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Abstract: Understanding the mechanisms of plant salt tolerance as a complex trait is an integral part
of many studies, the results of which have been used in the breeding process. The aim of this study
was to compare the root response of two tomato (Solanum lycopersicum L.) genotypes (breeding line
YaLF and cultivar Recordsmen) differing in salt tolerance. Rhizogenesis was induced in tomato shoots
in vitro with different concentrations of NaCl in the culture medium. A number of morphobiological
and cytological parameters were evaluated at the organ, tissue, and cellular levels for possible use in
a comprehensive assessment of genotypes for salt tolerance. The influence of NaCl caused disruption
of the cell cycle and redistribution of cells in the phases of the cell cycle. An increase in the degree of
vacuolization was shown in cv Recordsmen at 75 and 150 mM NaCl and in the YaLF line at 150 mM
NaCl. Under salt action, an increase/decrease in the length of cells such as columella cells (both
genotypes) and epidermal cells (in cv Recordsmen at 75 and 150 mM NaCl) was shown. Differences
between genotypes were demonstrated by changes in the area of the central cylinder and primary
root cortex cells, as well as by changes of the Snucleolus/Snucleus ratio in these cells. Transmission
electron microscopy (TEM) showed the modification of the chromatin structure in the root cells of
these genotypes. Various cytoskeletal disorders were revealed in interphase cells of the tomato root
of cv Recordsmen and the YaLF line by immunofluorescent staining under saline conditions. These
morphometric and cytological parameters can be used for a comparative evaluation of genotypes
differing in salt tolerance in a comprehensive assessment of varieties.

Keywords: Solanum lycopersicum L.; in vitro rhizogenesis; NaCl effect; root tissues; cell ultrastructure;
α-tubulin; cytoskeleton damage

1. Introduction

Salinity is considered one of the major abiotic stresses limiting crop yield. [1]. Salt
stress adversely affects vegetative growth and productivity and leads to a decrease in the
wet and dry weights of leaves, shoots, and roots. First of all, it causes osmotic stress in the
root tissues involved in the absorption of water by the plant, which leads to a reduction in
growth rates [2]. The toxic effect of Na+ and Cl− ions leads to the disruption of the integrity
of the plasma membrane in cells, destruction of organelles, protein synthesis, changes in
the structure of enzymes, and respiratory disorders [3]. The influence of salt inhibits cell
division and cell elongation, which can also cause reduced growth [4,5]. An increase in the

Int. J. Plant Biol. 2023, 14, 104–119. https://doi.org/10.3390/ijpb14010010 https://www.mdpi.com/journal/ijpb

https://doi.org/10.3390/ijpb14010010
https://doi.org/10.3390/ijpb14010010
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijpb
https://www.mdpi.com
https://orcid.org/0000-0002-3942-4316
https://orcid.org/0000-0001-8169-9228
https://orcid.org/0000-0001-6064-2011
https://orcid.org/0000-0003-4399-2903
https://orcid.org/0000-0001-7371-8900
https://doi.org/10.3390/ijpb14010010
https://www.mdpi.com/journal/ijpb
https://www.mdpi.com/article/10.3390/ijpb14010010?type=check_update&version=1


Int. J. Plant Biol. 2023, 14 105

concentration of salts in an imbibed soil solution is accompanied by a significant decrease
in the mass of shoots, plant height, and root length [6,7].

In some regions, soil salinity is one of the largest problems in the cultivation of plants,
so the use of released salt-tolerant varieties on an industrial scale can significantly increase
yields. Most plants, including important commercial and food crops, are glycophytes,
which are extremely sensitive to salt concentrations in the soil, for example, the growth
inhibition or plant death can be observed under 100–200 mM NaCl [8]. Therefore, one
of the most important areas of breeding is the identification of salt-tolerant plant geno-
types and their subsequent selection [9]. Currently, considerable attention is paid to the
effect of salinity on the root system of glycophytes, which include tomatoes. Thus, tomato
(S. lycopersicum L.) is cultivated in open fields in semi-arid and arid climates, where soil
salinization is an ongoing problem [10]. During the seedling stage, the tomato is more
sensitive to high salt concentrations in the soil compared to the later stages of ontogene-
sis [11]. A decrease in the length, as well as the wet and dry weights, of tomato roots has
been shown with increasing salinity [12]. These characteristics are often used to assess the
salt tolerance of tomato genotypes in vitro [13].

