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Abstract: Biochemical and mineral peculiarities of plants inhabiting desert and semi-desert ar-
eas may provide important information about the mechanism of their adaptability and reveal the
prospects of their utilization. Rheum tataricum L., known for its high tolerance to drought, salin-
ity, and nutritional deficiency, is the least studied species of wild rhubarb. Using biochemical
and ICP-MS analysis, the antioxidant status and mineral composition of R. tataricum were deter-
mined. Extremely high levels of antioxidant activity (148–155 mg GAE g−1 d.w.), polyphenols
(24.6–25.1 mg GAE g−1 d.w.) and carotenoids (1.94 mg-eq β-carotene g−1 d.w.) were revealed in
roots, proline in leaves (71.1 ± 6.2 mg kg−1 d.w.) and malic acid in stems (3.40 ± 0.50 mg g−1 d.w.).
Compared to garden rhubarb, R. tataricum demonstrated significant root–leaves translocation of Li,
Se, Si, and Mo, known to participate in plant antioxidant defense. Under high levels of Ca, Na, Mg,
Fe, Cr and Si in soil, R. tataricum demonstrated the ability to significantly increase the accumulation
of these elements in roots, showing a hyperaccumulation ability for Sr. The first broad picture of
R. tataricum biochemical and mineral characteristics in semi-desert habitat and its nutritional value
indicate the prospects of R. tataricum utilization in plant breeding, medicine, and nutrition.
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1. Introduction

Wild relatives of cultivated crops produce enormous opportunities in selection technology,
revealing new prospects to improve crop quality and adaptability to environmental stress [1].
There are about 60 species of the genus Rheum L plants in nature, all of which are considered
valuable in traditional medicine, demonstrating astringent, anti-inflammatory, laxative, wound
healing, and fever relieve properties. High levels of food fiber provide a protection against
heart diseases and vitamin K is valuable in osteoporosis prevention [2]. Rhubarb plants demon-
strate antitumor properties [3], regulation of gastrointestinal flora [4], protection of the intestinal
mucosal barrier [5,6], anti-inflammatory activity [7], inhibition of fibrosis [8] and heart protec-
tion [9]. The most common rhubarb species in Europe and the southwestern area of China are
R. tanguticum Maxim., R. officinale Baill., R. palmatum L., R. acuminatum Hook. f. and Thomson.,
R. australe D. Don. Several species (R. tanguticum Maxim., R. officinale Baill. and R. palmatum L.)
are officially included into the Chinese, Korean and Japanese Pharmacopoeia.

Among wild rhubarb species, R. tataricum is the least studied due to the restricted
area of its habitat, occupying a narrow area of dry steppe and deserts of middle Asia, from
the northeastern part of the Astrakhan region in Russia to lake Balkhash in Kazakhstan,
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as well as its extremely short vegetation period lasting from March to June and deformed
small stems, one of the most valuable plant parts of garden rhubarb (Figure 1). Similar to
desert rhubarb Rheum palaestinum, it has broad wrinkled leaves which presumably allow it
to achieve rainfall collection, transport, and self-irrigation [10].
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Inhabiting semi-desert and desert areas, R. tataricum is highly tolerant to salinity,
drought, and nutrient deficiency, which may become the basis for intensive selection
aimed to improve plant quality and increase adaptability to environmental stress. Lack of
information about the accumulation of biologically active compounds and minerals in this
plant slows our knowledge of rhubarb adaptability and utilization possibilities.

Bogdinsko-Baskunchak Nature Reserve, which is situated on the peripheral part of
the Caspian lowland on the border with Kazakhstan, occupies a territory of 18,478 ha and
in 2021 was classified by UNESCO as a World Heritage Site. The climate of the Reserve
is continental with low precipitation (the mean annual precipitation is 270 mm), differing
from 150 to 400 mm in different years and the highest temperature range between −40 ◦C
in winter and +40 ◦C in summer (the mean values are −8.1 ◦C and +24.8 ◦C, respectively).
Soils are predominantly alkaline, light chestnut with a low amount of humus. Sodium
chloride concentration in lake Baskunchak reaches 300 g L−1, with a surface salt deposit
thickness of 10–18 m [11]. Gypsum outcrops and intense winds bringing dust and salt are
additional factors which induce significant oxidative stress at the territory of the Reserve.
In such extreme conditions there exist only 507 plant species [12].

The aim of the present work was to evaluate the biochemical and mineral composition
of R. tataricum grown in the semi-desert territory of Bogdinsko-Baskunchak Nature Reserve,
and the comparison of the results with the data obtained for European garden rhubarb
grown in experimental fields of the Federal Scientific Vegetable Center. Due to lack of inten-
sive environmental stresses, garden rhubarb is characterized by different leaf morphology,
but to date, no comparison has been achieved between the biochemical characteristics and
mineral content of R. tataricum and garden rhubarb.

