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Abstract: Pontryagin’s Minimum Principle (PMP) has a significant computational advantage
over dynamic programming for energy management issues of hybrid electric vehicles. However,
minimizing the total energy consumption for a plug-in hybrid electric vehicle based on PMP is not
always a two-point boundary value problem (TPBVP), as the optimal solution of a powering mode
will be either a pure-electric driving mode or a hybrid discharging mode, depending on the trip
distance. In this paper, based on a plug-in hybrid electric truck (PHET) equipped with an automatic
mechanical transmission (AMT), we propose an integrated control strategy to flexibly identify the
optimal powering mode in accordance with different trip lengths, where an electric-only-mode
decision module is incorporated into the TPBVP by judging the auxiliary power unit state and the
final battery state-of-charge (SOC) level. For the hybrid mode, the PMP-based energy management
problem is converted to a normal TPBVP and solved by using a shooting method. Moreover, the
energy management for the plug-in hybrid electric truck with an AMT involves simultaneously
optimizing the power distribution between the auxiliary power unit (APU) and the battery, as well
as the gear-shifting choice. The simulation results with long- and short-distance scenarios indicate
the flexibility of the PMP-based strategy. Furthermore, the proposed control strategy is compared
with dynamic programming (DP) and a rule-based charge-depleting and charge-sustaining (CD-CS)
strategy to evaluate its performance in terms of computational accuracy and time efficiency.

Keywords: plug-in hybrid electric vehicle; energy management strategy; automatic mechanical
transmission; Pontryagin’s minimum principle

1. Introduction

Due to increasingly severe air pollution and energy crisis, as well as growingly stringent emission
regulations, automotive manufactures over the world have been paying enormous attention to
electrified vehicles [1–3]. Among them, plug-in hybrid electric vehicles (PHEVs), which are capable of
absorbing electricity from the power grid, have been considered as a promising, sustainable mobility
solution, because they not only exhibit excellent fuel economy but also are immune from range anxiety
during long-distance trips [4].

The presence of two or more power sources such as the auxiliary power unit and the battery
in a PHEV makes it necessary to develop a supervisory control strategy where such hybrid power
sources are expected to be smartly blended to minimize the energy consumption or the total consumed
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energy cost during a driving cycle [5]. A common on-broad control strategy is the charge-depleting
and charge-sustaining strategy [6]. Such a rule-based method involves driving the vehicle in an
electric-only mode until a pre-set lower state-of-charge (SOC) threshold value is reached, and a
charging-sustaining mode is then launched. Fuzzy rules were also introduced to further optimize the
rule-based methods [7]. The energy distribution policy in these rule-based strategies, however, often
depends on engineering experiences/heuristics and lacks design flexibility, largely weakening the
potential performance of PHEVs.

To take full advantage of a multiple-source powertrain for optimal fuel economy, the blended
discharging strategy that carefully uses the battery and other energy sources simultaneously was
developed, including global optimization methods [8], instantaneous minimum approaches [9], and
even data-driven algorithms [10,11]. Dynamic programming, as a typically global optimization
method, has been extensively applied for energy management problems in HEVs and PHEVs, making
it a benchmark to assess other strategies [12,13] or develop real-time power management strategies
e.g., in a predictive manner [14,15]. The stochastic dynamic programming also has been proposed to
optimize the energy management issue with a Markov chain model [16]. Moreover, the DP algorithm
can be employed in a receding horizon to form a model predictive control strategy [17,18]. However,
the challenge for DP methods lies in a heavy computational burden, because of the interpolation
calculation with massive discrete points of state variables to evaluate the cost-to-go.

