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Abstract: Unilateral biportal lumbar endoscopic interbody fusion is a relatively new technique in
the field of minimally invasive spine surgery. It combines the benefits of preservation of the normal
anatomy of the spine with direct visualization of the decompression of neural elements and endplate
preparation for fusion. This results in high union rates and excellent outcomes for patients with
back pain and lumbar spinal stenosis from spondylolisthesis while reducing the risk of injuries to
the neural elements, endplate fractures and the theoretical rate of adjacent segment disease from
disruption of the musculature. In this paper, we describe the steps and technical pearls pertaining
to this technique and methods to avoid common pitfalls and complications. In conclusion, this
technique would be a good tool in the armamentarium of a spinal surgeon specializing in minimally
invasive spinal surgery.

Keywords: biportal endoscopic spine surgery; unilateral biportal lumbar endoscopic interbody
fusion; degenerative spine disease; back pain; lumbar spinal stenosis; spondylolisthesis; spinal
instability; minimally invasive spine surgery; spinal fusion

1. Introduction

Degenerative lumbar spinal conditions such as lumbar spinal stenosis and spondylolis-
thesis with elements of dynamic spinal instability benefit greatly from fusion surgeries [1,2].
However, traditional open methods of lumbar spinal fusion, such as the transforaminal
lumbar interbody fusion (TLIF) technique described by Harms et al. [3], are often associated
with increased morbidity and subsequent adjacent segment disease [4] as patients live
longer. Previous studies comparing minimally invasive versus open interbody fusion
showed a trend towards decreased risks of adjacent segment disease in minimally invasive
techniques [5]. This was postulated to be due to the disruption of the normal anatomy and
the musculature of the lumbar spine.

Hence, there is a growing interest in minimally invasive techniques to help pre-
vent long term complications from adjacent segment disease as well as improved patient
outcomes from reduced post-operative analgesia requirements, reduced post-operative
transfusion requirements, reduced duration of hospitalization and quicker return to base-
line functional levels [6,7]. Previous minimally invasive techniques for fusion described
includes microscopic tubular technique transforaminal lumbar interbody fusion (MT-TLIF),
anterior lumbar interbody fusion (ALIF), lateral lumbar interbody fusion (LLIF) and oblique
lumbar interbody fusion (OLIF). The advent of endoscopic surgery brought on ever less
invasive techniques such as the previously described uniportal endoscopic trans-Kambin
lumbar interbody fusion (ETKLIF) [8] and uniportal endoscopic facet-sacrificing posterolat-
eral transforaminal lumbar interbody fusion (EPTLIF) [9].

The endoscopic uniportal technique has a high learning curve [10] and often requires
the use of modified or specialized equipment for surgery. Biportal techniques aim to
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overcome these unique challenges through the addition of a second incision, allowing the
use of more conventional spine surgical instruments similar to open surgery. This results
in a lower learning curve and quicker transference of open spinal surgery skill sets to
endoscopic surgery. It also allowed greater maneuverability and new angles for approach
and access to the spine.

In this paper, we present our technique for the unilateral biportal lumbar endoscopic
interbody fusion technique and outline the common pitfalls and complications associated
with it.

2. Surgical Anatomy

Understanding the anatomy of the Kambin’s triangle and the corridor of approach is
essential during navigation for endoscopic spine procedures. The Kambin’s triangle [11] is
defined as a right-angled triangle with the superior endplate of the caudal vertebra as the
horizontal leg, the lateral dural edge of the cauda equina as the vertical leg and the caudal
border of the exiting nerve root as the hypotenuse (Figure 1). This is the common corridor
of safety used for access to the disc in fusion surgeries utilized in posterior approaches—be
they open or minimally invasive.
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In the facet-preserving ETKLIF, only the lateral portion of the Kambin’s triangle is 
utilized, with the medial portion blocked by the facet joints [8,9]. This smaller working 
space and corridor resulted in the need for modified equipment, limitation in size of in-
terbody cages used as well as increases the risks of injury to the exiting nerve root in the 
hands of an inexperienced surgeon. 