Classical methods used to select salt-tolerant cultivars are complex and time-consuming,
whereas in vitro methods allow for selection over a short period of time and at different stages
of development [13,14]. A study by Cano et al. (1998) revealed the possibility of using an
in vitro system to evaluate the salt tolerance of cultivated (Lycopersicon esculentum Mill.) and
wild (Lycopersicon pennellii (Correll) D’Arcy) tomato species using callus culture [15]. Some
results indicate a positive correlation in terms of salinity tolerance between seedlings and
adult plants [16].

The study of the mechanisms of plant resistance to salinity suggests the need to use an
integrated approach subject to constant controlled conditions. Thus, the purpose of this
work was to carry out a comparative assessment of the response of the roots of two tomato
genotypes differing in salt tolerance regenerated under different conditions of NaCl salinity
in vitro at different levels of organization in terms of a number of morphobiological and
cytological indicators that can be proposed for a comprehensive assessment of genotypes
for salt tolerance.

2. Materials and Methods

The objects of research were two tomato genotypes (Solanum lycopersicum L.) of differ-
ent ecological and geographical origin: the YaLF breeding line and the cultivar Recordsmen
selected in the Central and Lower Volga regions of the Russian Federation, respectively.
The territories of these regions differ significantly in the degree of soil salinity, as a result
of which the studied genotypes may differ in salt tolerance (non-tolerant line YaLF and
tolerant cultivar Recordsmen). Therefore, these two genotypes were chosen as objects for
study. The YaLF breeding line was isolated from the Yamal variety in the N.N. Timofeev
breeding station of the K.A. Timiryazev Russian State Agrarian University, Moscow Agri-
cultural Academy (kindly provided by Monakhos G.F.). The breeding line is used as a
paternal form when obtaining the F1 Junior hybrid, which is included in the state register
of breeding achievements and approved for use in the Russian Federation for cultivation in
all regions in garden plots, home gardens, and small farms.

The tomato cultivar Recordsmen was obtained from Agrovnedrenie. In 2004, it was
included in the state register of breeding achievements and approved for use on the territory
of the Russian Federation for cultivation in all regions in garden plots, household plots,
and farms [17].

2.1. Obtaining of Tomato Seedlings

During the first stage, the seeds were sterilized for 10 s in 96% ethanol, then for
7–8 min in a 20% aqueous solution of chlorine-containing commercial bleach ACE with
the addition of 0.01% Tween 20. Then, the seeds were washed with autoclaved distilled
water and placed in cultural vessels with Murashige and Skoog (MS) nutrient medium [18]
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supplemented with 3% sucrose and 0.7% agar (pH = 5.7–5.8) under aseptic conditions.
Further in vitro cultivation was carried out, and donor seedlings were obtained according
to the method described [19]. In each variant of the experiment, 10 seedlings were used,
with 3 replicates (Supplementary Materials Figure S1).

The frequency of rhizogenesis and the morphometric characteristics of regenerated
roots were assessed on the 8th day of the experiment (Supplementary Materials Figure S1).
The frequency of rhizogenesis (%) was determined as the ratio of the number of seedlings
with root organogenesis relative to the total number of seedlings. In addition, during
cultivation, the time of the beginning of root formation and the number (pieces) of roots,
as well as their length (cm) and wet and dry biomass (mg), were noted. Fresh and dry
root weight was assessed using an analytical balance (Sartorius, Goettingen, Germany).
To determine the dry weight, the roots were incubated at 65 ◦C until a constant weight
was reached.