Pontryagin’s Minimum Principle (PMP) is another extensively utilized global optimization
algorithm based on the Hamilton–Jacobin–Bellman equation [19–21], and its solution is capable
of inspiring the Equivalent Consumption Minimum Strategy for practical applications [9,22]. Given
that a final SOC value equals its initial level, the optimal energy consumption problem for HEVs can
form a regular two-point boundary value problem [22], which can be solved directly by numerical
methods, i.e., a shooting method. For a PHEV, however, the PMP-based energy management issue over
a known driving cycle will exhibit a completely different feature, because the lower SOC boundary
value highly related to the driving distance cannot easily be set in advance [23,24]. Specifically, if the
lower boundary value is unreasonably preset, the final SOC at the end of the trip may never approach
the preassigned value. As a result, the PMP-based energy management problem for plug-in hybrid
electric vehicles is not necessarily a two-point boundary value problem. Generally speaking, the
optimal solution of the PMP-based strategy induces two possible operating modes: (1) an electric-only
mode corresponding to short-distance trips and (2) a hybrid mode corresponding to long-distance
trips. The hybrid mode, where the battery charge is depleted such that its final SOC arrives at the
preset lower boundary value, can merely result in a normal TPBVP.

So far, various PMP-based control strategies that focus on the hybrid discharging mode and are
examined by running cycles with definitive upper and lower SOC boundaries have been proposed.
However, the electric-only mode, as a possible optimal choice for short-distance driving scenarios, has
not been addressed [25–28]. It is impossible to recognize the optimal powering mode for all scenarios,
based on the initial SOC and the driving distance for only a specific driving cycle. Thus, to be a
robust controller, the proposed control strategy should be able to deal with the energy management
problem for cases with different driving distances. Moreover, for a plug-in hybrid electric truck with an
AMT, the choice of gear ratio will change working points of the tractor motor and affect the driveline
efficiency and thus the total cost of the consumed energy. As a result, the control strategy should
simultaneously optimize the power distribution between the auxiliary power unit (APU) and the
battery, as well as the gear ratio choice, inducing a two-dimensional optimization problem.

The main contributions of this paper lie in two aspects. First, we propose a flexible PMP-based
energy management controller by integrating electric-only and hybrid powering modes, so as to
adapt to any given testing cycle. The power split and the gear shifting are co-optimized via the
PMP algorithm, where the gear ratio is regarded as an input variable rather than a state variable
in the dynamic equation, which greatly alleviates the numerical difficulty of the two-dimensional
optimization issue. Second, the dynamic programming and charge-depletion and charge-sustaining
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counterparts are contrasted with the proposed PMP-based method in terms of the total cost and
algorithmic efficiency.

The remainder of this paper is organized as follows: Section 2 describes the powertrain
configuration and its modeling, and we then formulate the energy management problem based
on PMP in Section 3. An integrated control strategy and its solution are detailed in Section 4. Section 5
examines the proposed method with different scenarios. A comprehensive comparison with existing
methods is performed in Section 6, followed by main conclusions in Section 7.

2. Powertrain Modeling

2.1. Powertrian Description

The prototype of the considered PHEV is a medium-duty truck, and the architecture of its series
powertrain is illustrated in Figure 1. The APU consisting of an internal combustion engine and an
integrated-starter-generator (ISG) is mechanically decoupled from the driveline. The engine is a 2.78-L
diesel engine, and the ISG is a permanent magnet synchronous motor. The voltage of the energy
storage system (an Li-ion battery pack) totals 537.6 V, and its normal capacity is 180 Ah. The electric
motor coupled to a three-speed automatic mechanical transmission can operate in either a driving or a
regenerating mode.
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Figure 1. Powertrain architecture of the plug-in hybrid electric truck.

The main parameters of the powertrain are listed in Table 1, wherein the three gear ratios of the
automatic mechanical transmission and the maximum dynamic parameters such as the power, speed,
and torque for the engine, ISG, and tractor motor are detailed.

Table 1. Main specifications of the plug-in hybrid electric truck.

Item Parameter Value

Vehicle
Curb mass (kg) 10,800
Final gear ratio 5.286

AMT
Gear 1 ratio 4.406
Gear 2 ratio 2.446
Gear 3 ratio 1.481

Engine
Displacement (L) 2.78
Max power (kW) 110
Max speed (rpm) 3200

ISG
Max power (kW) 90
Max torque (Nm) 330
Max speed (rpm) 3000

Tractor
motor

Max power (kW) 150
Max torque (Nm) 850
Max speed (rpm) 3000

Battery Capacity (Ah) 180
Battery total voltage (V) 537.6
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2.2. System Model

A quasi-static approach is used to model the powertrain of the PHET.

