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Abstract: Sustainable development has become the biggest concern of the semiconductor industry,
which plays a vital role not only in technology breakthroughs, but also by serving as an enabler
for sustainability. This study combines Analytic Hierarchy Process (AHP) and additive network
Data Envelopment Analysis (DEA) to measure the sustainable performance which are derived
from business growth stage and energy utilization stage through the parametric linear program.
Meanwhile, this method makes up the disadvantage of the weighting technique used additive
decomposition approach to the two-stage network and avoids biasing toward the second stage.
The findings demonstrate that Taiwan’s semiconductor manufacturing sector has exhibited a steady
increase in its overall trend of sustainability performance. According to the stage-level performance
results, the performance of business growth is better than energy utilization. However, the changing
trend of overall sustainability performance is through a steady increase from environmental efficiency
and not from economic efficiency.

Keywords: sustainability assessment; Data Envelopment Analysis (DEA); semiconductor industry

1. Introduction

With the dynamic evolution of the information and communications technology (ICT) industry,
in which products such as computers, and integrated circuits (ICs) are playing a more vital role.
With the increasing popularity of new electronic products related to mobile devices and artificial
intelligence our safe and living environments have a high relevance with the quality and reliability of
these products. Semiconductors appear to be the soul of electronic products, and the semiconductor
industry produces a range of microelectronic components, so-called “chips,” that are seen as many
of the key components for economic development. According to WSTS (World Semiconductor Trade
Statistics), worldwide semiconductor revenue in the second quarter of 2018 reached US$117.9 billion
for year-to-year growth of 20.5%. The Taiwan Semiconductor Industry Association (TSIA) survey
showed that Taiwan’s ICs revenue in 2018 is expected to reach US$85.8 billion (5.9% growth from 2017).
Hatami-Marbini and Kangi [1] indicated that the environmental and social externalities associated
with semiconductor manufacturing are likely to increase due to the usage of semiconductors devices
becomes more prevailing across different varieties of industries.
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To the semiconductor industry, sustainable development is a critical concern. Due to the hundreds
of high-purity organic and inorganic waste disposal produced in manufacturing semiconductors
have to be treated environmentally [2]. Semiconductor industries play an important role not only
in unceasingly technology breakthroughs, but also by serving as an enabler for sustainability. The
challenges from industry competition [3,4], political and economic volatilities [5], and the operational
impact of climate change [6] cannot be avoided. To implement sustainability practices, Taiwan should
reconsider how to reduce energy consumption while maintaining economic growth. This paper is
concerned with measuring efficiencies during the sustainable operations of the semiconductor industry.

Given the prevalence of the sustainability issue in the semiconductor industry, prior research
has focused on the dimension of sustainable capacity of technical learning [7], green supply chain [6],
capacity planning [8], and waste management [2]. The difficulty in attaining such a sustainable society
is that prior literatures do not have a methodology to accurately assess economic development and
pollution reduction in a unified manner, because recent growth has been usually associated with
various types of pollutions [9]. Proponents of environmental protection worry about pollution, while
opponents argue that controlling the pollution can reduce the pace of economic growth [10] by limiting
the operations of manufacturing industries. This issue can be addressed by the Data Envelopment
Analysis (DEA) technique, because DEA applies to problems with multiple inputs and multiple
outputs [11], while also considering undesirable outputs. Thus, it can evaluate the sustainability
performance more precisely [12,13].

In order to assess sustainable development, previous studies have developed the variations of
DEA [12–14]. As stated above, the application of DEA provides a tool for the comprehensive assessment
of the environmental impacts and operational performances of multiple DMUs (Decision Making
Units). Wu et al. [15] examined environmental efficiency of a two-stage DEA system with undesired
outputs. The two-stage system consists of two parts: a production subsystem and a pollution treatment
subsystem. Hatami–Marbini et al. [16] developed a flexible cross-efficiency evaluation methodology
based on DEA for identifying supplier performance.

Motivated by those findings, this study presents a sustainability measurement framework
in Taiwan’s semiconductor industry through the additive efficiency decomposition approach for
measuring the efficiency of networks. The aim of this study lies not only in the generalization of the
DEA filed, but also in utilizing it from the Taiwan semiconductor industry. Our application differs
from prior DEA studies on the semiconductor sector in three essential ways as noted below.

Firstly, with the deeper development of economic globalization, the sustainability practice has
become an inevitable trend. Semiconductor industries play an important role by serving as an enabler
for sustainability in Taiwan. However, few studies to date have conducted a sustainability assessment
in the context of Taiwan’s semiconductor industry. Therefore, our paper looks to fill this gap in the
literature. Through our modeling framework, these individual-level efficiency scores provide insight
into how the impacts which are derived from business growth or energy utilization are generated in
the semiconductor industry.

Secondly, this study proposes a new hybrid model to make up for some shortcomings in weight
through the additive efficiency decomposition approach [17]. The paper provides a comprehensive
view of the relationship between overall efficiency and stage efficiencies under varying weights. This
extension is essential in the DEA field. It is important to note here that in contrast to existing DEA
literature, we solve the non-linear DEA model directly, without resorting to reducing it to a variant of
classical linear DEA model.

Thirdly, MCDM (Multiple Criteria Decision Making) methods are used in this study for finding
the “appropriate” pair of weights. This study uses the Analytic Hierarchy Process (AHP) method to
identify the “optimal” weights in the model. In other words, AHP is used to examine the importance
of the two-stage performance whereby the overall efficiency is defined as a weighted average of stage
efficiencies and the weights are used to reflect the relative importance of individual stages. We update
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the model and expand the application to the semiconductor industry by integrating the economic and
ecological aspects of this study.