2.2. Light and Transmission Electron Microscopy (TEM)

Fragments of root tips with a length of 0.4 cm were fixed for 2 h at room temperature
in a 2.5% solution of glutaraldehyde (Merck, Darmstadt, Germany) in 0.1 M Sorensen’s
phosphate buffer (pH 7.2) with the addition of 1.5% sucrose (Supplementary Materials
Figure S1). Then, the plant material was washed from the fixative in 0.1 M Sorensen’s buffer
(pH 7.2) and additionally fixed with 1% OsO4 (Sigma-Aldrich, St. Louis, MO, USA) for
1 h at 4 ◦C. During the next stage, the fixed material was dehydrated in aqueous ethanol
solutions of increasing concentration (30, 50, 70, 96, and 100%), followed by propylene
oxide (Fluka, Germany) and embedded in a mixture of Epon812 and Araldit M epoxy resins
(Merck, Germany) according to the standard method [20]. Sections with a thickness of
1–2 µm were obtained with a glass knife using an LKB-V ultramicrotome (LKB, Stockholm,
Sweden), placed on glass slides, and embedded in a mixture of epoxy resins. Semi-thin
sections were analyzed and photographed using an Olympus BX51 microscope (Olympus,
Tokyo, Japan) equipped with a Color View II camera (Soft Imaging System, Muenster,
Germany). During the study, cells of the columella, the primary cortex, and the central
cylinder of the root were analyzed. Morphometric characteristics of cells (length and
area) were determined using Cell A software (Olympus, Japan). When measuring each
experimental variant, 300 cells of three roots of independent seedlings were analyzed
(threefold repetition). The indicator is the ratio of the nucleus area of a particular cell to the
area of the nucleolus of the same cell. This parameter was calculated for at least 300 cells of
each tissue type (bark and central cylinder) from the roots of three different seedlings of the
same variant. In our study, visual assessment was used to quantify the number and size of
vacuoles. Ultrathin sections were obtained on an LKB-V ultramicrotome (LKB, Sweden)
using a diamond knife (DuPont Instruments, Boynton Beach, FL, USA), placed on blends
coated with Formvar support, and counterstained with uranyl acetate and lead citrate
according to Reynolds [21]. The preparations were analyzed and photographed using an
H-500 electron microscope (Hitachi, Tokyo, Japan) at an accelerating voltage of 75 kV.

2.3. Immunofluorescent Staining with Antibodies to Tubulin

Preparations of macerated cells were obtained according to the method described
in [22]. The preparations were stained with DAPI (Sigma-Aldrich, St. Louis, MO, USA),
embedded in Mowiol 4-88 (Hoechst, Frankfurt, Germany), and analyzed on an Axiovert
200 M microscope (Zeiss, Berlin, Germany) with epifluorescent illumination, a set of filters
(with an excitation peak of 450–480 nm and an emission peak of 515–565 nm for Alexa
Fluor 488 and an excitation peak of 365 nm and an emission peak of 420 nm for DAPI), and
a Neola 100/1.24 lens. Sample photographs were taken with an AxioCam HRm digital
camera (Carl Zeiss, Oberkochen, Germany) and processed in Adobe Photoshop 6.0.
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2.4. Cytophotometric Analysis

Fragments of tomato root tips with a length of 4–5 mm were fixed in a mixture of
ethanol and acetic acid (3:1) for 3 h, and hydrolysis was carried out with 5 N HCl for 40 min
at 22 ◦C. The preparations were stained with Schiff’s reagent (Merck, Darmstadt, Germany).
The DNA content was determined in relative units on an SMP-20 cytophotometer (Opton,
Frankfurt am Main, Germany) with a ×16 objective, ×10 ocular, and a 0.08 mm probe. The
nuclei of root meristematic cells in the stages of telophase (2C) or metaphase (4C) were
used as a standard. For each variant, at least 300 nuclei from meristematic cells of 15 root
fragments were analyzed in triplicate.

2.5. Statistical Analysis

Statistical treatments of experimental data were performed at a 5% significance level
using analysis of variance (ANOVA) and Duncan’s multiple range tests with AGROS
software (version 2.11, Moscow, Russia), as well as standard MS Excel software packages.

3. Results

Concentrations inhibiting root organogenesis, as well as the start time of root organo-
genesis, were established for the studied tomato genotypes in the growth process of
seedlings on MS nutrient medium supplemented with 25–300 mM NaCl. In fragments of
tomato seedlings of both genotypes, root formation was shown on the fourth day under
control conditions. An increase in the time for the beginning of root formation was observed
on the fifth day in both genotypes at 150 mM. A decrease in the frequency of rhizogenesis
in the YaLF line was observed under conditions of 200 mM NaCl. In contrast to the YaLF
line, a slight decrease in the frequency of rhizogenesis to 93.3% was observed in fragments
of cv Recordsmen seedlings on a medium containing 250 mM NaCl.

When fragments of tomato seedlings were cultivated on a medium for rhizogenesis
induction under saline conditions, significant differences between genotypes in the number
of formed roots and their length were established (Figure 1). The presence of NaCl in the
medium at the lowest concentration (25 mM) led to a significant decrease in the number of
regenerated roots in tomato seedlings of the YaLF line compared to the control. Moreover,
a significant increase in root length was observed. A subsequent decrease in the number
of roots was noted under conditions of 150 mM NaCl (Figure 1a). In contrast to the YaLF
line, a decrease in the number of roots in tomato seedlings of cv Recordsmen was observed
only under conditions of 150 mM NaCl salinity, and the minimum NaCl concentration did
not lead to a significant increase in root length (Figure 1b). The formation of shortened
roots compared to the control was observed when seedlings of both tomato genotypes
were cultivated on a medium for induction of rhizogenesis with the addition of 100 mM
NaCl and higher. Furthermore, with an increase in the concentration of the stress factor, a
significant decrease in root length occurred.