2.2.1. APU Model

The brake-specific fuel consumption (BSFC) of the engine is mapped from its rotational speed and
torque with a look-up table, as shown in Figure 2. The ISG motor efficiency is described as functions of
its speed and torque, as depicted in Figure 3.
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Figure 3. Integrated-starter-generator (ISG) efficiency map.

2.2.2. Electric Motor

The electric motor efficiency is also described as functions of its speed and torque, as plotted in
Figure 4.
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2.2.3. Battery Model

The battery system, which ignores thermal effects and transient influences, is modeled by an
equivalent electric circuit, and the simplified model includes an open-circuit voltage in series with an
internal resistance, both of which are a function of the battery SOC [18].

The power balance relationship for the battery system can be expressed as

Pbat = Pb + Ploss = Pb + I2
b Rb (1)

where Pbat is the internal power, Pb is the terminal power, and Ploss is the internal power loss, and Ib
and Rb are the battery electric current and equivalent resistance, respectively.

Accordingly, the voltage balance has the form of

VL = Voc − IbRb (2)

where VL is the load voltage, and Voc is the open-circuit voltage.
The dynamic equation for the state of charge is described by [29]

.
SOC = − Ib

Qb
(3)

where Qb is the nominal battery capacity.

2.3. Vehicle Dynamics

The power absorbed by the tractor motor is used to overcome the rolling resistance force, the air
resistance force, and the accelerating resistance, so the longitudinal dynamics can be given by [30] Tr =

(
δm dv

dt + mg f + 0.5Cd Av2
)

r

Pr =
1

η
sgn(Tr)
m η

sgn(Tr)
d

i0igTrnm
9550

(4)

where Tr is the equivalent torque request on the wheel; Pr is the power demand on the output side of
the electric machine; ηm denotes the tractor motor efficiency; ηd presents the mechanical efficiency of
the driveline; m is the total vehicle mass; v is the speed; δ is the equivalent rotational inertia; i0 and
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ig denote the final drive ratio and gear ratio, respectively; r is the tire radius; Cd is the air resistance
coefficient; A is the front face area; nm is the rotational speed of the tractor motor.

The electric power balance equation between the power sources is

Pbat + PAPU = Pm + Paux (5)

where PAPU is the APU output power, Pm is the electric machine power, and Paux denotes the auxiliary
component power, e.g., the electric steering system.

3. PMP-Based Optimization Problem

3.1. Optimization Problem Formation

As the optimization problem discussed in this paper is to minimize the total energy cost over a
known driving event, the objective function can take the mathematical form as follows [9]:

J = min
∫ t f

0

(
c f

.
m f + cePbat

)
dt (6)

where J is the total cost of the consumed energy, and
.

m f is the fuel consumption rate of the APU; c f
and ce denote the market prices for oil and electricity, respectively; t f presents the terminal time of the
driving cycle.

In terms of powering mode, the optimal discharging policy for a PHEV can be divided into two
modes according to different trip lengths: the electric-only mode for short-distance trips and the
hybrid discharging mode for long-distance trips. Unfortunately, it is impossible to initially distinguish
which mode will be the optimum for any given driving cycle, because the relationship between the
energy requirement of the whole trip and the battery energy available is not clear. As a consequence,
to guarantee the algorithmic flexibility, the controller should be designed to smoothly switch between
both modes, according to different driving distances.

During the electric-only mode for the PHET, its APU will be off-state, and the battery is responsible
for supplying the required power for the driving mission. Therefore, the electric-only mode can be
integrated into the TPBVP so that the optimal mode can be filtered by checking the APU output power
and the final SOC level. To be more specific, if the APU maintains the off-state during the entire trip,
and the final SOC does not exceed the lower boundary value, the electric-only mode is triggered (the
charge stored in the battery satisfies the demanded power over the whole trip); otherwise, the hybrid
mode is activated. Consequently, the optimal working mode logic of the PHET can be described as

optimal mode =

{
all electric mode PAPU == 0&&SOCkmax < SOC f
hybrid mode else

(7)

where the vector PAPU is the sequence of the APU output power over the whole trip, SOCkmax is the
SOC level at the end of the driving cycle, which is derived by its state equation, and SOC f is the pre-set
lower SOC boundary value.