Similar to open and EPTLIF, our unilateral biportal lumbar endoscopic interbody fu-
sion technique utilizes the medial portion of the Kambin’s triangle via facetectomy of the 

Figure 1. Posterior oblique (a) and lateral (b) views of the lumbar spine showing the medial (shaded
red) and lateral (shaded blue) portions of the Kambin’s triangle.

In the facet-preserving ETKLIF, only the lateral portion of the Kambin’s triangle is
utilized, with the medial portion blocked by the facet joints [8,9]. This smaller working
space and corridor resulted in the need for modified equipment, limitation in size of
interbody cages used as well as increases the risks of injury to the exiting nerve root in the
hands of an inexperienced surgeon.

Similar to open and EPTLIF, our unilateral biportal lumbar endoscopic interbody
fusion technique utilizes the medial portion of the Kambin’s triangle via facetectomy of
the inferior articular process (IAP) of the cranial vertebra and superior articular process
(SAP) of the caudal vertebra [9]. This method creates a bigger working space to allow for
better decompression and visualization of the neural elements, as well as a larger corridor
of access for discectomy and endplate preparation.
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To perform the facetectomy, it is important to identify two endoscopic landmarks
previously described [12]—Kim’s point and Wu’s point (Figure 2) Kim’s point is defined as
the point of intersection of the superolateral border of the cranial IAP with the superolateral
border of the caudal SAP, marking the lateral limit of the facetectomy. On the other hand,
Wu’s point is defined as the point of intersection of the superomedial border of the cranial
IAP with the medial edge of the cranial lamina overlapping the superomedial aspect of
the caudal SAP, marking the medial limit of the facetectomy. After identification of these
two points during endoscopy, a bone drill can be used for resection of the cranial IAP
from Wu’s point to Kim’s point. Osteotomy along this line is safe as the SAP protects the
underlying neural structures. This allow access to the medial portion of the Kambin’s
triangle underneath.
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Figure 2. Posterior oblique (a) and lateral (b) views of the lumbar spine showing Kim’s point (green 
dot), Wu’s point (blue dot) and the line of osteotomy of IAP (red line). 
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pelvis, leaving the abdomen free. The table is then tilted to get the endplates desired per-
pendicular to the floor using fluroscopic guidance. 
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An arthroscopic system with a 0° scope and continuous normal saline irrigation is 

essential. We would also recommend a corresponding biportal endoscopic spine surgery 
set (BESS™ set, MGB Endoscopy Co., Ltd., Seoul, South Korea) containing Bonss radiof-
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China) and a high-speed diamond burr as per the surgeon’s preference. With regards to 
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Figure 2. Posterior oblique (a) and lateral (b) views of the lumbar spine showing Kim’s point (green
dot), Wu’s point (blue dot) and the line of osteotomy of IAP (red line).

3. Surgical Technique
3.1. Anaesthesia and Positioning

After the patient is placed under general anesthesia and neuromonitoring attached, the
patient is positioned prone on a radiolucent table and supported at the chest and the pelvis,
leaving the abdomen free. The table is then tilted to get the endplates desired perpendicular
to the floor using fluroscopic guidance.

3.2. Equipment

An arthroscopic system with a 0◦ scope and continuous normal saline irrigation is
essential. We would also recommend a corresponding biportal endoscopic spine surgery
set (BESS™ set, MGB Endoscopy Co., Ltd., Seoul, Korea) containing Bonss radiofrequency
plasma surgical systems for radiofrequency ablation (Bonss Medical®, Jiangsu, China) and
a high-speed diamond burr as per the surgeon’s preference. With regards to the interbody
cages and screw systems, these can also be left to the surgeon’s preference.

3.3. Skin Incision and Docking

Fluoroscopy is used to mark out the mid pedicle line. For right-hand dominant
surgeons, a left-sided approach is used. The first 5–6 mm incision is made for the smaller
viewing portal at the level of the inferior border of the pedicle of the cranial vertebra. A
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second 8–10 mm incision is made for the larger instrument portal to also allow outflow of
irrigation. The two incisions should be separated by 2–3 cm.