The remainder of this paper is organized as follows. Section 2 provides a review of the DEA
literature on sustainability and two-stage DEA models. Section 3 introduces the methodology of the
new hybrid model using combined AHP and two-stage additive network DEA. Section 4 analyzes
the sustainability assessment of the semiconductor industry in Taiwan. Finally, Section 5 presents
the conclusion.

2. Assessment of Sustainability

Enhancing competitiveness and sustainability has been pursued by many if not all semiconductor
manufacturers [18]. Hung, He and Lu [4] evaluated the operating performances through dynamic
DEA. Hatami–Marbini et al. [19] proposed a four-step bounded fuzzy DEA model as an efficiency tool
to measure relative efficiencies. Hsu [3] integrated DEA and improved grey relational analysis (IGRA)
to measure the efficiency. Wang and Ho [20] combined the forecasting model of Grey theory and DEA
to help the semiconductor industry to select strategy alliance partners. Tsai, Wu, Chen, Chen, and
Ye [5] adopted traditional DEA models to explore benchmark corporations. Li et al. [21] generalized a
three-stage DEA model to evaluate the efficiency of innovation.

Because environmental protection and sustainable development are both important topics
to discuss, the semiconductor industry has increasing concerns about the sustainability of the
environment [2]. Furthermore, due to rapid economic development, the increasingly severe
effects of environmental pollution have attracted widespread attention all over the world [22].
The semiconductor industry assimilates green management into its business and implements
continuous improvement projects in the areas of climate change, energy management, water
management, waste management, and air pollution control. The goal is to facilitate coexistence
and mutual prosperity between semiconductor industry businesses and the environment [23].

There are various approaches across the literature regarding the assessment of sustainability [1,9].
Hatami-Marbini and Kangi [1] presented a case study from the semiconductor industry to demonstrate
the applicability of the proposed model and the efficacy of the procedures and algorithms [1]. Sueyoshi
and Yuan [9] set up a new use of a DEA intermediate approach to evaluate the sustainability of
Asia nations.

Production (with pollutant byproducts called undesirable outputs) and pollution treated as
a two-stage system have aroused increasing attention in the sustainability management field.
Undesirable factors have been taken into account in measuring the efficiency of suppliers [24],
eco-efficiency [25,26], and resource and environmental efficiency [15,27]. The literature has also
presented DEA efficiency evaluation by considering undesirable factors, and undesirable factors can
be regarded as inputs or undesired outputs in the DEA models [13,22,28]. Scholars have developed
different techniques to deal with undesirable outputs in DEA [29]. Undesirable outputs are inevitably
produced along with desirable outputs [22].

Inefficient economic activities may result in excessive use of resources and high levels of pollution
emissions due to production processes rely on resource inputs [30]. Furthermore, environmental
efficiency cannot be separated from economic efficiency. Thus, the indicators in this context are
necessary for policymaking [31]. While the previous studies have focused on development of
environmental measures [27,32], this study propose a method that incorporates the financial and
ecological aspects of sustainability. Figure 1 depicts the empirical framework of assessing process
sustainability in this study. For our study of semiconductor firms’ sustainability performance in
Taiwan, we divide the network process into two sub-processes: the business growth process and the
energy utilization process. The former one focuses on applying inputs to produce desirable outputs
and undesirable outputs, while the following one focuses on the disposal of pollution and waste that
are produced in the former.
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Figure 1. Empirical framework of assessing process sustainability. Note: italics are used for the
undesirable items.

3. Research Design

3.1. Framework of the Performance Evaluation of the Semiconductor Industry

Sustainable development and sustainability evaluation have been of great interest to both
academia and practitioners in the past decades [33]. It is clear that large-scale production leads to high
levels of environmental pollution. Accordingly, the decision maker looks at the weight of sub-processes
differently in the presence of sustainability expectations. MCDM methods can support decision-makers
in this process [34,35], and used for finding the “appropriate” pair of weights. In other words, we look
to identify the “optimal” weights for the two-stage performance. The analysis of complex decisions
involves the evaluation of activities using multiple criteria to determine the best alternative action.
AHP is the popular method in decision making, which only needs the decision makers to compare
each pair of objects and provide their preference values. Since it was first introduced by Saaty [36],
AHP has been applied in many fields [35,37–39]. He and Zhang [38] proposed a model integrated
factor analysis (FA), DEA, with AHP for supplier selection. Kim, Jeon, Cho and Kim [39] used the
AHP to analyze the relative importance and performance of individual environmental management
tasks in the hospital. The relevant criteria and their relative importance are elicited from the decision
makers via pairwise comparisons of the AHP technique. The standard processes of the AHP are also
utilized here, such as inconsistency checking and resolution [40].

Based on the literature reviews [12,13,22], two-stage DEA is the most often used tool in
sustainability assessment. Even though this method is useful for efficiency measurement, it suffers
from many drawbacks. One major drawback of DEA is that it does not account for the weight
of sub-processes in deriving efficiency scores. To account for this limitation, we employ the AHP
procedure to identify the optimal weights for the two-stage performance. We consider a two-stage
additive network DEA model to assess the performance of the semiconductor industry and propose an
efficient algorithm to solve it. Similar to Guo, Abbasi Shureshjani, Foroughi and Zhu [17], we assume
that the overall efficiency of a two-stage network is a product of the efficiencies of two individual
partners. Unlike Guo, Abbasi Shureshjani, Foroughi and Zhu [17], this study expends the application
of a two-stage model with multiple objectives where the goal of the decision maker is to maximize the
product of the efficiencies of the individual stages.