For a PHET with a 3-speed AMT, minimizing the total energy cost involves the power split
between the APU and the battery, as well as the gear-shifting choice. Instead of taking the gear ratio
as a state variable that will extend the system state dimensions [13], here it is regarded as an input
variable. Hence, the system equation contains two input variables: one represents the power split, and
the other represents the gear-shifting. That is, the control vector is given as

u =

[
u1

u2

]
=

[
PAPU

ig

]
(8)

where u1 is the output power of the APU, and u2 is the gear ratio of the AMT.
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The battery SOC is selected as the state variable

x = SOC. (9)

The generic system state equation is then stated as

.
x = f (x, u). (10)

3.2. Pontryagin’s Minimum Principle

As the system dynamics contains two input variables and one state variable, the objective function
can be rewritten in the following form:

J = min
∫ t f

0

(
c f

.
m f (PAPU) + cePbat

(
SOC, PAPU , ig

))
dt. (11)

Based on Equations (2) and (3), the state variable can be described as

f
(
SOC, PAPU , ig

)
= − Ib

Qb
= −

Voc(SOC)−
√

V2
oc(SOC)− 4Rb(SOC)Pb

(
PAPU , ig

)
2QbRb(SOC)

(12)

where Pb is the function of the APU power and gear ratio.
The Hamiltonian function is then depicted by

H = c f
.

m f + cePbat + λ f
(
SOC, PAPU , ig

)
(13)

where H is the Hamiltonian function, and λ is the co-state variable.
The co-state dynamics and the normal equation can be, respectively, portrayed by

.
λ = −

∂H
(
SOC, λ, PAPU , ig

)
∂SOC

(14)

and
.

SOC =
∂H
(
SOC, λ, PAPU , ig

)
∂λ

. (15)

The method that is adapted to the electric-only mode and the hybrid mode is an expansion of the
normal TPBVP. Therefore, to include both powering modes, the boundary condition for the SOC is
described as follows: 

SOC(t0) = SOC0

SOC
(

t f

)
=

{
SOCkmax

SOC f

all electric mode
hybrid mode

(16)

where SOC0 and SOC f are the upper and lower boundary values, respectively, and SOCkmax is the final
SOC calculated by the dynamic equation.

In addition to the global constraint on the battery SOC, the instantaneous constraints imposed on
power components due to the physical limits can be given as

PAPU,min ≤ PAPU(t) ≤ PAPU,max
Pbat,min ≤ Pbat(t) ≤ Pbat,max
Pm,min ≤ Pm(t) ≤ Pm,max

nm,min ≤ nm(t) ≤ nm,max

Tm,min ≤ Tm(t) ≤ Tm,max

(17)
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where Tm is the torque of the tractor motor, and the subscript max and min denote the upper and lower
bounds for each variable, respectively.

The energy management framed as a constrained optimization problem then takes the following
formulation:

[u∗1 , u∗2 ] = argmin
u1 ∈ U1

u2 ∈ U2

H
(
SOC, λ, PAPU , ig

)
(18)

subject to 

.
SOC = − Ib

Qb

SOC(t0) = SOC0

SOC
(

t f

)
=

{
SOCkmax

SOC f

all electric mode
hybird mode

u1 ∈ U1

u2 ∈ U2

(19)

where U1 and U2 are defined as the allowable input variable sets.
By minimizing the Hamiltonian function with boundary conditions, we can obtain the optimal

Hamiltonian value associated with the optimal control inputs:

H
(

SOC∗(t), λ∗(t), P∗APU(t), i∗g(t)
)
≤ H

(
SOC∗(t), λ(t), P∗APU(t), i∗g(t)

)
(20)

where λ∗ denotes the optimal co-state value.
The optimal control inputs can be obtained as[

P∗APU , i∗g
]
= arg min H

(
SOC, λ, PAPU , ig

)
. (21)

4. Integrated Control Strategy and Its Numerical Solution

4.1. Integrated Control Strategy

As mentioned above, the PMP-based energy management problem for driving missions with
different trip distances involves the selection between the electric-only mode and the hybrid mode.
By adding the mode decision module that incorporates an appropriate mode into the normal TPBVP,
an integrated control strategy is constructed. In the control scheme, the electric-only mode can be
triggered by judging the sequence of the APU output power over the whole trip and the final battery
SOC level. The detailed flow chart is illustrated in Figure 5.
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(1) A four-loop structure is designed to seek the optimal policy of the power-split and the
gear-shifting, where the index j denotes the jth shooting sequence, k denotes the kth time step of the
driving cycle, h denotes the hth gear ratio of the AMT, and i denotes an ith increment of the APU
power in the allowable set.

