At the same time, the
soil EC of RF showed an overall trend of increasing at first and then decreasing with increasing soil
depth. The soil EC of the subsoil layer (20–50 cm) was greater than that of the topsoil layer (0–20 cm)
and soil EC of the deep soil layer (50–80 cm) was the lowest. Normal growth and development of
crops requires the non-salinization of soil, in which the EC of the soil is lower than 2000 µs·cm−1 [34].
The maximum EC of the topsoil layer (0–20 cm) of RF was 147 µs·cm−1, that of the subsoil layer (20–50
cm) was 182 µs·cm−1, and that of the deep soil layer (50–80 cm) was 124 µs·cm−1. The soil EC of RF
was far lower than the standard value (2000 µs·cm−1). Therefore, the soil EC of RF was suitable for the
growth and development of crops.

3.3. Soil Status of Major Nutrients

3.3.1. Organic Matter

Soil organic matter is an important component of soil that plays a key role in improving soil
physical and chemical properties and plant growth and is an important index used to evaluate
soil fertility and quality [35]. The soil organic matter contents of RF and CK are shown in Table 2.
With increasing depth, the organic matter content of RF gradually decreased, and the same trend was
observed for CK. The topsoil had the highest organic matter content in the soil structure [36]. The soil
organic matter contents of the topsoil layer (0–20 cm), subsoil layer (20–50 cm) and deep soil layer
(50–80 cm) of RF were less than those of CK. The loss of soil organic matter in RF was related to the
filling reclamation process. Topsoil and subsoil stripping and backfilling were carried out in the filling
reclamation project, which led to soil mixing and improved soil aeration. Soil disturbance via mixing
and moving can improve soil aeration, enhancing aerobic microbe activity and accelerating the microbe
decomposition activity, which decreases the content of soil organic matter [37]. Furthermore, organic
and inorganic fertilizers were applied over a long period, and the root residues of the crops increased
the organic matter content [38–40] in CK. With the increase of reclamation years, the organic matter in
the topsoil layer (0–20 cm) of RF increased; for example, the organic matter of RF was 12.07 g kg−1 in
February 2012 and 17.51 g kg−1 in September 2014. The same trend was found in the subsoil layer
(20–50 cm) and deep soil layer (50–80 cm).
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Table 2. Soil status of major nutrients of the RF site and CK site.

Depth Time
OM (g kg−1) TN (g kg−1) AP (mg kg−1) AK (mg kg−1)

RF CK RF CK RF CK RF CK

0–20 cm

Feb. 2012 12.07 ± 1.48 e 26.55 ± 1.67 b 0.52 ± 0.06 g 1.02 ± 0.11 bc 8.3 ± 0.7 de 15.4 ± 1.4 c 122.0 ± 10.2 cd 167.8 ± 8.3 b
Sept. 2012 10.69 ± 2.66 e 24.86 ± 1.94 bc 0.58 ± 0.06 fg 0.95 ± 0.11 cd 7.6 ± 0.6 e 17.0 ± 1.5 abc 114.0 ± 6.8 d 197.8 ± 11.3 a
Apr. 2013 11.85 ± 1.10 e 30.58 ± 2.31 a 0.64 ± 0.09 efg 1.11 ± 0.15 abc 8.2 ± 0.7 de 18.2 ± 1.8 ab 140.2 ± 10.5 c 202.0 ± 15.4 a
Sept. 2013 14.23 ± 1.75 de 28.01 ± 3.28 ab 0.66 ± 0.07 efg 1.24 ± 0.08 a 8.5 ± 0.9 de 16.4 ± 1.2 bc 131.2 ± 14.8 cd 174.0 ± 17.2 b
Apr. 2014 14.20 ± 2.49 de 22.83 ± 2.28 c 0.74 ± 0.06 ef 1.19 ± 0.16 ab 9.1 ± 0.9 de 18.8 ± 1.9 a 132.8 ± 12.9 cd 197.4 ± 11.9 a
Sept. 2014 17.51 ± 2.09 d 26.79 ± 3.74 b 0.81 ± 0.11 de 1.09 ± 0.19 abc 10.0 ± 0.9 d 17.9 ± 1.5 ab 158.0 ± 13.6 b 200.4 ± 11.0 a