Serial dilators up to 10 mm are used to split the paraspinal muscles and a periosteal
elevator is used to gently detach the soft tissue off the interlaminar space (in the lateral-to-
medial direction). A sleeve system can be used to maintain the muscle split and prevent
injury to the paraspinal muscles. The inflow of normal saline helps to create and maintain
a submuscular working space in addition to providing a hydrostatic pressure to assist
hemostasis. A radiofrequency wand is used to clear soft tissue allowing visualization of
the anatomy and to cauterize bleeding. We utilize the inside-out approach (docking and
starting from Wu’s point and working towards Kim’s point). After identifying the anatomy,
the goal of the next step is triangulation and docking of the arthroscope and the working
instrument onto Wu’s point, as described earlier under surgical anatomy.

3.4. Inferior Articular Process Facetectomy

We recommend performing the facetectomy prior to decompression and removal of
the intervening ligamentum flavum. We start by using a high-speed burr to mark out both
Wu’s point and Kim’s point and to thin out the bone in a line connecting both points. We
then use an osteotome to complete the osteotomy, allowing harvesting of the IAP for use as
local bone graft (Figure 3). This subsequently exposes the medial aspect of the SAP.

3.5. Superior Articular Process Facetectomy

We use the high-speed burr with assistance of a 90◦ Kerrison punch to mark out and
remove the medial aspect of the base of the SAP where it connects to the inferior lamina.
The medial half of the SAP is then harvested with an osteotome for use as bone graft as
well (Figure 4). It is important to ensure that sufficient base of SAP is removed to allow a
smooth corridor for access to the disc.

3.6. Decompression and Discectomy

Decompression of the lumbar spinal canal can be performed using a high-speed
diamond burr or a traditional Kerrison punch for an ipsilateral laminotomy with an
over-the-top decompression of the contralateral lateral recess. After removal of the deep
ligamentum flavum, the neural elements should be fully visible and the Kambin’s triangle
in the axilla of the exiting nerve root identified. We use the radiofrequency probe for
diathermy of dural veins and annulutomy. Discectomy can then be performed through this
safe zone using conventional pituitary and curettes (Figure 5).
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Figure 3. (a)—A high-speed burr was used to mark both Wu’s point (blue dot) and Kim’s point 
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ing the SAP. (d)—Levering out the osteotomized IAP using the osteotome. (e)—Removal of the IAP 
fragment using a Kerrison punch. (f)—After removal of IAP, leaving behind the underlying liga-
mentum flavum and the medial aspect of SAP. 
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allowing the use of an osteotome to complete the removal of SAP.

3.7. Endplate Preparation

After discectomy, we maneuver the endoscope into the disc space to allow direct
visualization of the endplate. An endoscopic penfeel is used to remove the remaining
cartilaginous endplate after the initial scraping by a curette (Figure 6). This ensures
complete removal of the cartilaginous endplate and a better bed for fusion. Furthermore, as
we are able to minimize the forces required by removing the cartilaginous endplate using a
penfeel instead of scraping with a curette, we reduce the risk of endplate fractures. Bone
graft harvested earlier from the SAP and IAP is morselized and packed into the disc space
under direct vision to ensure symmetrical distribution and prevent overstuffing.

3.8. Cage Insertion with Retractors

At this point, there is usually sufficient working space within the Kambin’s triangle for
insertion of the interbody cage. However, if there is a risk of injury to the neural elements,
a modified nerve root retractor can be inserted and held by an assistant under direct vision.
Sequential dilation and cage sizing can be performed under fluoroscopy (Figure 7). The
cage can be packed with bone graft or augmented with demineralized bone matrix or
allografts to promote fusion as per standard open fusion preference.
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Figure 5. (a)—Splitting of the ligamentum flavum and development of the interval between the 
underside of the deep ligamentum flavum and the dura using a curette. (b)—Removal of ligamen-
tum flavum after detaching them from the dura using a combination of Kerrison punch and pitui-
tary forceps. (c)—Diathermy of dural veins using a radiofrequency probe. (d)—Identification of the 