3.2. Data Collection and Descriptive Statistics

Data on 15 companies in the semiconductor industry for the period 2014–2017 were obtained
from their CSR (Corporate Social Responsibility) reports published in the Market Observation System
(MOPS) of Taiwan Stock Exchange (TSE). CSR reports follow widely-adopted global guidelines set by
the Global Reporting Initiative for the transparent disclosure of corporate values and performances.
The period examined corresponds to sustainable development issues that are of most concern in the
semiconductor industry, whereby the CSR report is voluntary information disclosure. Disclosing
environmental information can assist people understand the impact of a company’s product on
the environment and further help supervise corporate social responsibility. The CSR report, which
including continuous improvement projects in the areas of climate change, energy management,
water management, waste management, and air pollution control, is a bellwether response to the
United Nations SDGs (Sustainable Development Goals) in the economic, environmental, and social
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dimensions, which support global sustainability through concrete action. Data reflecting financial
performances of 15 companies are obtained from the Taiwan Economic Journal database.

This study follows previous works [12–15,25,27,41–43] and assume that the first stage of the
business growth process uses labour, operating expenses, and net fixed assets to produce sales, power
consumption, and water consumption that serve as intermediate outputs. Labour is measured as
the number of full-time employees. Operating expenses are measured as the expenditure that a
business incurs as a result of performing its normal business operations. Net fixed assets are the
residual difference between assets and liabilities. Power consumption and water consumption serve as
undesirable outputs to the first stage of production. Power consumption is measured as the amount of
electric power mainly used in manufacturing by process equipment and facility systems. This output
(sales, power and water consumption) from the first stage determines business growth outcomes from
the operating facility using the input financial and labour resources in the first stage. The second stage
of energy utilization focuses on reducing the pollution of the environment and the management of
natural resources. The second stage of the energy utilization process covers sales, power consumption,
and water consumption produced from the first stage to produce a set of effluent drainage, wastes, and
greenhouse gases as undesirable by-products from such production [44]. Table 1 provides descriptive
statistics on the inputs and outputs.

Table 1. Descriptive statistics of input, intermediate, and output variables.

Mean Standard
Deviation Minimum Maximum

Inputs
Operating Expenses (million NT$) 13,336 24,063 323 109,267

Employees (person) 13,235 21,537 267 87,366
Net Fixed Assets (billion NT$) 96 232 0.447 1062

Intermediates
Sales (million NT$) 104,413 218,447 5368 977,447

Power Consumption (TW·h, terawatt hour) 998 2185 5 10,829
Water Consumption (ton) 5,485,035 9,714,591 27,769 45,200,000

Outputs
Effluent Drainage (ton) 3,719,390 6,092,671 27,524 29,400,000

Wastes (ton) 29,755 70,346 47 361,969
Greenhouse Gases (ton) 644,460 1,232,272 2700 5,700,000

3.3. Two-Stage Additive Network DEA Model

Economic activities use material resources, labor, and capital to produce desirable goods and
services, but simultaneously trigger additional effects on the natural environment and inevitably
result in the generation of pollution, such as greenhouse gases and wastewater [32,45]. Economic
efficiency reflects the ability of a production unit to obtain maximal output from a given set of inputs
and the production technology [15,37]. However, it does not imply resource and environmental
efficiencies [15,31,46].

The solutions of the environmental efficiency measures are complicated [27,41,42], especially
for the cooperative ecological efficiency measure, because they represent non-linear programming
problems [12,31]. The rational methods to address undesirable elements have been introduced
into these environmental efficiency measures [13,22,28], and more reasonable and straightforward
ecological efficiency measures have been investigated [47].

Previous studies note that two-stage DEA models are more efficient than single-stage ones since
their discriminatory power is higher [26,48,49]. The traditional DEA model neglects the connectivity
of internal economic activities and cannot express the management messages of those activities. The
internal economic activities are considered to be a “Black Box”. This study adopts the network DEA
performance evaluation model [50,51] to evaluate operational management performance and changes
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in the performance efficiency of sustainable operations of the selected semiconductor companies in the
following network activities. Efficiency can be measured more appropriately by using the two-stage
additive network DEA approach [17]. When considering the difference between input slack and output
slack, this study uses “input-oriented efficiency” to evaluate the performance of the semiconductor
industry (as DMUs).

This study first considers the process that deals with DMUj(j = 1, · · · , n). We denote the
multipliers for the above factors as: Vq is the weight for the input component mq entering the process
at the beginning of stage 1; and uh is the weight for the output component rh flowing from stage 1 and
is also the multiplier for that same component as it becomes an input to stage 2. At each term, xk is the
weight for the input component o2

k entering the process at the beginning of stage 2, and zs is the weight
for the output component ns at stage 2. Therefore, this study defines the input-oriented efficiency of
stages 1 and 2 by solving the program as follows:

ρ1 = ∑H
h=1 uhrho/∑Q

q=1 νqmqo,

ρ2 = ∑S
s=1 zsnso/

(
∑H

h=1 uhrho + ∑K
k=1 xko2

ko

) . (1)

This study adopts the network DEA performance evaluation model [17]. Under the additive
efficiency decomposition approach, the overall efficiency score can be defined as a weighted average
of the two-stage efficiencies as follows:

ρ∗o = wρ1 + (1− w)ρ2. (2)

Thus, we can write the overall efficiency ρ∗o in the form:

ρ∗o = max

[
w

H

∑
h=1

uhrho/
Q

∑
q=1

νqmqo + (1− w)
S

∑
s=1

zsnso/

(
H

∑
h=1

uhrho +
K

∑
k=1

xko2
ko

)]
. (3)

We adopt the network DEA performance evaluation model [52] and then set out to optimize
the overall efficiency ρ∗o of the multistage process, subject to the restrictions that the individual
measures ρq must not exceed unity, or under the linear programming format after making the usual
Charnes and Cooper transformation. This study defines the input-oriented overall efficiency as
a ratio ranging between 0 and 1, which attains a value of 1 when all slacks are zero [53]. This
objective function value is also unit-invariant. Following [17], we let d = 1/∑Q

q=1 νqmqo and set
ũh = duh, ν̃q = dνq, z̃s = dzs, x̃k = dxk. The following input-oriented VRS-based network DEA model
for estimating the input ρ∗o of a firm in envelopment is in converted form as:

