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Abstract: Lippia graveolens is one of the most important aromatic species in Mexico due to antioxidant
and antibiotic activities reported in its essential oil. The aim of this work was to assess the effect of
irrigation with aquaculture wastewater and salicylic acid addition on the production of phenolic
compounds in L. graveolens. L. graveolens plants (14) were irrigated with aquaculture wastewater and
(14) using Steiner solution for 28 days; at the same time, salicylic acid was exogenously applied at
0.0 (control), 0.5 and 1.0 mM concentrations in both treatments at 5 and 19 experimental days.
The total phenolic content was measured by Folin–Ciocalteu, the flavonoid content was determined
by the aluminum chloride method, and the antioxidant capacity was measured by DPPH and FRAP
assays. The results showed an increase in the total phenolic and flavonoid content in plants irrigated
with aquaculture wastewater solution (17.25 ± 2.35 to 38.16 ± 4.47 mg eq GA·g−1 W). The antioxidant
capacity was higher in plants irrigated with Steiner solution (98.52 mg eq T·g−1 W). In conclusion,
L. graveolens irrigated with aquaculture wastewater leads to an increase in the total phenolic content
and Steiner-solution antioxidant capacity in plants.

Keywords: antioxidant capacity; cultivation conditions; elicitor; oregano; secondary metabolites

1. Introduction

Lippia graveolens Kunth (L. graveolens Kunth), commonly known as Mexican oregano, is
one of the most important aromatic plants in Mexico. Antioxidant and antibiotic activities
have been reported in its essential oil [1]. Despite its high demand, it is obtained from
wild populations with a very irregular harvest and with a variable quality [2]. The quality
in the aromatic species is based on the content of volatile compounds in its essential oil,
such as phenols, terpenes and sesquiterpenes [3]. Nevertheless, the phenolic compound
content depends on the cultivation area, genetic material, and climatic conditions [4].
According to Calvo–Irabién [5], edaphoclimatic and cultivation conditions modify the
content of carvacrol, thymol, and sesquiterpenes in L. graveolens essential oil. Additionally,
the high genetic variation shown in Mexican oregano can modify the secondary metabo-
lites’ content, though this variation was low among gene diversity and chemo-type [6].
Additionally, the macro- and microclimate conditions modify the phenolic monoterpene
content in L. graveolens growing in the wild [7].

Different strategies have been used to enhance the total phenolic content, such as abi-
otic elicitation (e.g., light [8] and nutrient deficit [9,10]) and biotic elicitation (e.g., jasmonic
acid and salicylic acid [11]). According to Bueno–Duran [12], different spectra of light affect
the monoterpene content; based on this, red light increases the carvacrol content, blue
light increases the thymol content in L. graveolens, and UV-C light application increases the
total phenolic content [13]. Moreover, nitrogen deficiency enhances secondary metabolites’
production, such as phenolic compounds and flavonoids in Greek oregano [14].
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Wastewater from aquaculture contains different compounds, such as ammonia, which
need to be removed every week to improve fish growth, and aquaponics activity can use these
waters for feeding and growing aromatic plants [15]. According to [16], the total phenolic
content in Ocimun basilicum increased in an aquaponics system culture. Additionally [17,18],
fish-effluent irrigation, used as aquaculture wastewater in Origanum syriacum L., and
Origanum mejorana L., increased the essential oil yield. On the other hand, Steiner so-
lution and other nitrogen fertilizations have been used to evaluate the effect on biomass
production and essential oil quality. According to Azizi [19], nitrogen fertilization (250 ppm)
in tree oregano (Origanum vulgare L.) populations increase the dry-matter production
but decrease the essential oil content. However, specific secondary metabolites, such as
carvacrol, γ-terpinene and p-cimene, were unaffected. Furthermore, different levels of
nitrogen fertilization were applied in Origanum vulgare ssp. Hirtium (Link) letswaart to
evaluate the in-vitro bioaccessibility and activity of compounds. In this study, unfertilized
plants showed the highest total phenolic content and antioxidant activity [14].