(2) The electric-only mode highlighted by the blue color can be activated if the condition
(SOCmax

j < SOC f and PAPU == 0) is satisfied; otherwise, the hybrid mode is triggered, where
the normal TPBVP is solved by using the shooting method [31].

4.2. Numerical Solution

For a normal TPBVP solved by the shooting method, to efficiently tune the initial co-state value
so as to guide the final SOC to target the desired lower value, the Secant method is used, which takes
the following mathematical expressions [9,11]:

λ1 = λ0

λ2 = λ0 + κ

j = 1
j = 2

λj = λj−1 −
(
λj−1 − λj−2

) SOCj−1, f−SOC f
SOCj−1, f−SOCj−2, f

j = 3, 4, · · ·
(22)
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where λj denotes the initial co-state value in the jth shooting; the first two co-state variables λ1 and λ2

are initialized by the given constants λ0 and κ, which start the iterative process for λj (j = 3, 4, · · · );
SOCj, f denotes the SOC level at the end of the trip in the jth shooting.

From the co-state Equation (14) and the normal Equation (15), we can further formulate the
following equations: { .

λ = −λ ∂
.

SOC
∂SOC.

SOC = f
(
SOC, PAPU , ig

) . (23)

The numerical dynamics for the state SOC and the co-state are evolved by the Euler methods as
follows [11]: {

SOCk+1 = SOCk +
.

SOCdt
λk+1 = λk +

.
λdt

(24)

where the time step dt is set to 1 s.

5. Results and Analysis

To examine the developed integrated control strategy, two scenarios with different instances (long
and short distances) based on the Chinese City Bus Driving Cycle (CCBDC) [32] (see Figure 6) are
simulated, given different initial SOC levels. The lower SOC boundary value SOC f is set to 0.3 in both
cases. To imitate a realistically reasonable condition to avoid the jumping transition between the first
and third gear, a penalty term is added to the Hamiltonian function. The variable λ0 and κ are set to
−55 and 0.4, respectively, and the converging factor ε is set to 0.00005. Additionally, the increment of
the APU output power ∆P is specified to 1 kW.
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Figure 6. Speed profile of a single Chinese City Bus Driving Cycle (CCBDC) (duration = 1314 s, distance
= 5.78 km).

5.1. Long-Distance Driving Cycle

Scenario 1 is composed of eight concatenated CCBDCs (8 × CCBDC), with a total distance of
47.2 km and a time length of 2.92 h. The initial battery SOC is intentionally set to 0.5 to model a half
fully charged battery.

Figure 7 plots the SOC profiles yielded by the shooting method, which indicates that seven
shootings were required until the final SOC targeted the preset level (0.3). Moreover, it can be observed
that the SOC curves appear in a non-sequential order, indicating an effective tuning of the co-state
values by the Secant method. Since the final SOC reaches the preset lower boundary level, the hybrid
mode was activated in this case. As a result, the seventh SOC profile can be regarded as the optimal
discharging trajectory.
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Figure 7. State-of-charge (SOC) trajectories in all shooting operations in Scenario 1.

The initial co-state values corresponding to different shooting processes are depicted in Figure 8.
It is apparent that the co-state variable increases in the first stage, drops in the middle stage, and
finally tends to a stable value. The optimal co-state variable, as shown in Figure 9, declines in an
approximately linear manner ranging from −54.17 to −54.78 CNY (Chinese yuan) during the whole
trip. The APU output power and the battery terminal power, as illustrated in Figure 10, reveal that the
control algorithm carefully blends both power sources until the SOC approaches the lower boundary
value. Overall, the optimal energy management problem in Scenario 1 is essentially cast into a normal
TPBVP, which can be solved by the shooting method.
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Figure 8. Initial co-state values in all shooting operations in Scenario 1.
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Figure 9. Optimal co-state trajectory in Scenario 1.
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Figure 10. Power output of (a) the auxiliary power unit (APU) and (b) the battery in Scenario 1.