The presence of NaCl in the composition of the nutrient medium had a significant effect
on the wet weight of regenerated roots in seedlings of both tomato genotypes (Figure 2a).
An inverse relationship was established between the wet biomass index of roots regenerated
on one seedling and the intensity of NaCl salinity. Moreover, there were no statistically
significant differences between the studied tomato genotypes. In contrast to wet biomass,
significant differences between genotypes were established in terms of dry weight of
regenerated roots (Figure 2b). In general, both tomato genotypes were characterized by a
decrease in dry root biomass with increased NaCl concentration in the nutrient medium.
However, for the YaLF line, a significant decrease in this indicator compared to the control
was already noted when seedlings were cultivated on a medium containing NaCl at the
lowest concentration (25 mM), whereas for cv Recordsmen decreased dry root biomass
occurred only under conditions of 100 mM NaCl and higher.
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Figure 1. Effect of different concentrations of NaCl in the nutrient medium for rhizogenesis induction
on the number of regenerated roots and their length in tomato seedlings of the YaLF line (a) and
cv Recordsmen (b). Means followed by the same letter are not significantly different at α = 0.05
according to Duncan’s multiple range test.
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The results of cytophotometric analysis of the root meristem cells are shown in Figure 3.
Both in the control plants of the YaLF line and in those grown at a concentration of 75 mM
NaCl, the largest number of cells was observed in the G1 phase, with the fewest cells in the
G2 phase of the cell cycle. With an increase in concentration to 150 mM, a decrease in the
number of cells in the G1 phase and an increase in the G2 phase occurred compared with
the control.
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concentrations of NaCl. The columns indicate the percentage of cells in a given phase of the cell cycle.
Means followed by the same letter are not significantly different at α = 0.05 according to Duncan’s
multiple range test.

There was a slight decrease in the number of cells in the G1 phase compared with the
control and a significant increase in the number of cells in the G2 period in tomatoes of cv
Recordsmen at concentrations of 75 mM NaCl. An increase in concentration to 150 mM
resulted in a decrease in the number of cells in the G1 phase and an increase in the number
of cells in the G2 phase up to the formation of a block. Thus, significant differences between
the tomato genotypes in the distribution of cells according to cell cycle phase were revealed
at a concentration of 150 mM NaCl; the number of cells in the G1 period in the YaLF tomato
line was 1.8 more than that in cv Recordsmen.

We studied the structural organization of tomato roots using semi-thin longitudinal
sections of the YaLF line and cv Recordsmen (Figure 4) formed by rhizogenesis in seedlings
when they were cultivated on nutrient media supplemented with 0.2 mg/L IBA and various
concentrations of NaCl.
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The stress-induced vacuolar changes appear to be related to the cell’s need to move
salt ions into vacuoles. These changes include an enlargement of vacuoles under stress,
the fusion of several vacuoles into one, and an increase in the number of vacuoles in cells.
This can be designated as a change in “the degree of cell vacuolization”. The increase
in vacuole volume may be partly caused by vesicle transport [23]. Various vacuolar
functions are provided by different types of vacuoles, namely lytic vacuoles, protein
storage vacuoles, pigment storage vacuoles, and prevacuolar compartments [24]. In our
study, cell morphometry was used to quantify the number and size of vacuoles. During the
study, the degree of vacuolization of the cells of the cap and cortex, as well as the length of
the cells of the columella and epidermis, were analyzed. In the YaLF line at 75 mM NaCl,
the degree of vacuolization of the cytoplasm of the cap cells remained comparable to that
of the control, whereas an increase in this indicator compared to the control variant was
shown at 150 mM NaCl (Figure 4). Damaging effects of NaCl in the roots of cv Recordsmen
manifested in cell vacuolization compared with the control were observed in root cap cells
only at 150 mM NaCl (Figure 4).

In the cells of the root cortex (RC) of the YaLF line at 75 mM NaCl, no increase in
the degree of vacuolization was observed, whereas at 150 mM NaCl, an increase in this
indicator was shown compared to the control variant. Damaging effects of NaCl in the
cells of the root cortex of cv Recordsmen, expressed as an increase in cell vacuolization
compared to the control, were noted at 75 and 150 mM NaCl.