Salicylic acid (SA) is a phytohormone that regulates the biosynthesis of different
secondary metabolites (e.g., anthocyanins, alkaloids, glucosinolates, and phenolics) [20].
Different studies applied SA at different concentrations to improve the total phenolic
content in Mentha piperita (0.5, 1, 2 and 3 mM SA) [21,22], Petroselinum crispum (50 µM
as well as 1 and 2 mM SA) [23], Majorana hortensis (0.01, 0.1 and 1.0 mM SA) [24] and
Thymbra spicata (2.5 and 5.0 mM SA) [25] under different cultivation conditions. On the other
hand, repeats of SA applications (7, 14, and 21 days after foliar application) can improve
secondary metabolites’ production in strawberries [26], Ajuga integrifolia (21 days) [27], and
Mentha piperita (14 days) [28]. However, no studies on elicitation with SA and irrigation
with aquaculture wastewater in L. graveolens have been reported. This study aimed to assess
the effect of aquaculture effluents’ irrigation and SA elicitation on phenolic compounds in
L. graveolens.

2. Materials and Methods
2.1. Plant Material and Culture Conditions

The experiment was carried out in a Gothic-style greenhouse. Fourteen L. graveolens
plants were obtained from a local plant shop in La Higuera, Cadereyta, Querétaro with a
special management license and were identified by the QMEX botanical department of the
Autonomous University of Querétaro. Each plant was transplanted in plastic bags with
tezontle and peat moss and was acclimatized inside the greenhouse for five days at 22 ◦C,
52% relative humidity and an irradiance of 300 µmol m−2 s−1 for a 16/8 h (day/night)
period. The age and initial culture conditions were unknown.

2.2. Irrigation

Two solutions were used for irrigation: (1) wastewater from a juvenile fish culture
(25–50 g) that contained organic matter (8.5–758 mg·L−1 COD), dissolved solids
(650 mg·L−1 TDS) and nutrients such as nitrogen (0.9 ± 0.45 mg·L−1 NH3-N,
1.28 ± 0.99 mg·L−1 NO2

−, 13.73 ± 15.28 mg·L−1 NO3
−) and phosphorus (5.2–5.4 mg·L−1

PO4
3−); and (2) a Steiner solution with essential chemical compounds, such as nitrogen,

phosphorus, potassium, calcium, magnesium and other elements, in their ionic form [28].
A total of 1000 L of this solution was prepared with 479 g of KNO3, 170 g of NH4H2PO4,
476 g of Mg(NO3)2·6H2O, 936 g of Ca(NO3)2, 89.6 mL of H2SO4, 422 g of Mg EDTA, 3.82 g
of H3BO3, 7.53 g of Mn EDTA, 0.714 g Zn EDTA and 7.53 g of Mn EDTA.

2.3. Elicitation

Two SA concentrations (0.5 and 1.0 mM) were used as foliar spray two times, and one
with water was used as a control (0.0 mM) (Figure 1). These salicylic acid concentrations
are within the concentration range applied in aromatic plants [21,23].
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2.4. N and P Determination

Nitrites (NO2
−), nitrates (NO3

−), and phosphates (PO4
3−) were measured by spec-

trophotometric methods every week. Nitrites were measured by the diazotization method
(HACH Method 8507, 2010), nitrates by the cadmium reduction method (HACH Method 8171,
2010), and phosphates by the ascorbic acid method (HACH Method 8048, 2010).

2.5. Vegetative Sample

Plant samples were obtained at three different times (0, 14, and 28 experimental days)
and were dehydrated at 28 ◦C during three days in paper bags to protect them from direct
light. Dried samples were ground on a blade mill and sieved (no. 40) and were stored in
amber flasks protected from light until use.

2.6. Phenolic Compounds Extraction

The extraction of phenolic compounds was carried out with 100 mg of each previously
processed sample. One milliliter of a methanol:water:formic acid solution (80:18:2) was
added, and the mixture was sonicated for 30 min. After the extraction time, each sample was
centrifuged at 10,000× g rpm in a METRIX Dynamica® (Dynamica a techcomp Company,
Livingston, United Kingdom) centrifuge at 4 ◦C for 15 min. The supernatant was stored in
a new tube, and a second extraction was performed. Extracts were stored at 4 ◦C until use.