ρ∗o = max
[
w∑H

h=1 ũhrho + (1− w)∑S
s=1 z̃snso/

(
∑H

h=1 ũhrho + ∑K
k=1 x̃ko2

ko

)]
,

s.t.(
∑H

h=1 ũhrj
h

)
≤ ∑Q

q=1 ν̃qmj
q,(

∑S
s=1 z̃snj

s

)
≤
(

∑H
h=1 ũhrj

h + ∑K
k=1 x̃ko2j

k

)
∀j,

∑Q
q=1 ν̃qmqo = 1

ũh, ṽq, z̃s, x̃k ≥ 0; 0 ≤ w ≤ 1, ∀h, q, s, k

. (4)
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If the optimal solution for (4) satisfies ρ∗o = 1, then DMUo is called overall input-oriented efficient
or briefly overall efficient. We let f = 1/∑H

h=1 ũhrj
h + ∑K

k=1 x̃ko2j
k and set z′s = f z̃s, x′k = f x̃k Model (4)

is then converted to:
ρ∗o = max

[
w∑H

h=1 ũhrho + (1− w)∑S
s=1 z′snso

]
,

s.t.(
∑H

h=1 ũhrj
h

)
≤ ∑Q

q=1 ν̃qmj
q,(

∑S
s=1 z′snj

s

)
≤
(

∑H
h=1 ũhrj

h + ∑K
k=1 x′ko2j

k

)
∀j,

∑Q
q=1 ν̃qmqo = 1

f ∑H
h=1 ũhrj

h + ∑K
k=1 x′ko2j

k = 1
ũh, ṽq, z̃s, x̃k ≥ 0; 0 ≤ w ≤ 1, f > 0, ∀h, q, s, k

. (5)

For each fixed w, the above model can be solved by a sequence of linear programs by varying f
and searching for the best (global) solution. We present the bounds of stage efficiency scores for all
weights of the maximal efficiency scores for the first stage and the second stage as:

ρ1 = max∑H
h=1 uhrho/∑Q

q=1 νqmqo,

ρ1 = max∑S
h=1 Zsnso/

(
∑H

h=1 uhrho + ∑K
k=1 xko2

ko

)
, subject to the constraints o f ( 5 )

. (6)

Next, the minimum efficiency scores for the first stage and the second stage are:

ρ
−1

= max∑H
h=1 uhrho/∑Q

q=1 νqmqo

s.t.∑S
s=1 zsnso/

(
∑H

h=1 uhrho + ∑K
k=1 xko2

ko

)
= ρ̄2, subject to the constraints o f ( 5 )

ρ
−2

= max∑S
s=1 zsnso/

(
∑H

h=1 uhrho + ∑K
k=1 xko2

ko

)
s.t.∑H

h=1 uhrho/∑Q
q=1 νqmqo = ρ1, subject to the constraints o f ( 5 )

. (7)

Note that the optimal multipliers obtained from (5) may not be unique [17], implying that ρ1

and ρ2 are not unique. Therefore, in the spirit of [17], the overall efficiency score for DMUj can be
calculated by model (3), and the maximum achievable values of ρ1 and ρ2 can be determined via model
(8), respectively.

ρ+1 = max∑H
h=1 uhrho/∑Q

q=1 νqmqo

s.t.w∑S
s=1 zsnso/∑H

h=1 uhrho + (1− w)∑K
k=1 xko2

ko = ρ∗0 , and the constraints o f ( 5 )

ρ+2 = max∑S
s=1 zsnso/

(
∑H

h=1 uhrho + ∑K
k=1 xko2

ko

)
s.t.w∑S

s=1 zsnso/∑H
h=1 uhrho + (1− w)∑K

k=1 xko2
ko = ρ∗0 , and the constraints o f ( 5 )

(8)

On the other hand, the minimum of ρ1 and ρ2 can be determined via model (9), respectively.

ρ−1 =
ρ∗0−(1−w)ρ+2

w ,

ρ−2 =
ρ∗0−(1−w)ρ+1

w ,
. (9)

Note that ρ−1 = ρ+1 if and only if ρ−2 = ρ+2 . If ρ−1 = ρ+1 and ρ−2 = ρ+2 , then stage efficiencies ρ1 and
ρ2 are uniquely determined via model (5). Furthermore, the upper and lower values of the new overall
efficiencies are equal when ρ−1 = ρ+1 or ρ−2 = ρ+2 . This indicates unique stage efficiency, and the new
overall efficiency is thus uniquely determined.
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4. Empirical Results

4.1. Overview of the Semiconductor Industry’s Overall and Stage-Level Performances

This section describes the evaluation of the efficiencies of 15 companies in Taiwan’s semiconductor
manufacturing sector. The overall efficiency of the model is the proposed sustainability efficiency,
and it remains unchanged, indicating that the variation in the original overall efficiency is a result of
changing alpha only when stage efficiencies are unchanged [17]. As it stands, the model is able to
identify the best performers and provide realistic and applicable target objectives and peer groups.
Table 2 presents the results of the AHP method to identify the “optimal” weights by ten experts in the
semiconductor manufacturing field for the two-stage performance, and this method is able to resolve
the problem under which the two management processes may influence overall performance. The
weight via the AHP method gives a reasonable evaluation of the DMUs’ overall efficiencies, and it
also provides more information to facilitate improvement. Thus, the weights via MCDM method seem
to be a more scientific process for environmental assessments. The measurements considering the
intensity of importance between the two stages are made based on the standard AHP scale from 1
to 9. The relative importance weights from a set of criteria via pairwise comparisons are 0.575 in the
business growth stage and 0.425 in the energy utilization stage, as shown in Table 2. This suggests
an unequal division of weights among these two stages of assumptions, especially when individual
effects are assessed.