Figure 11 depicts the electric motor operating points (OPs) corresponding to different shifting
gears of the AMT. It can be observed that the rotational speed of the tractor motor falls within a
wide scope, and the torque mainly varies between ±200 Nm, which is determined by not only the
gear-shifting control strategy but also the feature of the driving cycle. Figure 12 shows the bar graph
of the accumulative operating time for each gear. Obviously, the controller chooses the first gear most
frequently, followed by the second gear, and then the third gear, with their time percentages accounting
for 50.4, 30.4, and 19.2%, respectively.
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Figure 12. Accumulative time of three gears in Scenario 1.

5.2. Short-Distance Driving Cycle

To further examine the flexibility of the proposed integrated energy management strategy for
short-distance cases, Scenario 2 consists of only 2 × CCBDCs (about 11.5 km, 0.7 h), and the initial
SOC is arranged to 0.6 to simulate a moderate charging level of the battery.

As plotted in Figure 13, the shooting method in this case generates three SOC profiles, indicating
that three shootings were required to seek the optimal SOC trajectory. Despite the same lower SOC
boundary value (0.3) as in Scenario 1, the final SOC, however, reaches 0.491 without exceeding the
preset level, which suggests that the electric-only mode is triggered by checking the APU output power
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and the final SOC level. Additionally, the output power profiles in Figure 14 show that the battery is
the only energy provider, whereas the APU maintains the off-state at all times. This observation again
demonstrates the optimal electric-only driving mode in this case.
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Figure 14. Output power of (a) APU and (b) battery in Scenario 2.

The initial co-state value in Figure 15 presents a sudden increase in the third shooting, because
the same setting of the initial co-state values (λ1 and λ2) as that in Scenario 1 needs a deep adjustment
by the Secant method in this case. The optimal co-state value (see Figure 16) varies from −47.50 to
−47.85 CNY during the whole trip.

The gear-shifting OPs are plotted in Figure 17, and the accumulative time of the gear-shifting in
this case is given in Figure 18, with the percentages of time distribution for the three gears being 50.3,
30.4, and 19.3%, respectively.
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Figure 15. Initial co-state values in all shootings in Scenario 2.
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Figure 17. Tractor motor OPs with different gears in Scenario 2.
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Figure 18. Accumulative time of three gears in Scenario 2.

6. Comparisons with Other Existing Strategies

To evaluate the performance of the presented method regarding the computational efficiency
and accuracy, a comparative analysis is carried out with the DP algorithm and the rule-based
CD-CS strategy.

6.1. DP-Based Strategy

Based on the Bellman principle [33], the DP-based energy consumption optimization for the PHET
with the three-speed AMT can be expressed as follows:

Jk(xh) = min
{

gk
(

xh, u1,i, u2,j
)
+ Jk+1

(
fk+1

(
xh, u1,i, u2,j

))}
(k = kmax − 1, kmax − 2, · · · 1; i = 1, 2, · · · imax, j = 1, 2, 3)
Jkmax (xh) = min

u1 ∈ U1

u2 ∈ U2

{
gkmax

(
xh, u1,i, u2,j

)}

(k = kmax; i = 1, 2, · · · , imax; j = 1, 2, 3)

(25)

where k denotes the time step; gk represents the current energy cost; xh is the hth discrete value of the
state variable; u1,i represents the ith discrete APU power, and u2,j denotes the jth gear ratio; Jk is the
cost-to-go value from the start point of xk; fk describes the SOC dynamic equation, which is used to
estimate the SOC in the next time step.

Since the solving accuracy and computational burden of the DP algorithm are affected by the
scale of the discretization of the state variable, the number of SOC grid points is set to 1000 after many
trails to balance the calculative efficiency and precision.