Cytological examination revealed a change in the length of columella cells of both
tomato genotypes. Thus, a decrease in the length of columella cells in the YaLF line was
noted compared with the control variant at a concentration of 75 mM NaCl in the nutrient
medium, whereas an increase in the length of the cells was observed at 150 mM NaCl. In
cv Recordsmen, an increase in the length of columella cells was observed compared to the
control at 75 and 150 mm NaCl (Table 1).
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Table 1. The length of the tomato epidermis and columella cells.

YaLF Recordsmen

Cell Length Relative to Control, % Cell Length Relative to Control, %

NaCl Concentration in
the Medium (mM) Columella Epidermis Columella Epidermis

0 100 100 100 100

75 98.61 95.87 118.9 81.97

150 130.55 102.48 155.11 74.59

The length of these cells was determined relative to the control (%) in the YaLF line and cv Recordsmen under the
influence of various concentrations of NaCl. The length was viewed at the mesostructure level.

In addition, the change in the length of epidermal cells was studied. In epidermal cells
of the YaLF line at 75 mM NaCl, a decrease in cell length was observed, whereas at 150 mM
NaCl, cells were elongated. A decrease in the length of epidermal cells in cv Recordsmen at
75 and 150 mM NaCl was observed (Table 1).

A comparison was also made of the cell area in the cortex and the central cylinder
of regenerated tomato roots in both tomato genotypes (Figure 5). The area of RC cells in
the YaLF line was found to remain unchanged at 75 and 150 mM NaCl (Figure 5a). In cv
Recordsmen, the area of RC cells was comparable to the control at 75 mM NaCl, whereas
at 150 mM NaCl, it decreased (Figure 5b). In CCR (central cylinder of the root) cells of
cv Recordsmen, the cell area increased at 75 and 150 mM NaCl compared to cultivation
without salt treatment.
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Figure 5. The effect of different NaCl concentrations in the nutrient medium for the induction of
rhizogenesis on the cell area of the YaLF tomato line (a) and cv Recordsmen (b) as shown by light
microscopy. Abbreviations: RC—root cortex cell; CC—central cylinder cell. Means followed by the
same letter are not significantly different at α = 0.05 according to Duncan’s multiple range test.

To indirectly determine the synthetic activity of tomato cells in both genotypes, the
nucleolus–nucleus ratio in RC and CCR cells was studied. In the YLF line, the nucleolus–
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nucleus ratio in RC cells did not change when NaCl was added at all concentrations studied
(Figure 6a). In cv Recordsmen, an increase in the Snucleolus/Snucleus ratio at 75 mM NaCl in
RC cells was observed, whereas no significant differences were found at 150 (Figure 6b). In
the YLF line, the Snucleolus/Snucleus ratio in CCR cells increased at 75 mM NaCl, whereas
it remained at the control level at 150 mM NaCl. In cv Recordsmen, the Snucleolus/Snucleus
ratio decreased in CCR cells at 75 mM NaCl (Figure 6a,b) and increased at 150 mM NaCl.
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Figure 6. The effect of different NaCl concentrations in the nutrient medium for the induction of
rhizogenesis on the Snucleolus/Snucleus of the YaLF tomato line (a) and cv Recordsmen (b), as shown
by light microscopy. Abbreviations: RC—root cortex cell; CC—central cylinder cell. Means followed
by the same letter are not significantly different at α = 0.05 according to Duncan’s multiple range test.

Because our examination of the Snucleolus/Snucleus ratio revealed changes in both geno-
types, a study of the nuclear compartment ware carried out using TEM. The ultrastructural
organization of nuclear compartments is characteristic of the parenchymal cells of the pro-
liferating root zone (Figure 7; Supplementary Materials Figure S2). The nuclei had a central
location; a nuclear membrane with shallow, pronounced invaginations was observed in the
YaLF line (Figure 7a), and a nucleus with a rounded shape was observed in cv Recordsmen
(Figure 7b). The nucleoli are round with clearly defined fibrillar centers (FCs) containing
areas of condensed chromatin. The fibrillar zone in the FCs was weakly expressed under
cultivation conditions without the addition of NaCl (Figure 7a,b). Most of the nucleolus
was occupied by ordered preribosomal particles characterized as the granular component
of the nucleolus. The main volume of the nucleoplasm had a structure characteristic of a
tomato in a dispersed state of chromatin (euchromatin). Miniature clumps of condensed
chromatin (heterochromatin) were observed along the periphery of the nucleus in the YaLF
line (Figure 7a). The nuclei of cv Recordsmen were characterized by a different structure;
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in addition to small clumps associated with the nuclear membrane, there were also larger
fragments of heterochromatin (Figure 7b).
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Figure 7. Photographs of nuclear ultrastructural organization in the cells of the primary root cortex
of the YaLF line (a) control, (c) 150 mM NaCl) and cv Recordsmen (b) control, (d) 150 mM NaCl)
obtained in vitro by TEM. Abbreviations: H—heterochromatin, FC—fibrillar center, E—euchromatin,
N—nucleolus, NB—nuclear body, NM—nuclear membrane, *—electron-transparent region around
the nucleolus.