Table 2. Weight scores of the two stages.

AHP Weight Expert No.

1 2 3 4 5 6 7 8 9 10

F 0.575 0.500 0.500 0.750 0.750 0.333 0.333 0.667 0.667 0.750 0.500
S 0.425 0.500 0.500 0.250 0.250 0.667 0.667 0.333 0.333 0.250 0.500

Following [17], we apply the new overall efficiency index to address some pitfalls in the weighted
additive efficiency decomposition. Table 3 lists the 15 performers in overall management estimated by
applying a non-parametric DEA approach by [17]. These results, which use the “optimal” weights
in Table 3, indicate that the overall performance efficiency scores are 0.638, 0.630, 0.643, and 0.666
in the period 2014–2017. The changing trend of the overall sustainability performance of Taiwan’s
semiconductor manufacturing sector shows a steady increase.

As the existing literature explains, the two-stage model distinguishes the information from each
stage that cannot be recognized in the overall efficiency [54]. Calculating the two component efficiencies
as well as the overall efficiency can assist an organization in determining the sources of inefficiency [43].
First, the environmental efficiencies of the overall semiconductor industry are lower than economic
efficiencies from 2014 to 2017. Apart from environmental efficiencies, we notice that half of the DMUs
perform well in economic efficiency, with an average efficiency value above 0.9. Financial performance
is mainly determined by revenue growth and consistent improvement in profitability, and financial
performance is the key to corporate sustainability.

The efficiency scores in the first stage are 0.787, 0.766, 0.781, and 0.769 during year 2014 to
2017. The efficiency of the business growth stage has remained constant for the whole semiconductor
industry. On the other hand, the environmental efficiency fluctuates throughout a steady increase. The
efficiency scores in the second stage are 0.456, 0.465, 0.473, and 0.541, respectively. In other words,
the overall sustainability efficiency of the semiconductor industry increases due to environmental
efficiency and not from economic efficiency. As a matter of comparison, the environmental efficiency
within this industry may be significantly rising, because of the increasingly strict environmental
protection regulations and the significant increase in demand for raw materials and the expansion of
advanced production processes in the domestic semiconductor industry.
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We now decompose these two different efficiency scores concerning individual stage and time
effects. This model allows us to quantify contributions of the two stages (both desirable and undesirable
factors). Table 3 presents the results for the efficiency scores of the two stages. In the two-stage
approach, a DMU is efficient if and only if it is both efficient in the business growth stage and energy
utilization stage. Thus, no firm is efficient, and this information is of value, because it implies there is
still much room for improvement in sustainability efficiency. According to the efficiency results of the
individual stage-level process, thirteen of the fifteen companies exhibit better business growth and
energy utilization from year 2014 to 2017.

This study evaluates environmental efficiency by incorporating environmental impacts as
undesirable outputs generated by the production process. These results reveal that generally the
environment pollution generated by Taiwan’s semiconductor manufacturing sector is not well
controlled. For the sustainability concepts that can reduce undesirable outputs from the given inputs
and desirable outputs, it is imperative to act within the scope of current production technology [31].
As such, the air pollution brought about by the semiconductor manufacturing industry is composed
mainly of volatile organic compounds as well as acidic and alkaline gases. Hence, the empirical
evidence suggests that the inefficiency levels of undesirable output show that greenhouse gases
significantly reduce environmental efficiency, meaning there is still huge space for improvement.

4.2. Individual-Level Performance in the Semiconductor Industry

In order to further illustrate individual-level performance, we apply a benchmarking method
applied on the companies to find the best role-models so that others can learn from them with an
aim at effectively improving their own operating performance, as well as to analyze the gap between
them and the role-model firms with the added goal of strengthening competitive advantages and
operating performance through continuous improvement [55]. GETI (0.957, 0.985, 0.923), FSTC (0.982,
0.992, 0.969), VTSC (0.923, 0.982, 0.850), and WWC (0.883, 0.853, 0.919) have high relative efficiency in
“overall efficiency”, “operational efficiency”, and “environmental efficiency” and thus could be used
as a reference by other companies.

Good overall performance may not represent good operational management process
performance [49] or good environmental management performance. For example, the overall
efficiencies of UMC and EM show an average of 0.558 and 0.554 during the period of this study.
There seems to be no significant difference between the two companies. It is worth noting that
EM (0.998) achieves the highest operational efficiency scores in the efficiencies of the individual
stages, whereas UMC achieves the lowest score (0.281). Unless environmental measures are explicitly
incorporated in an aggregate measure, economic performance measures will not accurately reflect their
impact [14]. The hybrid approach using combined AHP and additive DEA is useful for evaluating the
additive efficiency decomposition provided from the valuable information of the top management
team (TMT). From this discussion, we can conclude that it is crucial to integrate company internal
resource for achieving long-term operational target aimed at promoting sustainable development.

If an individual company succeeds at improving its recycling capabilities, then it will achieve
high environmental efficiency scores. For a company to deliver high sustainability development, it
should not just aim at improving recycling capabilities, but also look to enhance the synergies between
economic growth and environmental protection. We may conclude that as the semiconductor industry
continues to grow, its requirements for sustainable measures such as energy conservation, carbon
reduction, water savings, and waste reduction will all continue to increase as well, and thus companies
must devote more attention to the issue of environmental sustainability.
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Table 3. Efficiency scores for the performance of the DMUs.