2.7. Phenolic Content Determination

Phenolic compounds’ content was carried out by the Folin–Ciocalteu method de-
scribed by [29], adapted to microplate reader spectrometry (Multiskan Go®Thermo Fisher
Scientific Oy, Finland). A sodium carbonate solution was prepared at 7.5%, and a 0.2 N
Folin–Ciocalteu reagent was used at a 1:10 dilution. A total of 30 µL of extract and 120 µL
of carbonate solution were placed in the microplate wells, and 150 µL of Folin–Ciocalteu
reagent was added. Different concentrations (0.02, 0.04, 0.08, 0.10, 0.11, 0.12 mg·mL−1) of
gallic acid were used for curve calibration, and the results were expressed as mg gallic acid
equivalents per g of dry weight (mg GAE·g−1 DW).

2.8. Flavonoid Content Determination

Flavonoids were determined by the aluminum chloride method described by [30].
A 10% aluminum chloride, 5% sodium nitrite, and 1 N sodium hydroxide solution was
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prepared. A total of 40 µL of distilled water, 100 µL of extract and 30 µL of sodium nitrite
(5% w/v) was combined into microtubes. After 5 min, 30 µL of sodium chloride was added,
and 200 µL of sodium hydroxide was incorporated after 1 min. Finally, 240 µL of distilled
water was added, and 300 µL was taken from each microtube and placed in microplate
wells. Different concentrations (0.006, 0.009, 0.018, 0.036, 0.15, 0.3, and 0.6 mg·mL−1) of
catechin hydrate were used for the calibration curve, and the results were expressed as mg
catechin hydrate equivalents per g of dry weight (mg CHE·g−1 DW).

2.9. Antioxidant Capacity
2.9.1. DPPH Assay

The antioxidant capacity by the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assay was
carried out according to [31]. DPPH radical (0.15 mM) was prepared in methanol, and the
absorbance was measured at 480 nm using a Multiskan Go® microplate reader. Briefly,
20 µL of extract and 280 µL (0.15 mM) of DPPH solution in methanol were incubated in
the dark for 30 min. Trolox in different concentrations (0.05, 0.08, 0.11, 0.14, 0.17, and
0.2 mg·mL−1) were used for the calibration curve. The results were expressed as mg Trolox
equivalents per g of dry weight (mg T·g−1 DW).

2.9.2. FRAP Assay

A ferric reducing antioxidant power (FRAP) test was determined by the method
described by [32]. The FRAP reagent was prepared by mixing 50 mL of 300 mM acetate
buffer (pH 3.6) and 5 mL of 10 mM 2,4,6-tripyridyl-2-triazine (TPTZ) in 40 mM HCl and
5 mL of 20 mM FeCl3. Aliquots containing 280 µL of the reagent were taken and placed in
a 96-well plate with 20 µL of the extract. The reaction was carried out for 30 min at room
temperature and protected from light. Readings were taken at 630 nm with a microplate
spectrophotometer. The results were expressed as mg Trolox equivalents per g of dry
weight (mg T·g−1 DW).

2.10. Statistical Analysis

Data were analyzed by a normality test to obtain the type of distribution using Stat-
graphics Centurion XV, Virginia, E.U software, version 15.2.06. As a result, kurtosis data
were −0.99, showing a normal distribution with a leptokurtic form. Furthermore, a one-
way ANOVA was performed for irrigation and elicitation treatments. Furthermore, a
multifactorial ANOVA was performed to statistical significance between the type of irriga-
tion and SA concentrations. Statistical significance was considered with a probability value
of p < 0.05. All experiments were carried out in triplicate, and the results were expressed as
the mean ± standard error (SE).

3. Results
3.1. Water Quality (N and P Determination)

The results showed a high nitrate, nitrite, and phosphate content in the Steiner solution
(Table 1). The differences in these contents affect the plant nutrition and could impact the
secondary metabolites’ production.

Table 1. Aquaculture wastewater and Steiner-solution water quality for nitrates (NO3
−), nitrites

(NO2
−), and phosphates (PO4

3−) (mg/L).