20–50 cm

Feb. 2012 7.24 ± 1.28 e 15.19 ± 1.19 a 0.36 ± 0.06 d 0.61 ± 0.10 a 3.6 ± 0.5 cde 4.7 ± 0.7 abc 79.0 ± 12.4 cd 155.4 ± 16.4 a
Sept. 2012 6.10 ± 1.00 e 12.48 ± 1.79 bc 0.31 ± 0.08 d 0.58 ± 0.06 ab 4.5 ± 0.5 abc 5.0 ± 0.6 ab 61.2 ± 8.8 d 136.8 ± 8.8 b
Apr. 2013 6.72 ± 1.00 e 14.69 ± 1.53 ab 0.36 ± 0.06 d 0.65 ± 0.09 a 2.7 ± 0.4 e 3.3 ± 0.5 de 76.2 ± 10.9 cd 166.6 ± 14.0 a
Sept. 2013 9.28 ± 1.52 d 12.24 ± 1.41 bc 0.38 ± 0.11 cd 0.53 ± 0.08 abc 4.7 ± 0.6 abc 3.8 ± 0.5 cde 59.6 ± 9.3 d 138.8 ± 11.9 b
Apr. 2014 10.40 ± 1.81 cd 15.50 ± 1.90 a 0.42 ± 0.07 cd 0.60 ± 0.09 a 5.0 ± 0.9 ab 5.6 ± 1.0 a 67.0 ± 9.4 d 157.4 ± 13.9 a
Sept. 2014 10.04 ± 1.68 cd 14.14 ± 2.08 ab 0.44 ± 0.11 bcd 0.58 ± 0.1 ab 3.1 ± 0.3 de 4.1 ± 0.6 bcd 86.2 ± 7.7 cd 161.6 ± 9.6 a

50–80 cm

Feb. 2012 2.61 ± 0.55 f 10.39 ± 1.06 a 0.09 ± 0.02 f 0.50 ± 0.10 ab 3.0 ± 0.3 d 4.9 ± 0.6 ab 61.4 ± 8.2 e 98.2 ± 10.4 bc
Sept. 2012 4.10 ± 1.22 ef 7.69 ± 0.78 cd 0.17 ± 0.04 ef 0.40 ± 0.10 bc 3.7 ± 0.5 cd 3.3 ± 0.4 cd 47.0 ± 6.4 ef 80.8 ± 11.2 d
Apr. 2013 2.99 ± 0.32 f 9.36 ± 1.28 ab 0.16 ± 0.05 ef 0.43 ± 0.09 ab 3.3 ± 0.4 cd 2.6 ± 0.4 d 41.8 ± 7.8 f 114.4 ± 15.9 a
Sept. 2013 4.06 ± 0.66 ef 6.43 ± 0.86 d 0.22 ± 0.05 def 0.52 ± 0.10 ab 2.8 ± 0.6 d 5.1 ± 0.8 ab 46.8 ± 9.0 ef 83.6 ± 10.0 cd
Apr. 2014 2.73 ± 0.69 f 7.16 ± 1.30 cd 0.25 ± 0.05 de 0.47 ± 0.10 ab 4.4 ± 0.7 bc 5.6 ± 1.0 a 50.2 ± 6.8 ef 90.2 ± 10.9 cd
Sept. 2014 4.69 ± 0.76 e 8.22 ± 1.65 bc 0.31 ± 0.09 cd 0.55 ± 0.09 a 3.6 ± 0.6 cd 5.3 ± 0.4 ab 55.4 ± 7.8 ef 107.8 ± 9.1 ab

Note: OM, organic matter; TN, total nitrogen; AP, available phosphorus; AK, available potassium. Values are means ± standard deviations of five soil samples. Values with the same letter
for the same depth of different treatment (RF and CK) are not significantly different at the p < 0.05 level.
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3.3.2. Total Nitrogen