DMU
OERR FERR SERR OERR FERR SERR

2014 2015 2016 2017 2014 2015 2016 2017 2014 2015 2016 2017 Mean

United Microelectronics Corp. (UMC) 0.549 0.546 0.532 0.604 0.290 0.290 0.261 0.281 0.866 0.860 0.863 1 0.558 0.281 0.897
Delta Electronics (DELTA) 0.605 0.552 0.561 0.547 0.993 0.906 0.922 0.895 0.131 0.120 0.119 0.122 0.566 0.929 0.123

Taiwan Semiconductor Manufacturing Corp. (TSMC) 0.486 0.502 0.520 0.578 0.697 0.715 0.742 0.233 0.228 0.242 0.248 1 0.522 0.597 0.430
Macronix International Corp. (MIC) 0.492 0.517 0.728 0.787 0.369 0.415 0.880 1 0.641 0.641 0.541 0.526 0.631 0.666 0.587
Winbond Electronics Corp. (WEC) 0.413 0.427 0.427 0.414 0.546 0.562 0.577 0.530 0.252 0.263 0.245 0.272 0.420 0.553 0.258

Tatung Corp. (TC) 0.306 0.281 0.260 0.239 0.535 0.491 0.452 0.414 0.025 0.023 0.026 0.025 0.271 0.473 0.025
Nanya Technology Corp. (NTC) 0.620 0.546 0.519 0.566 0.961 0.790 0.583 0.639 0.203 0.247 0.440 0.477 0.563 0.743 0.342

Elan Microelectronics (EM) 0.557 0.552 0.551 0.557 1 1 0.994 1 0.015 0.006 0.010 0.016 0.554 0.998 0.012
Green Energy Technology Inc. (GETI) 1 0.912 0.942 0.973 1 0.939 1 1 1 0.879 0.871 0.940 0.957 0.985 0.923

Formosa Sumco Technology Corp. (FSTC) 0.995 0.982 0.984 0.965 1 0.967 1 1 0.989 1 0.965 0.922 0.982 0.992 0.969
Nuvoton Technology Corp. (NTC) 0.685 0.684 0.673 0.662 0.964 0.997 1 1 0.345 0.303 0.274 0.248 0.676 0.990 0.292

Vanguard International Semiconductor Corp. (VTSC) 0.783 0.969 0.943 0.995 0.941 0.998 1 0.992 0.591 0.934 0.874 1 0.923 0.982 0.850
Sino-American Silicon Products Inc. (SASPI) 0.673 0.607 0.570 0.643 0.991 0.914 0.764 1 0.284 0.232 0.334 0.207 0.623 0.917 0.264

Chipbond Technology Corp. (CTC) 0.562 0.522 0.528 0.533 0.736 0.643 0.650 0.679 0.348 0.375 0.380 0.354 0.536 0.677 0.364
Wafer Works Corp. (WWC) 0.848 0.855 0.900 0.927 0.787 0.859 0.897 0.868 0.922 0.851 0.903 1 0.883 0.853 0.919

Mean 0.638 0.630 0.643 0.666 0.787 0.766 0.781 0.769 0.456 0.465 0.473 0.541 0.644 0.776 0.484

Note: “OERR”, “FERR”, and “SERR” denote overall efficiency score, first-stage efficiency score, and second-stage efficiency score, respectively.
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4.3. Efficiency Analysis of the Comparison under the Traditional DEA Approach

As a matter of comparison, Table 4 presents the results of the traditional two-stage DEA approach,
with the first-stage efficiency scores being 0.754, 0.761, 0.736, and 0.794 in the period 2014–2017. The
efficiency of the business growth stage has remained constant. The second-stage efficiency scores are
0.552, 0.566, 0.557, and 0.576 in the same period, which are consistent with the empirical results of
Section 4.1, showing that the performance of business growth is better than energy utilization.

According to the analysis given above, similar conclusions can be reached by comparing the
distribution of the number of efficient DMUs in different years, indicating there is great potential
for improvement in the production process comprising multiple stages. It is also worth noting that
environmental efficiency scores in the traditional DEA approach tend to from a higher assessment,
so that the semiconductor manufacturing sector may be overestimating its performance in the
development of environmental protection. Although we find a similar result that the changing
trend of overall sustainability performance still exhibits a steady increase, the problem of the decision
over the weights remains unresolved. Table 4 shows the overall performance efficiency scores are
changing according to varying weights (with alpha = 1 . . . 9). These results suggest not only the
impacts of variables that are selected by the model, but also the impacts of varying weights.

We now compare the decision of the weights in this study with previous studies. The efficiency
was calculated, for example, as the arithmetic average of stage efficiency [56], or through a set weight
of α = 0.5 [57], common set of weights [26]. Prior literature demonstrated the differences between the
product of stage efficiency scores and weights [58]. However, the overall efficiency scores are changing
according to varying weights. The overall efficiency’s variation should reflect changes in the stage
efficiencies, and we recommend using the newly-defined overall efficiency after the calculations are
performed. Decision makers can choose the stage efficiencies to maximize the new overall efficiency
score [17]. From the previous analysis, one can gain insights concerning the overall score is a function
of the score at each stage of production.

Under the weights of the AHP method, we examine whether any unique efficiency decomposition
exists. We assume the overall efficiency of a two-stage network is the product of the efficiencies of two
individual parts. In other words, our approach provides a comprehensive view of the relationship
between the overall efficiency and the stage efficiencies under the varying weights.

For illustration purposes, we set w = j
10 , j = 1 . . . 9, and when the parameter ft = 1/ρ1 − 0.01 ∗ t.

approaches the lower bound of 0, the algorithm ends. We treat the maximal value from the t calculations
as the global optimal solution. The upper and lower values of the new overall efficiency are equal
when ρ−1 = ρ+1 or ρ−2 = ρ+2 . This indicates unique stage efficiency, and the new overall efficiency is
uniquely determined. Guo, Abbasi Shureshjani, Foroughi and Zhu [17] noted that the information
on the overall and stage efficiencies under various weights could be useful in empirical applications.
That is the exciting aspect of the differentiation between previous analyses that incorporate the specific
weight into the additive DEA model and attempt to decompose these two different efficiency scores
concerning individual and time effects.
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Table 4. Efficiency scores by the traditional network Data Envelopment Analysis (DEA) approach.