The action of NaCl did not lead to a significant change in the ratio of osmotic pres-
sure between the nucleus and cytoplasm and was variety-specific. For example, nuclear
membrane invaginations did not change in the YaLF line (Figure 7c). The shape of the
nucleus also remained unchanged in the cells of cv Recordsmen (Figure 7d). The density of
the FC was increased. A clearly defined peripheral zone containing granular structures
corresponding to proribosomes was visible in the nuclei (Figure 7c,d). The nucleoli of
cv Recordsmen had a visible division into granular and fibrillar zones. The nucleoli also
contained a clearly defined region of condensed chromatin corresponding to the nucleolus-
forming region of the chromosome, which was well-defined inside the nucleolus. Such a
structure is usually categorized as a segregated nucleolus. The nucleoplasm in the YaLF
line changed insignificantly under the action of NaCl, but the number of clumps of con-
densed chromatin associated with the nuclear membrane was decreased (Figure 7b). The
change in the nucleoplasm of the nuclei in cv Recordsmen under the impact of salt was
more pronounced; chromatin clumps were noted in all zones of the nucleoplasm, with a
branched structure along the periphery in which ordered globular formations could be
observed (Figure 7d). In the YaLF line, the presence of nuclear bodies containing globular
formations was noted in the interphase nuclei under both normal conditions and under the
influence of salt (Figure 7b,d). It can be also noted that the volume of the nucleoli was less
than in the control in both genotypes (Figure 7c,d).

Changes in cellular parameters such as cell length can be associated with many
factors, including changes in the cytoskeleton. In the interphase root cells of tomato
seedlings in the YaLF line and cv Recordsmen, a clear and ordered network of bundles
of cortical microtubules was revealed (Figure 8b,h). The network of cortical microtubules
changed in both tomato genotypes at 75 mM NaCl (Figure 8d,j). The YaLF line showed
fragmentation of microtubule bundles, noticeable thinning, and disruption of the cortical
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network order. When the NaCl concentration was increased to 150 mM, the performance of
the plasma membrane was disturbed in the root cells of YaLF line seedlings. Invaginations
were detected on the surface, and the cortical network of microtubules was disorganized
(Figure 8f). Numerous cortical bundles were thinner than in control cells. In cv Recordsmen,
the network of cortical microtubules changed, which was manifested in the disruption of the
network arrangement at 75 mM NaCl, whereas thinning of microtubules was characteristic
under conditions of 150 mM NaCl (Figure 8l).
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Figure 8. α-tubulin immunocytochemical detection in interphase root cells of tomato seedlings
using antibodies to tubulin under control conditions, as well as under the action of NaCl at various
concentrations. (a,b) YaLF line under 0 mM NaCl; (c,d) YaLF line under 75 mM NaCl; (e,f) YaLF line
under 150 mM NaCl; (g,h) cv Recordsmen under 0 mM NaCl; (i,j) cv Recordsmen under 75 mM
NaCl; (k,l)—cv Recordsmen under 75 mM NaCl. * fragmentation of microtubules; ** disorganizations
of the cortical microtubules; ˆ thinning of microtubules. Scale is 5 µm.

4. Discussion

Salt stress is known to cause structural and anatomical changes in the root cells
themselves [4,22,25,26]. Salinity inhibits cell division and tissue expansion [5,22], which
may explain the decrease in the length and number of roots demonstrated in both genotypes
in our study. However, in cv Recordsmen, as a more salt-tolerant variety, a decrease in
these indices was observed at a higher concentration of NaCl (the number of roots was
reduced at 150 mM, and the length was reduced at 100 mM).