Figure 5. (a)—Splitting of the ligamentum flavum and development of the interval between the underside of the deep ligamentum flavum and the dura using a
curette. (b)—Removal of ligamentum flavum after detaching them from the dura using a combination of Kerrison punch and pituitary forceps. (c)—Diathermy of
dural veins using a radiofrequency probe. (d)—Identification of the disc and annulotomy. (e)—Discectomy using pituitary and curettes. (f)—Protection of neural
elements using the camera sleeve.
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3.9. Percutaneous Posterior Instrumentation under Fluoroscopic Guidance

After confirmation of the cage position with fluoroscopy together with endoscopy,
pedicle screws can be inserted percutaneously under fluoroscopic guidance. If the bed was
flexed earlier, it is important to remember to correct it to create the needed lumbar lordosis
prior to insertion of the rods and finalizing the construct.

4. Case Example
4.1. Case 1: Madam M

Madam M was a 67-year-old lady with a two-year history of back pain with bilateral
lower limb radiculopathy (bilateral posterior thigh and posterior calf pain) and claudication
time of 30 min. She had weakness of her left extensor hallucis longus (L5 myotome)—grade
4. She had no numbness in her lower limbs. Radiographs of the lumbar spine showed
L3/L4 decreased disc height (Figures 8 and 9). MRI scan of the lumbar spine showed L3/L4
degenerative disc disease with bilateral lateral recess stenosis at the same level (Figure 10).
To confirm the source of her pain, she underwent L3/L4 discogram that confirmed that as
the source of her pain. She subsequently underwent a left endoscopic L3/L4 fusion. She
was discharged on the first post-operative day. During clinic review at 2 weeks, 3 months
and 10 months, her back pain and her bilateral lower limb radiculopathy had improved
gradually until it completely resolved at the most recent review at 10 months (Figure 11).
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Figure 8. (a,b)—AP and lateral radiographs of the lumbar spine showing L3/L4 decreased disc 
height. 

Figure 8. (a,b)—AP and lateral radiographs of the lumbar spine showing L3/L4 decreased disc height.
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Figure 9. (a,b)—Flexion and extension radiographs of the lumbar spine showing slight dynamic 
instability at L3/L4. 

 
Figure 10. MRI scan of the lumbar spine showing L3/L4 degenerative disc disease with bilateral 
lateral recess stenosis at the same level (left more than right). 

Figure 9. (a,b)—Flexion and extension radiographs of the lumbar spine showing slight dynamic
instability at L3/L4.
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lateral recess stenosis at the same level (left more than right). Figure 10. MRI scan of the lumbar spine showing L3/L4 degenerative disc disease with bilateral

lateral recess stenosis at the same level (left more than right).
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Figure 11. (a,b)—AP and lateral radiographs of the lumbar spine at 3 months post-operatively. 

4.2. Case 2: Madam R 
Madam R was a 56-year-old lady with back pain and bilateral calf claudication of 

approximately 500 m distance. She had no weakness or numbness in either of her lower 
limbs. Radiographs of the lumbar spine showed L4/L5 grade 2 spondylolisthesis (Figures 
12 and 13). MRI scan of the lumbar spine showed lumbar spinal stenosis at L4/L5 level 
(Figure 14). She underwent a left endoscopic L4/L5 fusion (Figure 15). She was discharged 
on the second post-operative day. During clinic review at 2 weeks and 3 months, she had 
no back pain and her claudication symptoms had completely resolved. 
  

Figure 11. (a,b)—AP and lateral radiographs of the lumbar spine at 3 months post-operatively.

4.2. Case 2: Madam R

Madam R was a 56-year-old lady with back pain and bilateral calf claudication
of approximately 500 m distance. She had no weakness or numbness in either of her
lower limbs. Radiographs of the lumbar spine showed L4/L5 grade 2 spondylolisthesis
(Figures 12 and 13). MRI scan of the lumbar spine showed lumbar spinal stenosis at L4/L5
level (Figure 14). She underwent a left endoscopic L4/L5 fusion (Figure 15). She was dis-
charged on the second post-operative day. During clinic review at 2 weeks and 3 months,
she had no back pain and her claudication symptoms had completely resolved.Surg. Tech. Dev. 2022, 11 81 
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Figure 12. (a,b)—AP and lateral radiographs of the lumbar spine showing L4/L5 grade 2 spondylo-
listhesis. 