DMU FERR SERR
OERR

alpha = 1 alpha = 2 alpha = 3 alpha = 4

2014 2015 2016 2017 Mean 2014 2015 2016 2017 Mean 2014 2015 2016 2017 2014 2015 2016 2017 2014 2015 2016 2017 2014 2015 2016 2017

UMC 0.475 0.488 0.436 0.492 0.473 0.988 0.930 0.909 1.000 0.957 0.907 0.855 0.835 0.928 0.826 0.780 0.764 0.856 0.744 0.704 0.694 0.784 0.663 0.635 0.623 0.712
DELTA 0.903 0.545 0.484 0.443 0.594 0.441 0.405 0.417 0.432 0.424 0.416 0.382 0.392 0.405 0.392 0.359 0.367 0.378 0.375 0.336 0.342 0.351 0.451 0.347 0.331 0.327
TSMC 0.052 0.715 0.056 0.705 0.382 0.792 0.843 0.861 1.000 0.874 0.717 0.781 0.780 0.923 0.642 0.719 0.700 0.847 0.567 0.657 0.619 0.770 0.492 0.595 0.539 0.693
MIC 0.369 0.417 0.994 1.000 0.695 0.667 0.647 0.561 0.526 0.600 0.629 0.623 0.590 0.573 0.592 0.599 0.619 0.621 0.560 0.575 0.648 0.668 0.533 0.551 0.677 0.715
WEC 0.561 0.565 0.580 0.553 0.565 0.329 0.368 0.347 0.360 0.351 0.340 0.374 0.355 0.365 0.351 0.380 0.363 0.371 0.361 0.385 0.371 0.378 0.376 0.393 0.384 0.386
TC 0.426 0.404 0.396 0.328 0.389 0.063 0.055 0.061 0.055 0.058 0.072 0.067 0.070 0.064 0.111 0.104 0.104 0.091 0.151 0.142 0.140 0.120 0.190 0.179 0.177 0.150

NTC 0.961 0.790 0.673 0.722 0.787 0.348 0.393 0.440 0.477 0.415 0.388 0.420 0.454 0.493 0.428 0.447 0.469 0.510 0.468 0.474 0.483 0.526 0.508 0.501 0.497 0.542
EM 1.000 1.000 0.994 1.000 0.998 0.015 0.017 0.018 0.016 0.017 0.114 0.109 0.110 0.114 0.212 0.206 0.207 0.213 0.311 0.304 0.305 0.311 0.409 0.403 0.404 0.410

GETI 1.000 0.939 1.000 1.000 0.985 1.000 0.882 0.871 0.989 0.935 1.000 0.886 0.884 0.983 1.000 0.891 0.897 0.978 1.000 0.897 0.910 0.973 1.000 0.903 0.923 0.967
FSTC 1.000 0.996 1.000 1.000 0.999 0.989 1.000 0.965 0.922 0.969 0.990 0.997 0.968 0.930 0.991 0.993 0.972 0.938 0.992 0.990 0.975 0.946 0.994 0.987 0.979 0.953
NTC 0.992 0.997 1.000 1.000 0.997 0.345 0.303 0.274 0.248 0.292 0.407 0.372 0.346 0.323 0.469 0.441 0.419 0.398 0.530 0.511 0.492 0.474 0.592 0.580 0.564 0.549
VTSC 0.950 0.998 1.000 0.992 0.985 0.619 0.964 0.884 1.000 0.867 0.638 0.954 0.887 0.999 0.665 0.947 0.899 0.998 0.698 0.953 0.912 0.997 0.732 0.960 0.924 0.997
SASPI 0.991 0.923 0.764 0.999 0.919 0.322 0.315 0.337 0.224 0.300 0.377 0.359 0.379 0.286 0.432 0.403 0.421 0.366 0.496 0.455 0.463 0.445 0.567 0.515 0.506 0.524
CTC 0.759 0.664 0.667 0.713 0.701 0.378 0.407 0.409 0.388 0.396 0.410 0.427 0.428 0.411 0.441 0.446 0.448 0.435 0.472 0.466 0.467 0.459 0.504 0.486 0.488 0.486

WWC 0.877 0.976 0.995 0.960 0.952 0.983 0.955 1.000 1.000 0.984 0.929 0.904 0.951 0.987 0.895 0.856 0.902 0.974 0.882 0.853 0.901 0.960 0.868 0.854 0.901 0.947
Mean 0.754 0.761 0.736 0.794 0.761 0.552 0.566 0.557 0.576 0.563 0.556 0.567 0.562 0.586 0.563 0.571 0.570 0.598 0.574 0.580 0.581 0.611 0.592 0.593 0.594 0.624

DMU

OERR

alpha = 5 alpha = 6 alpha = 7 alpha = 8 alpha = 9 mean

2014 2015 2016 2017 2014 2015 2016 2017 2014 2015 2016 2017 2014 2015 2016 2017 2014 2015 2016 2017 2014 2015 2016 2017

UMC 0.582 0.575 0.562 0.640 0.520 0.518 0.502 0.568 0.484 0.487 0.448 0.504 0.481 0.487 0.444 0.500 0.478 0.488 0.440 0.496 0.632 0.614 0.590 0.666
DELTA 0.526 0.380 0.357 0.346 0.602 0.413 0.382 0.366 0.677 0.446 0.408 0.385 0.752 0.479 0.433 0.404 0.828 0.512 0.459 0.424 0.558 0.406 0.386 0.376
TSMC 0.417 0.532 0.458 0.617 0.343 0.526 0.378 0.540 0.271 0.573 0.298 0.578 0.198 0.620 0.217 0.620 0.125 0.668 0.137 0.663 0.419 0.630 0.458 0.694
MIC 0.505 0.528 0.711 0.763 0.478 0.505 0.745 0.810 0.451 0.483 0.779 0.858 0.424 0.461 0.835 0.905 0.397 0.439 0.915 0.953 0.508 0.529 0.724 0.763
WEC 0.401 0.413 0.411 0.404 0.429 0.442 0.444 0.427 0.462 0.473 0.477 0.458 0.495 0.504 0.511 0.488 0.528 0.534 0.546 0.520 0.416 0.433 0.429 0.422
TC 0.229 0.217 0.214 0.180 0.269 0.254 0.250 0.209 0.308 0.292 0.287 0.239 0.347 0.329 0.323 0.269 0.387 0.366 0.360 0.299 0.229 0.217 0.214 0.180