6.2. CD-CS Strategy

For a CD-CS strategy, the transition from the CD stage to the CS stage is determined by a preset
SOC threshold value. Here the rule is regulated such that if the battery SOC is lower than 0.3, the APU
outputs a constant power (45 kW) corresponding to the optimal fuel rate; if the battery SOC exceeds
0.35, the APU turns off.

By balancing the drivability and energy economy, a rule-based gear-shifting control policy is used
here, on the basis of two supervisory variables including the vehicle speed and the torque request
at the output side of the AMT shaft. As shown in Figure 19, the dashed lines denote the down-shift
boundary lines, the solid lines represent the up-shift boundary lines, and the intermediate region
between each two different lines indicates an overlapping operation to avoid frequent gearshift.
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Figure 19. Rule-based gear-shifting control policy.

6.3. Results

The aforementioned DP and CD-CS methods are compared with the devised PMP-based energy
management strategy. For a fair, judicious comparison, Scenario 1, which triggers the hybrid powering
mode, is used as the driving cycle. The results are summarized in Table 2. The total cost consumed by
the CD-CS strategy is 10.03% and 10.04% more than those in the DP and PMP algorithms, respectively.
Both global optimal methods (DP and PMP) produce almost the same total cost, and the slight
difference between them is due to the fact that the solution accuracy of DP is influenced by the
discretization scale of the battery SOC and the interpolation method used to estimate the cost-to-go;
for the latter, the converging factor exerts a direct effect on the calculative precision. As for the
computational efficiency, the time required by the PMP algorithm is tremendously diminished
compared to the DP method, exhibiting the potential to leverage this time-efficient algorithm to
develop a real-time energy management strategy. While the CD-CS strategy supports a real-time
implementation, it is remarkably more energy-consuming.

Table 2. Results of the three strategies.

Result
Method

CD-CS DP PMP

Final SOC 0.323 0.301 0.301
Electric consumption (kWh) 17.119 19.236 19.246

Fuel consumption (L) 6.641 5.438 5.436
Total cost (CNY) 51.680 46.493 46.488

Time consumption (s) 12 20689 71

Note: the electricity price is 0.8 CNY/kWh, and the fuel price is 5.72 CNY/L.

The SOC profiles in Figure 20 disclose that the CD-CS strategy undergoes a charge-depleting
stage, followed by a charge-sustaining stage. Despite both SOC profiles of the DP and PMP algorithms
decline to the identical terminal value, the difference between both curves are visible. Specifically, the
DP-based SOC profile decreases almost linearly with time, whereas the PMP-based SOC trajectory
features an arc shape, mainly because of their different optimization mechanisms—the PMP algorithm
seeks the global optimal solution by instantaneously minimizing the Hamiltonian function with the
constrained SOC boundary condition, whereas the DP selects the optimal control by minimizing
the cost-to-go value. Quantitative results reveal that, in the first-half period of the trip (around
0–4800 s), the battery output power generated by the PMP method exceeds that of the DP method,
so the associated APU output power is smaller than that of the DP solution. However, the opposite
happens in the second-half period of the trip, eventually resulting in nearly the same total energy
consumption cost.
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Figure 20. SOC profiles of three strategies.

Moreover, Figure 21 depicts the growing total cost versus the trip distance. As can be seen, the
total cost growth of the CD-CS strategy can be divided into two stages. In the first stage or the CD
stage, the total cost grows slower than others, because the electric-only mode dissipates less expensive
electricity; nevertheless, during the CS stage, the total cost rises rapidly and exceeds those of the
optimal strategies, owing to non-optimal heuristics. For the DP and PMP methods, their cost growth
curves are decided by the summed amount of the fossil fuel and electricity consumption. The total
cost of the PMP is first lower than that of the DP method; however, it increases gradually after about
35 km, because of more fuel use and less use of the battery electricity, compared to the DP method.
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Figure 21. Total energy cost with respect to driving distance.

The accumulative time distribution of the three gears is shown in Figure 22. It can be seen that
the DP and PMP methods almost choose the same gear ratio. For the CD-CS strategy, together with a
ruled-based gear-shifting control, the first gear occupies more time than the other two gears, being
consistent with both optimal methods; nonetheless, the CD-CS strategy selects the second gear more
frequently than do the DP and PMP methods, and takes shorter time for the third gear.