  
(a) (b) 

Figure 13. (a,b)—Flexion and extension radiographs of the lumbar spine did not show any signifi-
cant dynamic instability at L4/L5. 

Figure 12. (a,b)—AP and lateral radiographs of the lumbar spine showing L4/L5 grade 2 spondy-
lolisthesis.
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Figure 12. (a,b)—AP and lateral radiographs of the lumbar spine showing L4/L5 grade 2 spondylo-
listhesis. 

  
(a) (b) 

Figure 13. (a,b)—Flexion and extension radiographs of the lumbar spine did not show any signifi-
cant dynamic instability at L4/L5. 

Figure 13. (a,b)—Flexion and extension radiographs of the lumbar spine did not show any significant
dynamic instability at L4/L5.
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Figure 14. MRI scan of the lumbar spine showing L4/L5 spondylolisthesis with lumbar spinal ste-
nosis at the same level. 
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Figure 15. (a,b)—AP and lateral radiographs of the lumbar spine at 3 months post-operatively. 

4.3. Case 3: Madam M 
Madam M was a 64-year-old lady with back pain with bilateral lower limb radicu-

lopathy (bilateral posterior thigh and posterior calf pain). She had no weakness in both 
her lower limbs but she had reduced sensation in her right L5 and S1 dermatomes. Radi-
ographs of the lumbar spine showed L3/L4 grade 1 spondylolisthesis, L4/L5 and L5/S1 
decreased disc height (Figures 16 and 17). MRI scan of the lumbar spine showed L3/L4 

Figure 14. MRI scan of the lumbar spine showing L4/L5 spondylolisthesis with lumbar spinal
stenosis at the same level.



Surg. Tech. Dev. 2022, 11 83

Surg. Tech. Dev. 2022, 11 82 
 

 

 
Figure 14. MRI scan of the lumbar spine showing L4/L5 spondylolisthesis with lumbar spinal ste-
nosis at the same level. 
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Figure 15. (a,b)—AP and lateral radiographs of the lumbar spine at 3 months post-operatively. 

4.3. Case 3: Madam M 
Madam M was a 64-year-old lady with back pain with bilateral lower limb radicu-

lopathy (bilateral posterior thigh and posterior calf pain). She had no weakness in both 
her lower limbs but she had reduced sensation in her right L5 and S1 dermatomes. Radi-
ographs of the lumbar spine showed L3/L4 grade 1 spondylolisthesis, L4/L5 and L5/S1 
decreased disc height (Figures 16 and 17). MRI scan of the lumbar spine showed L3/L4 

Figure 15. (a,b)—AP and lateral radiographs of the lumbar spine at 3 months post-operatively.

4.3. Case 3: Madam M

Madam M was a 64-year-old lady with back pain with bilateral lower limb radicu-
lopathy (bilateral posterior thigh and posterior calf pain). She had no weakness in both
her lower limbs but she had reduced sensation in her right L5 and S1 dermatomes. Radio-
graphs of the lumbar spine showed L3/L4 grade 1 spondylolisthesis, L4/L5 and L5/S1
decreased disc height (Figures 16 and 17). MRI scan of the lumbar spine showed L3/L4 and
L4/L5 lumbar spinal stenosis (Figure 18). She underwent a left endoscopic L3 to S1 fusion
(Figures 19 and 20). She was discharged on the second post-operative day. During clinic
review at 2 weeks, her back pain and her bilateral lower limb radiculopathy had improved.
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(a) (b) 

Figure 16. (a,b)—AP and lateral radiographs of the lumbar spine showing grade 1 L3/L4 spondylo-
listhesis, and L5/S1 decreased disc height. 

  

Figure 16. (a,b)—AP and lateral radiographs of the lumbar spine showing grade 1 L3/L4 spondy-
lolisthesis, and L5/S1 decreased disc height.
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Figure 17. (a,b)—Flexion and extension radiographs of the lumbar spine did not show any signifi-
cant dynamic instability at L3/L4. 