2. Materials and Methods
2.1. Place of Sampling

Five plants of R. tataricum and soil samples under these plants were sampled each year,
with three replicates, in May (1–5), 2021 and 2022 at the Eastern shore of the Baskunchak lake
(48◦13′18′′2 N, 46◦58′34′′8 E). To perform a comparison, samples of 5 garden rhubarb plants,
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cv. Zaryanka, were sampled each year, with three replicates, grown on sod-podzolic clay-
loam soil (pH 6.8, 2.1% organic matter, 1.1 g·kg−1 N, 0.045 g·kg−1 P2O5, 0.357 g·kg−1 K2O),
at the Federal Scientific Center of Vegetable Production (Moscow region, 55◦39.51′ N,
37◦12.23′ E). In the semi-desert conditions of Bogdinsko-Baskunchak Nature Reserve,
the beginning of May is the only time when it is possible to sample all plant tissues of
R. tataricum, including not only roots, also leaves, stems and florets. By the end of May,
the plants shed seeds and vegetation period ends. On the contrary, the garden rhubarb
vegetation phase lasts until the end of autumn and, to make an appropriate comparison,
rhubarb sampling at the experimental field of the Federal Scientific Vegetable Center was
achieved at the end of May 2021–2022. A systematic uniform random sampling at fixed
intervals along equally spaced three parallel transects was used [13], which allowed us to
obtain five plant samples of R. tataricum, with three replicates each year by sampling the
site according to its natural distribution within the research area in Bogdinsko-Baskunchak
Nature Reserve. Mixed samples of all leaves of 5 plants from garden rhubarb, with three
replicates, were used in this study.

Roots, stems, leaves and florets were separated. Roots were washed with fresh water
to remove soil particles and root peel and pulp were separated and dried in an oven at 70 ◦C
to constant weight. Stems, leaves and florets were cut into small slices, dried at 25–30 ◦C
and homogenized. The same operations were performed with leaves of R. tataricum, but
due to their large size a mixed sample of one leaf per plant from 5 plants was prepared.
Soil samples were also dried, ground in a mortar, and shifted through a sieve.

2.2. Mineral Composition

Al, As, B, Ca, Cd, Co, Cr, Cu, Fe, Hg, I, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Se, Si, Sn, Sr, V,
and Zn contents in dried homogenized rhubarb roots and leaves were assessed using ICP-
MS on quadruple mass-spectrometer Nexion 300D (Perkin Elmer Inc., Shelton, CT, USA),
equipped with the seven-port FAST valve and ESI SC DX4 autosampler (Elemental Sci-
entific Inc., Omaha, NE, USA) at the Biotic Medicine Center (Moscow, Russia). Rhodium
103 Rh was used as an internal standard to eliminate instability during measurements.
Quantitation was performed using external standard (Merck IV, multi-element standard
solution); Perkin–Elmer standard solutions for P, Si, and V, and all the standard curves were
obtained at five different concentrations. For quality control purposes, internal controls and
reference materials were tested together with the samples daily. Microwave digestion of
samples was carried out with sub-boiled HNO3 diluted 1:150 with distilled deionized water
(Fluka No. 02, 650 Sigma–Aldrich, Co., Saint Louis, MO, USA) in the Berghof SW-4 DAP-40
microwave system (Berghof Products + Instruments Gmb H, 72, 800 Eningen, Germany).
The instrument conditions and acquisition parameters were: plasma power and argon
flow, 1500 and 18 L min−1, respectively; aux argon flow, 1.6 L min−1; nebulizer argon flow,
0.98 L min−1; sample introduction system, ESI ST PFA concentric nebulizer and ESI PFA
cyclonic spray chamber (Elemental Scientific Inc., Omaha, NE, USA); sampler and slim-
mer cone material, platinum; injector, ESI Quartz 2.0 mm I.D.; sample flow, 637 L min−1;
internal standard flow, 84 L min−1; dwell time and acquisition mode, 10–100 ms and
peak hopping for all analytes; sweeps per reading, 1; reading per replicate, 10; replicate
number, 3; DRC mode, 0.55 mL min−1 ammonia (294993-Aldrich Sigma–Aldrich, Co.,
St. Louis, MO 63103, USA) for Ca, K, Na, Fe, Cr, V, optimized individually for RPa and
RPq; STD mode, for the rest of analytes at RPa = 0 and RPq = 0.25. Trace levels of Hg in
samples were not taken into account and, accordingly, they were not included in the tables.

Total content of Fe, Mn, Zn, Cu, Cd, Fe, Cr and Sr in soil samples was analyzed on
AAS spectrophotometer (Hitachi 7001, Japan) using 3% HNO3. Mobile forms of elements
were determined in ammonium-acetate buffer according to [14].