Week 1 Week 2 Week 3 Week 4

SS 1 AQW 2 SS AQW SS AQW SS AQW

NO3
− 127.3 ± 4.24 108.2 ± 2.22 207.7 ± 1.23 139.2 ± 6.07 290.3 ± 4.32 122.3 ± 3.37 235.4 ± 2.15 103.8 ± 4.57

NO2
− 1.361 ± 0.04 0.159 ± 0.07 0.313 ± 0.04 0.403 ± 0.06 3.176 ± 0.28 0.562 ± 0.08 0.515 ± 0.02 0.163 ± 0.02

PO4
3− 17.79 ± 0.14 24.16 ± 0.27 43.09 ± 0.35 9.75 ± 1.03 114.9 ± 3.18 12.52 ± 1.64 102.2 ± 6.41 10.97 ± 2.06

1 SS: Steiner solution, 2 AQW: Aquaculture wastewater.
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3.2. Phenolic Content

The phenolic compound content in L. graveolens irrigated with aquaculture wastewater
and elicited by salicylic acid was analyzed by multifactorial ANOVA analysis. According to the
results, any of the factors (salicylic acid concentrations) showed p-values under 0.05; therefore,
there are no statistical differences in the Mexican oregano elicited at different salicylic acid
concentration. However, the highest phenolic compound content at harvest day 14 occurred in
plants irrigated with aquaculture wastewater (35.47 ± 3.74 mg eq GA·g−1 W), being higher
than in those irrigated with Steiner solution (24.29 ± 6.51 mg eq GA·g−1 W) (Figure 2). On the
other hand, at harvest day 28, the phenolic compound content decreased in plants irrigated
with both irrigations.
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3.3. Flavonoid Content

L. graveolens plants elicited with salicylic acid at different concentrations showed no
statistical differences (p < 0.05) for the flavonoid content. Additionally, plants irrigated with
aquaculture wastewater and Steiner solution did not show statistical differences in terms
of the flavonoid content. However, an increase in these compounds was observed in plants
irrigated at harvest day 14 and was maintained at harvest day 28 (Figure 3).
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3.4. Antioxidant Activity
3.4.1. DPPH Assay

The DPPH radical is a stable molecule that is mainly used to determine the antioxidant
capacity via its hydrogen acceptor capability in relation to antioxidants. L. graveolens with
Steiner-solution irrigation showed the highest antioxidant capacity by DPPH assay with
statistical differences (p < 0.05) when compared to plants irrigated with aquaculture wastew-
ater (Figure 4). On the other hand, this antioxidant capacity was similar at harvest days
14 and 28. The antioxidant capacity in plants irrigated with aquaculture wastewater did
not show statistical significances at harvest days 14 and 28.
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3.4.2. FRAP Assay

Mexican oregano irrigated with Steiner solution showed the highest antioxidant capac-
ity by FRAP assay with statistical differences (p < 0.5) when compared to plants irrigated
with aquaculture wastewater (Figure 5). Plants irrigated with aquaculture wastewater and
Steiner solution increased their antioxidant capacity at harvest day 28. At harvest day 14,
the antioxidant capacity was not different between plants irrigated with either treatment.
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4. Discussion

The phenolic compound content was higher in L. graveolens irrigated with aquaculture
wastewater. This result was similar to that obtained in Origanum vulgare L. ssp. Hirtum
(Link) Ietswaart fertilized at different nitrogen levels (0–150 kg of N ha−1), which showed
the highest phenolic content in unfertilized plants, with an increasing nitrogen level lead-
ing to a decreasing phenolic content [33]. Additionally, the higher phenolic content in
Moringa oleifera was at a low nitrogen level fertilization (0.7 mg·L−1 of N-NO3) [14].
In contrast, wheat plants fertilized with different nitrogen concentrations (0, 75, 150, and
195 kg N ha−1) did not present statistical differences in terms of the phenolic content [34].
These differences could be explained by nitrogen limitation in aquaculture wastewater.
According to [35], aquaculture wastewater showed a lower nitrogen concentration than
nutritive solution. Nutrient anions, such as nitrates (NO3

−), nitrites (NO2
−), and phos-

phates (PO4
3−), are the principal nutrients that could be found in aquaculture wastewater.