Table 3 summaries the time percentage of the same gearshift between each two of the three control
strategies. The gearshift similarity between the DP and PMP is up to 99.01%. However, such a level
decreases to 73.14% between the CD-CS and DP and to 73.21% between the CD-CS and PMP.



Sustainability 2018, 10, 3758 20 of 23

Sustainability 2018, 10, x FOR PEER REVIEW  21 of 24 

 
Figure 22. Gear-shifting distributions for the three methods. 

Table 3 summaries the time percentage of the same gearshift between each two of the three 
control strategies. The gearshift similarity between the DP and PMP is up to 99.01%. However, such 
a level decreases to 73.14% between the CD-CS and DP and to 73.21% between the CD-CS and PMP. 

Table 3. Time percentage of the same gearshift between each two of the three methods. 

Method 
Result 

CD-CS DP 
CD-CS - 73.14% 

DP 73.14% - 
PMP 73.21% 99.01% 

For further clarification, local gear-shifting sequences during 5000–6000 s for the three 
approaches are illustrated in Figure 23. It is evident that the DP and PMP methods have the identical 
gear-shifting sequence over the whole period. Additionally, both global methods operate the 
gear-shifting more frequently than does the rule-based strategy, because both optimization 
algorithms always search for the optimal gear ratio to minimize the total energy cost, from a global 
perspective. 

1st-gear 2nd-gear 3rd-gear
0

1000

2000

3000

4000

5000

6000

A
cc

um
ul

at
iv

e 
tim

e 
(s

)

 

 
CDCS
DP
PMP

Figure 22. Gear-shifting distributions for the three methods.

Table 3. Time percentage of the same gearshift between each two of the three methods.

Method
Result

CD-CS DP

CD-CS - 73.14%
DP 73.14% -

PMP 73.21% 99.01%

For further clarification, local gear-shifting sequences during 5000–6000 s for the three approaches
are illustrated in Figure 23. It is evident that the DP and PMP methods have the identical gear-shifting
sequence over the whole period. Additionally, both global methods operate the gear-shifting more
frequently than does the rule-based strategy, because both optimization algorithms always search for
the optimal gear ratio to minimize the total energy cost, from a global perspective.

 

2 

 
 
 
 

 

Figure 23. Local gear-shifting sequences for the three methods (5000–6000 s).



Sustainability 2018, 10, 3758 21 of 23

7. Conclusions

To make a PMP-based energy management strategy for PHEVs resilient against scenarios with
different driving distances, this paper proposes an integrated control strategy by meticulously
manipulating the electric-only mode and the hybrid powering mode. Several important conclusions
are summarized below:

(1) The PMP-based energy management problem for PHEVs is not necessarily a two-point
boundary value problem, because of the uncertain lower SOC boundary related to a specific driving
distance. Since the optimal discharging policy can be either an electric-only mode or a hybrid
discharging mode, an electric-only driving mode decision module is thereby incorporated into the
solving process of the TPBVP to build an integrated control strategy, where the electric-only mode
is recognized by checking the APU output power and the final SOC level. As such, the energy
management optimization problem for different trip lengths is cast into a TPBVP with the capability of
recognizing the electric-only mode.

(2) For a series plug-in hybrid electric truck with an AMT, the optimal control problem involves
the power-split between the APU and the battery, as well as the gear-shifting choice, which results in
an optimization problem with multiple control variables. Here the gear ratio is treated as an input
variable instead of a state variable to avoid complicating the system dynamics as a multi-state issue.

(3) The result in a long-distance scenario shows that, despite that the DP and PMP have the
same energy consumption cost and gear-shifting sequence, their SOC profiles and cost growth curves
exhibit different shapes, due to their different optimizing mechanisms. The significant difference
between the PMP and DP algorithms lies in the computational efficiency—the time consumed by the
PMP algorithm is massively reduced compared to the DP method. Moreover, the CD-CS method
with a rule-based gear-shifting strategy increases the energy cost by nearly 10% compared with the
PMP method.
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