NTC 0.582 0.528 0.511 0.558 0.658 0.573 0.526 0.574 0.733 0.627 0.558 0.591 0.809 0.681 0.596 0.633 0.885 0.735 0.635 0.678 0.607 0.554 0.525 0.567
EM 0.508 0.503 0.502 0.508 0.606 0.602 0.601 0.606 0.705 0.702 0.699 0.705 0.803 0.801 0.797 0.803 0.902 0.900 0.896 0.902 0.508 0.503 0.502 0.508

GETI 1.000 0.909 0.936 0.970 1.000 0.915 0.948 0.976 1.000 0.921 0.961 0.982 1.000 0.927 0.974 0.988 1.000 0.933 0.987 0.994 1.000 0.909 0.936 0.979
FSTC 0.995 0.984 0.982 0.961 0.996 0.980 0.986 0.969 0.997 0.977 0.989 0.977 0.998 0.974 0.993 0.984 0.999 0.971 0.996 0.992 0.995 0.984 0.982 0.961
NTC 0.654 0.650 0.637 0.624 0.716 0.719 0.709 0.699 0.778 0.788 0.782 0.774 0.846 0.858 0.855 0.850 0.919 0.927 0.927 0.925 0.657 0.650 0.637 0.624
VTSC 0.766 0.966 0.936 0.996 0.801 0.973 0.949 0.995 0.836 0.979 0.961 0.994 0.872 0.985 0.974 0.993 0.911 0.992 0.986 0.992 0.769 0.968 0.936 0.996
SASPI 0.637 0.575 0.549 0.603 0.708 0.642 0.592 0.682 0.779 0.712 0.635 0.762 0.849 0.782 0.678 0.841 0.920 0.852 0.721 0.920 0.641 0.588 0.549 0.603
CTC 0.542 0.509 0.515 0.517 0.581 0.536 0.542 0.549 0.620 0.563 0.570 0.589 0.663 0.591 0.599 0.630 0.711 0.628 0.633 0.672 0.549 0.517 0.521 0.528

WWC 0.855 0.855 0.900 0.934 0.841 0.856 0.899 0.921 0.828 0.858 0.899 0.908 0.816 0.862 0.901 0.894 0.833 0.909 0.944 0.905 0.861 0.867 0.911 0.937
Mean 0.613 0.608 0.612 0.641 0.637 0.630 0.630 0.660 0.662 0.659 0.650 0.687 0.690 0.689 0.675 0.720 0.721 0.724 0.705 0.755 0.623 0.625 0.620 0.654

Note: “OERR”, “FERR”, and “SERR” denote overall efficiency score, first-stage efficiency score, and second-stage efficiency score, respectively.
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5. Conclusions

This paper contributes to the literature on semiconductor industry efficiency by introducing a
new hybrid model that combines AHP and two-stage additive network DEA to estimate sustainability
efficiency in the presence of multiple undesirable outputs. This method makes up the disadvantage
in weighting technique used additive decomposition approach to the two-stage network could bias
toward the second stage. Through our modeling framework, we are able to ascertain whether overall
inefficiency results from the inefficiency of an individual stage-level process, an internal resource
imbalance, or both. The findings herein provide more insights and new information on semiconductor
industry performance and management practices.

Consider just efficiency decomposition is one explicit limitation of traditional DEA models in
regard to how to decide the appropriate weight of the network structure. To overcome the gap in
the literature between overall efficiency and stage efficiencies under varying weights, this study uses
AHP of the MCDM method to identify the “optimal” weights for the two-stage performance. The
relative importance weights from a set of criteria via pairwise comparisons are 0.575 in the business
growth stage and 0.425 in the energy utilization stage. Thus, we are able to identify semiconductor
companies that operate below peer performance by incorporating the financial and ecological aspects
of sustainability.

Taiwan’s semiconductor manufacturing sector has exhibited a steady increase in its overall trend
of sustainability performance. The integration of environmental impacts, as undesirable outputs, has
been considered in various environmental efficiency assessments. The differences reflect that the
level of undesirable output has a great influence on the sustainable development of semiconductor
companies. According to the stage-level performance results, the performance of business growth is
better than energy utilization; thus, the changing trend of overall sustainability performance is through
a steady increase from environmental efficiency and not from economic efficiency. On the other hand,
these individual-level efficiency scores provide insight into how the impacts which are derived from
business growth or energy utilization are generated in the semiconductor industry.

From the policy and management perspective, the results of this study are compared with the
results of the traditional DEA model. However, the semiconductor manufacturing sector may be
overestimating its performance in the development of environmental protection through the traditional
DEA model. Therefore, our new hybrid model allows the TMT of semiconductor firms to scrupulously
identify whether changes in their firm’s environmental pollution are driven by changes in effluent
drainage, wastes, and/or greenhouse gas emissions. One interesting direction for future research
would be to add the Economic Input-Output Life Cycle Assessment (EIO-LCA) into the analysis for
examining a company’s sustainability. Another one is the evaluation the social efficiency to measure
the ability of a company to convert its produced wealth into the quality of life. Moreover, the model
can take into consideration the weights of inputs or outputs.
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