The soil total nitrogen contents of RF and CK are shown in Table 2. The soil total nitrogen content
of the topsoil layer (0–20 cm) of RF was lower than that of CK. With an increase in the reclamation
time, the difference in the soil total nitrogen content between RF and CK decreased. In September
2012, the total nitrogen content of the topsoil layer (0–20 cm) of RF was 0.58 g·kg−1, whereas that
of CK was 0.95 g·kg−1, a difference of 0.37 g·kg−1. By September 2014, the total nitrogen content
of the topsoil layer (0–20 cm) of RF was 0.81 g·kg−1 and that of CK was 1.09 g·kg−1, a difference of
0.28 g·kg−1. With the increase in the soil depth, the soil total nitrogen content decreased. A similar
result was reported by Xu [41]. This result was due to the decreased amount of decomposed debris of
plants and animals with increasing soil depth [42–44]. The soil total nitrogen contents of the topsoil
layer (0–20 cm), subsoil layer (20–50 cm) and deep soil layer (50–80 cm) of RF were less than those of
CK. Soil total nitrogen in CK exhibited a long-term accumulation process. In the filling reclamation
process, soil stripping and backfilling disturbed the soil. The stripped soil was exposed to air for a
long time. After the completion of sediment consolidation, the soil was backfilled. During the entire
process, the soil was disturbed twice, destroying the soil structure, affecting the water permeability and
corrosion resistance of the soil, and reducing the infiltration, interception and water storage capacity of
the soil, thereby changing the original soil nutrients [45]. The soil total nitrogen content in an artificially
disturbed plot is significantly lower than that in an unaltered plot. The soil total nitrogen content in RF
increased with the increase of reclamation years in the topsoil layer (0–20 cm), subsoil layer (20–50 cm)
and deep soil layer (50–80 cm). Under the conditions of cultivation and fertilization, water, fertilizer,
gas and heat were continuously harmonized such that the soil quality could be improved continuously.

3.3.3. Available Phosphorus

The soil available phosphorus contents of RF and CK are shown in Table 2. With the increase
in reclamation years, the content of available phosphorus in the topsoil layer (0–20 cm) gradually
increased. The reason for this increase is that the application of phosphorus fertilizer affects the
available phosphorus content, and the available phosphorus content in the topsoil layer (0–20 cm)
is greatly affected by artificial tillage and artificial fertilization [31]. There was little difference in
the soil available phosphorus of the subsoil layer (20–50 cm) between RF and CK. With an increase
in the reclamation time, the available phosphorus content in the deep soil layer (50–80 cm) of RF
changed little because phosphorus is easily fixed in soil [31,46], and the effect of fertilization on the
available phosphorus content in deep soil was not obvious. Soil fixation methods for phosphorus
include adsorption fixation and chemical reaction fixation. Soil phosphorus fixation depends on
the contents of calcium carbonate, iron-aluminum oxides, soil clay and the initial concentration of
phosphorus in the soil. A large amount of adsorption fixation occurs at the beginning of fertilization,
lasting for several hours to tens of hours, and then gradually converts to chemical reaction and fixation.
Thus, the available phosphorus is converted into invalid phosphorus for several months or even
several years [47]. The soil available phosphorus levels in the subsoil layer (20–50 cm) and deep
soil layer (50–80 cm) mainly result from the release of phosphorus from the soil and the transport of
available phosphorus from the topsoil layer (0–20 cm). The soil itself contains a certain amount of
phosphate. When the phosphate concentration in the solution is lower than a certain value, the soil
begins to release phosphorus [48]. Soil available phosphorus can be transported in the environment
through hydrological pathways (leaching) [31]. The content of available phosphorus in the topsoil layer
(0–20 cm) is more susceptible to fertilization than in the subsoil layer (20–50 cm) and deep soil layer
(50–80 cm). Because phosphorus fertilizer is applied to the topsoil layer, phosphorus is easily fixed and
difficult to move to the subsoil and deep soil. With the increase of reclamation years, the soil available
phosphorus in the topsoil layer (0–20 cm) of RF presented an increasing trend. An appropriate amount
of phosphorus fertilizer was applied to improve the content of available phosphorus [31,49] of RF.
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3.3.4. Available Potassium

Soil available potassium refers to potassium that is easily absorbed and utilized by crops, and
the abundance and deficiency of potassium nutrition in crops is directly restricted by the available
potassium content in soil [50]. The soil available potassium contents of RF and CK are shown in Table 2.
With an increase in soil depth, the soil available potassium content of RF decreased, and the same trend
was observed for CK. The soil available potassium contents of the topsoil layer (0–20 cm), subsoil layer
(20–50 cm) and deep soil layer (50–80 cm) of RF were less than those of CK. The loss of soil available
potassium in RF was related to the filling reclamation engineering process. The effect of the reclamation
process on available potassium is the same as the effect on total nitrogen. In addition, the reclaimed
farmland was only cultivated for three years. The fertility cultivation time after the reclamation of
RF was much shorter than that of CK, and the accumulation of available potassium was insufficient.
With the increase of reclamation years, the content of available potassium in the topsoil layer (0–20 cm),
subsoil layer (20–50 cm) and deep soil layer (50–80 cm) of RF increased. Inorganic potassium fertilizer
and organic fertilizer were applied to supplement the available potassium content [51] of RF.