Other studies have shown a decrease in the length, as well as the wet and dry mass,
of shoots and roots with an increase in salinity [27], which is consistent with the decrease
in wet and dry root biomass observed in both examined genotypes in the present study.
The fresh weight of YaLF line plants decreased in proportion to the increase in the salt
concentration in the medium. Moreover, the dry weight of YaLF tomatoes significantly
declined when seedlings were cultivated on a medium containing 25 mM NaCl, whereas
in cv Recordsmen, such a decrease was observed at a NaCl concentration of 100 mM
and higher. A change in the water content in root tissues inhibits growth [28] and may
reduce the fresh weight [29]. A decrease in root dry weight can be caused by a decrease
in photosynthesis products [30] or by a delay in the entry of metabolites into the root
system [31]. The differences between varieties shown observed in the present study are
consistent with the data reported in other studies. Alsafari et al. (2019) found a decrease
in the dry and wet biomass of the roots of Marmande and Oria tomato varieties with the
addition of NaCl [32].
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In response to environmental stress factors, meristematic cells can switch to an en-
doreduplication cycle in which mitosis is absent [33]. As a consequence, a high level of
ploidy affects the morphology of both the nucleus and the cell [34]. Studies in tomatoes
have provided new data in favor of the karyoplasmic ratio theory, which states that there is
a causal relationship between the increase in the volume of the nucleus and cytoplasm (and
therefore the volume of the cell) [35]. As a result of our study, a change in the parameters
of the cell cycle in the roots of both tomato genotypes under the influence of NaCl was
established, which manifests itself in the redistribution of cells across the phases of the cell
cycle and may be due to the transition to the endoreduplication cycle. The accumulation
of cells in one of the phases, leading stoppage (blockage) of the cell cycle, was noted in
seedlings of tomato cv Recordsmen under the action of NaCl in the G2 phase, which inhibits
division, stopping the mitosis process.

Compartmentalization of sodium in vacuoles is considered one of the key mechanisms
of adaptation to salinity. Plant cells contain several types of vacuoles [36]. When storage
protein is utilized, vacuoles merge, with the subsequent formation of a large central vacuole
and a change in the protein composition of the vacuolar membrane [37,38]. Thus, the
formation of vacuoles in root cells under the influence of NaCl was shown to be associated
with the use of storage protein and subsequent fusion of vacuoles [20]. Vacuoles in the
bark cells of the root tips of Hordeum vulgare L. and mangrove Bruguiera sexangula (Lour.)
Poir. swelled for 3 h in response to increased salt concentrations (150 mM NaCl) [39]. The
same was found in Arabidopsis thaliana [40]. A decrease in the degree of vacuolization
in the cells of the aleurone layer reported under conditions of salt stress may have been
due to changes in the active cytoskeleton [41]. It was mentioned in previous works that
vacuolization of root tip cells may be an adaptive response to the accumulation of excess
ions under saline conditions, which protects the cytoplasm from toxic levels of ions [42].
In a study by Ibrahim et al. (2019), root cell vacuolization was also observed under salt
stress in barley [43]. Vacuolization in tomato root cells of cv Recordsmen (at 75 and 150 mM
NaCl) and the YaLF line (at 150 mM NaCl) under salinity conditions may be associated
with differences in the properties of the vacuolar membrane and changes in the osmotic
potential, transport, and activity of enzymes, as well as with a violation of the cytoskeleton.
In addition, this may be due to the occurrence of a non-optimal pH value [44].

Salinity prevents cell division and cell elongation, which can contribute to a decrease
in the size of the apical meristems, cortex, and vascular cylinder and cause a decrease in
growth [45]. Cell expansion depends primarily on the osmotic potential and turgor, as
well as the ability of the cell wall to stretch. The change in the length of columella cells
in both genotypes and the length of epidermal cells in cv Recordsmen at 75 and 150 mM
NaCl observed in the study may have occurred due to a change in cell expansion, which,
accordingly, affects the length of the whole root. Li et al. (2011) showed a slight increase in
the size of tomato cells when exposed to 200 mM NaCl for 48 h and a significant increase
after 96 h at the same concentration [46]. A similar effect of salinity on the anatomical
structure of tomato root cells was demonstrated by Alsafari [32]. In our study, an increase
in the area of cells of the central cylinder in the YaLF line at 150 mM NaCl was noted, but a
decrease in the area of cells of these tissues was also noted at 75 mM NaCl. In the cells of
the central cylinder of the root in cv Recordsmen at 75 and 150 mM NaCl, the cell area was
increased, whereas the area of the primary root cortex at 150 mM NaCl was decreased, in
contrast to the YaLF line. These changes may be associated with a violation of the water
balance of plants under the action of NaCl, which is expressed by a decrease in tissue
hydration, leading to a decrease in cell size [2].