These nutrients at specific concentrations levels could become toxic to fish. As a result, 10%
of the total wastewater should be replaced with fresh water. This wastewater can be used
in plant growth as a wastewater treatment. Nitrogen is involved in the vegetative growth
of plants via protein and carbohydrate synthesis; however, nitrogen deficiency stimulates
an increase in secondary metabolites. This stimulation occurs via the carbon–nitrogen
relation in plants: when nitrogen decreases, carbon increases, promoting the synthesis of
carbon-based compounds such as phenolic compounds [36].

The total phenolic content in L. graveolens did not present a statistical significance with the
application of SA. These results were different in Mentha piperita [21], Petroselinum cripum L. [23]
and Thymbra spicata [25] elicited with SA, which showed an increase in the total phenolic
content. Another study reported a decrease in the phenolic content in Eruca veiscari subs.
Sativa elicited with 100 ppm [37]. According to these studies, it is necessary to assess
different concentrations of salicylic acid to evaluate the phenolic content in L. graveolens.

The flavonoid content was not different in L. graveolens elicited with SA and irrigated
with aquaculture wastewater and Steiner solution. However, these compounds increased at
14 and 28 harvest days. These results are different to those reported in Calendula officinalis
fertilized at a low nitrogen concentration [38]. On the other hand, the flavonoid content
in Cyclocarya paliurus fertilized with an intermediate nitrogen level (3.4 g/plant NH4NO3)
was higher than when using low and high nitrogen levels [39]. This result was similar to
that obtained in L. graveolens, where an increase in the flavonoid content was shown at
28 harvest days in plants irrigated with Steiner solution. The relation between the flavonoid
production and nitrogen level could be explained by the bioavailability of nitrogen and
its absorption of the species. Furthermore, these differences could be explained by the
activation of the phenylalanine ammonia lyase (PAL) enzyme resulting from nitrogen
deficiency [40].

The DPPH assay determines the ability of antioxidants to bind free radicals, and the
FRAP assay determines the reducing power [41]. In this study, the antioxidant capacity via
DPPH and FRAP was higher in L. graveolens irrigated with Steiner solution. These results
are similar to those obtained in colored potatoes (Solanum tuberosum L. subsp. Andigenum)
fertilized with different nitrogen levels. The results of this study showed an increase in the
antioxidant capacity, measured by FRAP, with an increased nitrogen level [42]. In contrast,
oregano (Origanum vulgare) fertilized with organic fertilizer showed a higher antioxidant
capacity than that with mineral fertilizer [43]. Additionally, lavender flowers showed the same
trend of a high antioxidant capacity with a low nitrogen concentration when compared to
those fertilized at high nitrogen concentrations [44]. These results could be explained by the
relationship between polyphenols and the structural chemistry for free radical-scavenging
activities [45]. Additionally, antioxidant capacity depends on specific polyphenols, such as
phenols, flavonoids, flavones, catechins, and others [46]. Querétaro belongs to a semi-desert
region with environmental conditions that are hostile to its flora and fauna. Lippia graveolens,
a plant in this area, has a small size and leaves but a high phenolic content associated with
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environmental stress [5]. Due to the brief experimental duration of this study, foliar and
production data were not registered.

Future studies must be conducted to improve secondary metabolites in L. graveolens
Kunth irrigated with aquaculture wastewater containing different species of fish with differ-
ent ages and feeds. Additionally, Mexican oregano culture conditions must be established
in order to improve specific secondary metabolites such as carvacrol and thymol.

5. Conclusions

The present study was designed to assess the effect of aquaculture-effluent irrigation
and salicylic-acid elicitation on phenolic compounds in L. graveolens. Aquaculture wastewater
increases the phenolic content in L. graveolens plants from the Querétaro semi-desert under
stress conditions, and the Steiner solution enhances the antioxidant capacity via a DPPH assay.
In relation to L. graveolens from the Querétaro semi-desert, more studies are needed on the effect
of environmental conditions, such as the temperature variation, light intensity, and soil–plant
relationships, on the secondary metabolite content and aquaculture wastewater irrigation effect
in order to enhance the flavonoid content and antioxidant capacity.
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