 

(a) 

Figure 17. (a,b)—Flexion and extension radiographs of the lumbar spine did not show any significant
dynamic instability at L3/L4.
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Figure 17. (a,b)—Flexion and extension radiographs of the lumbar spine did not show any signifi-
cant dynamic instability at L3/L4. 

(a) 

Figure 18. Cont.
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(c) 

Figure 18. MRI scan of the lumbar spine showing (a) L3/L4 spondylolisthesis with bilateral lateral 
recess stenosis at the same level, (b) L4/L5 lumbar spinal stenosis and (c) L5/S1 degenerative disc 
disease with a disc bulge and bilateral lateral recess stenosis. 

Figure 18. MRI scan of the lumbar spine showing (a) L3/L4 spondylolisthesis with bilateral lateral
recess stenosis at the same level, (b) L4/L5 lumbar spinal stenosis and (c) L5/S1 degenerative disc
disease with a disc bulge and bilateral lateral recess stenosis.
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Figure 19. (a,b)—AP and lateral radiographs of the lumbar spine at 2 weeks post-operatively. 

 

(a) 

 

(b) 

Figure 19. (a,b)—AP and lateral radiographs of the lumbar spine at 2 weeks post-operatively.

Surg. Tech. Dev. 2022, 11 86 
 

 

  
(a) (b) 

Figure 19. (a,b)—AP and lateral radiographs of the lumbar spine at 2 weeks post-operatively. 

 

(a) 

 

(b) 

Figure 20. Cont.



Surg. Tech. Dev. 2022, 11 87Surg. Tech. Dev. 2022, 11 87 
 

 

 

(c) 

Figure 20. CT scan of the lumbar spine showing the amount of laminotomy/bone removed at (a) 
L3/L4, (b) L4/L5 and (c) and L5/S1. 

5. Discussion 
Endoscopic fusion techniques are relatively new compared to the more established 

open techniques. Many senior surgeons are also previously trained and more familiar 
with open techniques. This results in a reluctance to convert to using endoscopic tech-
niques due to the high learning curve associated with them [10,13]. This is particularly 
true for uniportal endoscopic surgeries and trans-Kambin facet-preserving approaches. 
The smaller working space especially in cases with spondylolisthesis, in addition to the 
limitations in the size of cages that can be used without causing risks of injury to the neural 
elements, often pose a high entry bar for prospective surgeons. 

Our technique for endoscopic fusion presented here allows the use of larger inter-
body cage sizes as we remove the facet completely for use as local bone graft anterior to 
the cages. Larger cages and expandable cages can help to deformity correction and create 
lumbar lordosis to improve the patient’s sagittal balance. Larger oblique lumbar interbody 
fusion cages can also be used if the distance between the exiting and traversing nerve is 
more than 13mm. In our case examples, we showed the use of both standard interbody 
cages (in case 1) and expandable cages (in cases 2 and 3). We routinely use expandable 
cages to help achieve more lumbar lordosis. However (as in case 1), we recommend the 
use of standard interbody cages in patients with osteoporosis (with a bone mineral density 
scan T-score of < −2.5) to avoid endplate injuries and prevent subsidence. 

The development of unilateral biportal techniques for interbody fusion would help 
to bridge this gap as it allows a lower learning curve and quicker transference of open 
spinal surgery skill sets to endoscopic surgery. It also utilizes the same corridor as the 
established open TLIF and MT-TLIF with similar sets of equipment, albeit with the use of 
endoscopy instead of a microscope. Surgeons who are familiar with the triangulation dur-
ing arthroscopy utilized in other joints would also be able to pick up endoscopic biportal 
techniques more easily. This would allow greater traction and acceptance of endoscopic 
spinal surgeries in the surgical community, resulting in further understanding and devel-
opment of these techniques. 