The degree of chromatin condensation can change under the influence of environmen-
tal factors [47–49]. Under the influence of stressors, a change in the shape of the nucleus and
nuclear membrane is observed, and invaginations can form [50]. In this study, significant
changes in the ultrastructure of the nuclear compartment under stress were described. It
can be assumed that the condensation/decondensation of chromatin depends on changes
in the pH level in the nucleus and the content of certain ions, such as Ca2+ or Mg2+, and is
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a result of disturbances in acetylation, methylation, phosphorylation, and other chromatin
modifications. The above reasons, in combination or separately, can cause the changes
in Snucleolus/Snucleus ratio observed in this work in the cells of the cortex and the central
cylinder in the root of cv Recordsmen and in the cells of the central cylinder of the YaLF line.
Changes in the chromatin structure in these genotypes were also confirmed at the ultrastruc-
tural level. Both normally and under the influence of various factors, the morphological
features of the structural organization of the nucleus according to the genotype may be
preserved [51]. However, damage to nuclei is often detected by studying the ultrastructure
of nuclei in cells exposed to salt. Thus, when exposed to salinity, serious damage to the
structure of the nuclei and nuclear membranes of roots cells of wheat varieties was reported
in [52]. Goswami et al. (2020) showed that hyperosmotic stress reduces the roundness
and size of nuclei, in combination with an increase in the expression of sensory response
genes [53]. In seedlings not exposed to mannitol, most of the nuclei were round, whereas
the nuclei of treated cells were irregular in shape and reduced in size. Under conditions of
reduced osmotic stress, i.e., 0.15 M mannitol, no nuclear deformation was found in root
meristems. This study shows three responses of the nucleus to hyperosmotic stress: with
up to 0.15 M mannitol, the shape of the nucleus is stable; with 0.3 M mannitol, the nuclei
shrink; and above 0.3 M mannitol, the nuclei are even more deformed, and the cells die,
which corresponds to damage under strong hyperosmotic conditions. Stress affects the
shape of nuclei [54,55]. It has also been shown that hyperosmotic stress leads to a decrease
in the size of the nucleus due to the uneven distribution of macromolecules between the
cytoplasm and nucleoplasm [56].

Under salinity conditions, we observed segregation of nucleoli and an increase in
fibrillar compartments. This effect is often described under abiotic influences [57]. We
observed decondensation of chromatin and the disappearance of clumps in the YaLF line
and a decrease in heterochromatin and the size of its clumps in cv Recordsmen under the
action of salt. A change in chromatin condensation was also noted under the action of heat
stress [58]. The effects of changes in the ratio of eu- and heterochromatin are characteristic
of cells subjected to abiotic stresses, which is associated with complex biochemical processes
of chromatin remodeling that result in changes in expression [8,59].

It has been shown that microtubules play an important role in abiotic stress due to changes
in their location and structural organization and can cause changes in cell size [60–62]. Atypical
components of the cytoskeleton in tomato root cells exposed to NaCl and Na2SO4 at different
levels of ROS, as well as shortening and thinning of microtubules, were observed in the
cytoplasm of tobacco root cells in longitudinal and transverse sections [63]. Thus, microtubules
play crucial roles in plant adaptation and tolerance to salt stress [64,65]. In cv Recordsmen and
the YaLF line, in addition to bundles of different densities, thinning of the cortical network
was shown, and in the YaLF line, a violation of the ordered arrangement of microtubules
was also found. Another reason for the changes described herein may be associated with
MAP proteins, which change the organization, dynamics, and stability of cortical microtubules,
thereby facilitating cell adaptation to increased salinity.

5. Conclusions

As a result of the study of the influence of NaCl on tomato genotypes differing in
tolerance, significant differences were established in terms of morphometric and cytological
criteria. Differences in quantitative criteria were manifested at the organ level in terms
of the number and length of roots, as well as their fresh and dry weight. In addition, the
contrasting genotypes differed in the length of the epidermal and columella cells, the area
of the root cells, and the nucleolus–nucleus ratio in the cells of the primary cortex and the
central cylinder of the root. Changes in the cell cycle were also observed at the cellular
level. Differences in qualitative indicators were revealed, at the tissue level, as reflected
by a change in the degree of vacuolization of the cap and cortex cells. At the cellular level,
noticeable differences were observed in qualitative characteristics such as the structure of
the microtubule system and the ultrastructure of nuclei and nucleoli. The data obtained
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during this study can be used to optimize methods for selecting salt-tolerant plants in the
early stages of their development, which can significantly accelerate the breeding process.
This approach can also be used for other model plants and valuable crops in relation to other
stressful environmental effects (for example, heavy metals, drought, and other stressors).
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