3.4. Crop Yields

From June 2012 to October 2016, wheat was harvested in June and maize was harvested in October
every year. The crop yields of RF and CK are shown in Table 3. In June 2012, the wheat yield of RF
was 3215 kg·ha−1, while that of CK was 7581 kg·ha−1; thus, the wheat yield of RF was only 42.41%
of that of CK. In October 2016, the maize yield of RF was 7776 kg·ha−1, while that of CK was 9714
kg·ha−1; thus the maize yield of RF was 80.05% of that of CK. A total of 10 crops were planted, and
the proportion of the RF yield to the CK yield increased. With the increase in reclamation years,
the crop yield of RF increases. Because soil fertility increases annually, the crop yield also increases
annually. However, by 2016, the crop yield of the reclaimed farmland was still lower than that of the
normal farmland.

Table 3. Crop yields of the RF site and CK site.

Harvest Time Crop RF (kg·ha−1) CK (kg·ha−1) RF/CK (%)

Jun. 2012 Wheat 3215 7581 42.41
Oct. 2012 Maize 4629 9649 47.97
Jun. 2013 Wheat 3552 7366 48.22
Oct. 2013 Maize 5624 10250 54.87
Jun. 2014 Wheat 4532 7048 64.30
Oct. 2014 Maize 6727 9794 68.68
Jun. 2015 Wheat 5341 7176 74.43
Oct. 2015 Maize 7313 9487 77.08
Jun. 2016 Wheat 5934 7553 78.56
Oct. 2016 Maize 7776 9714 80.05

4. Conclusions

The filling reclamation procedure included stripping the topsoil and subsoil layer by layer,
transporting Yellow River sediments to the subsidence land with a hydraulic pump, and backfilling
the topsoil and subsoil layer by layer. Filling reclamation with Yellow River sediments has realized the
restoration of cultivated land in the experimental site. A 95% farmland recovery rate was achieved in
the experimental site in Liangshan County, Jining City, Shandong Province, China. For mines near
the Yellow River, this approach is an important method for restoring cultivated land lost due to coal
mining subsidence.

The water content of RF presented a fluctuating trend, mainly related to climate and irrigation.
The water contents in the topsoil layer, subsoil layer and deep soil layer of RF were lower than
those of CK because the Yellow River sediments are sandy with a weak water-holding capability.
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With an increase in the reclamation time, the difference in the soil water content between RF and CK
gradually decreased.

No significant difference was observed between the soil pH values of the topsoil layers of RF and
CK at the 0.05 level, and the same trend was found for the subsoil layer and deep soil layer. The RF
and CK soils were weakly alkaline, which was suitable for cultivation of the main local crops (maize
and wheat). The EC of RF indicated that the reclaimed soil was a non-salinized soil suitable for the
growth and development of crops.

With the increase of reclamation years, the soil organic matter, total nitrogen, available phosphorus
and available potassium of RF showed an increasing trend. The accumulation of soil nutrients is a
long-term process. Measures to improve the water content and fertility of RF included the following:
increasing the irrigation frequency; returning crop waste; applying organic fertilizers such as green
manure, farmyard manure and compost; and applying inorganic fertilizers such as nitrogen fertilizer,
phosphorus fertilizer and potassium fertilizer.

Crop yields of RF showed an increasing trend year by year. By 2016, the fifth year of cultivation,
the maize yield of RF was 80.05% of that of CK.

In summary, the filling reclamation the subsidence land with Yellow River sediments is an effective
way to restore farmland and realize the sustainable utilization of cultivated land in China. With the
increase of reclamation years, the soil nutrients and crop yields of RF showed an increasing trend.
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