However, unilateral biportal techniques does face its own set of unique challenges. 
Due to the biportal nature of the technique, surgeons need to become familiar with using 
the non-dominant hand for holding the endoscope, allowing only the dominant hand for 
handling instruments for decompression. An assistant may also be required for hammer-
ing during osteotomy coupled with holding the retractor when working within the disc 
space. As with all endoscopic techniques, patients with coagulopathies also make visual-
ization difficult due to the need for meticulous hemostasis. There is also a risk related to 

Figure 20. CT scan of the lumbar spine showing the amount of laminotomy/bone removed at
(a) L3/L4, (b) L4/L5 and (c) and L5/S1.

5. Discussion

Endoscopic fusion techniques are relatively new compared to the more established
open techniques. Many senior surgeons are also previously trained and more familiar with
open techniques. This results in a reluctance to convert to using endoscopic techniques
due to the high learning curve associated with them [10,13]. This is particularly true for
uniportal endoscopic surgeries and trans-Kambin facet-preserving approaches. The smaller
working space especially in cases with spondylolisthesis, in addition to the limitations in
the size of cages that can be used without causing risks of injury to the neural elements,
often pose a high entry bar for prospective surgeons.

Our technique for endoscopic fusion presented here allows the use of larger interbody
cage sizes as we remove the facet completely for use as local bone graft anterior to the cages.
Larger cages and expandable cages can help to deformity correction and create lumbar
lordosis to improve the patient’s sagittal balance. Larger oblique lumbar interbody fusion
cages can also be used if the distance between the exiting and traversing nerve is more
than 13mm. In our case examples, we showed the use of both standard interbody cages (in
case 1) and expandable cages (in cases 2 and 3). We routinely use expandable cages to help
achieve more lumbar lordosis. However (as in case 1), we recommend the use of standard
interbody cages in patients with osteoporosis (with a bone mineral density scan T-score of
<−2.5) to avoid endplate injuries and prevent subsidence.

The development of unilateral biportal techniques for interbody fusion would help
to bridge this gap as it allows a lower learning curve and quicker transference of open
spinal surgery skill sets to endoscopic surgery. It also utilizes the same corridor as the
established open TLIF and MT-TLIF with similar sets of equipment, albeit with the use
of endoscopy instead of a microscope. Surgeons who are familiar with the triangulation
during arthroscopy utilized in other joints would also be able to pick up endoscopic
biportal techniques more easily. This would allow greater traction and acceptance of
endoscopic spinal surgeries in the surgical community, resulting in further understanding
and development of these techniques.

However, unilateral biportal techniques does face its own set of unique challenges.
Due to the biportal nature of the technique, surgeons need to become familiar with using
the non-dominant hand for holding the endoscope, allowing only the dominant hand for
handling instruments for decompression. An assistant may also be required for hammering
during osteotomy coupled with holding the retractor when working within the disc space.
As with all endoscopic techniques, patients with coagulopathies also make visualization
difficult due to the need for meticulous hemostasis. There is also a risk related to the
use of irrigation fluid. It is important to maintain a low irrigation pressure after the
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epidural space is exposed to minimize the risks of elevations in intracranial pressures and
neurological deficits. Lowering of the irrigation pressure also may lead to difficulties in
controlling bleeding.

Short- and medium-term studies have shown that favorable outcomes after endo-
scopic fusion surgery as compared to the traditional open and minimally invasive tubular
techniques. In fact, there is evidence that unilateral biportal lumbar endoscopic inter-
body fusion has significantly better short-term outcomes (in terms of smaller incision, less
bleeding and shorter hospital stay) compared to MT-TLIF techniques while having similar
fusion rates [14,15]. This was attributed to reduced muscle injury during the approach for
the procedures.

The additional theoretical benefits of the minimally invasive nature of the surgery
and preservation of the normal anatomy, as well as the long term fusion rates with better
endplate preparation and reduced risks of endplate fractures/subsidence, require a closer
look in the future.

6. Conclusions

The unilateral biportal lumbar endoscopic interbody fusion technique is an excel-
lent technique in performing fusion while also minimizing complications of nerve injury,
assisting in preparation of the endplate to aid fusion as well as preserving the normal
anatomy of the spine. Patients can often be discharged the next or following day with
significant improvements in their symptoms. This technique would be a good tool in the
armamentarium of a spinal surgeon specializing in minimally invasive spinal surgery.
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