2.3. Total Polyphenols (TP)

Total polyphenols in rhubarb tissues (roots, stems and leaves) were determined in
70% ethanol and water extracts using the Folin–Ciocalteu colorimetric method as pre-
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viously described [15]. One gram of dry homogenates was extracted with 20 mL of
70% ethanol/water at 80 ◦C for 1 h. The mixture was cooled down and quantitatively
transferred to a volumetric flask, and the volume was adjusted to 25 mL. The mixture was
filtered through filter paper, and 1 mL of the resulting solution was transferred to a 25 mL
volumetric flask, to which 2.5 mL of saturated Na2CO3 solution and 0.25 mL of diluted
(1:1) Folin–Ciocalteu reagent were added. The volume was brought to 25 mL with distilled
water. One hour later the solutions were analyzed through a spectrophotometer (Unico
2804 UV, Suite E Dayton, NJ, USA), and the concentration of polyphenols was calculated
according to the absorption of the reaction mixture at 730 nm. As an external standard,
0.02% gallic acid was used. The results were expressed as mg of Gallic acid equivalent
per g of dry weight (mg GAE g−1 d.w).

2.4. Antioxidant Activity (AOA)

The antioxidant activity of samples (roots, stems and leaves) was assessed using
a redox titration method according to [15] via titration of 0.01 N KMnO4 solution with
ethanolic/water extracts of dry samples, produced as described in Section 2.4. The re-
duction of KMnO4 to colorless Mn+2 in this process reflects the quantity of antioxidants
dissolvable in 70% ethanol/water. The values were expressed in mg Gallic acid equivalents
(mg GAE g−1 d.w.).

2.5. Carotenoids

Carotenoids content in rhubarb roots powder was determined using hexane extract
of samples, quantitative thin layer chromatography (TLC) on chromatographic paper
Watman 3A and spectrophotometric analysis by the spectrophotometer Unico 2804 UV
(Suite E Dayton, Newark, NJ, USA) [15].

2.6. Proline

Proline concentration was determined according to [16] with slight modification.
About 50 mg of dry homogenized rhubarb roots were ground with 10 mL of 3% sulfur
salicylic acid in a mortar. The mixture was filtered and 1 mL of the resulting filtrate, 2 mL
of ninhydrin reagent and 2 mL of acetic acid were heated at 95 ◦C during 1 h. Proline
concentration was evaluated using absorption value of the reaction mixture at 505 nm
(Unico 2804 UV spectrophotometer, Suite E Dayton, Newark, NJ, USA) and a calibration
curve with 5 different proline (Merck) concentrations.

2.7. Organic Acids

Rhubarb stems were determined using HPLC (Agilent 1100): column Zorbax Bonus-
RP C18, 4.6 × 250 ID mm, 5 µM; current speed—1.0 mL min−1; wavelength—210 nm.
Mobile phase—isocratic elution with phosphate buffer, pH 2.5 [17].

2.8. Statistical Analysis

The data were processed by analysis of variance and mean separations were performed
through the Duncan’s multiple range test, with reference to 0.05 probability level, using
SPSS software version 21 (Armonk, NY, USA). Data expressed as percentages were subjected
to angular transformation before processing.

3. Results and Discussion

R. tataricum belongs to a group of rhubarb species with high adaptability to semi-
desert and desert conditions, where both morphological changes (large area of leaves,
deep roots) and biochemical peculiarities ensure plant survival. Despite intensive mor-
phological investigations of these plants [1,10], nothing is known about the biochemical
characteristics and mineral composition of R. tataricum, which is directly connected with
a restricted habitat and short vegetation period. On the other hand, garden rhubarb’s
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biochemical characteristics are still rather fragmentary [18,19], suggesting the necessity of
intensive investigations.

3.1. Antioxidant Status of Plants

The analysis of total antioxidant activity (AOA) and total phenolic content (TP) re-
vealed an unusual distribution of antioxidants in rhubarb, and the highest levels of antioxi-
dants were recorded in roots and the lowest in florets (Table 1). No differences in phenolics
content were found between rhubarb plant parts, with mean values of 24.0 ± 0.8 mg
GAE g−1 d.w.

Table 1. Total antioxidant activity and polyphenols accumulation by R. tataricum and garden rhubarb,
cultivar Zaryanka, using ethanolic extracts of tissues.

Parameter Object Root Pulp Root Peel Florets Stems Leaves

AOA (mg GAE) g−1 d.w.
R. tataricum 157.0 ± 12.0 a 148.0 ± 11.0 a 54.0 ± 3.0 d 73.0 ± 4.0 bc 83.0 ± 5.0 b
Zaryanka cv 152.0 ± 20.0 a 150.0 ± 13.0 a 58.9 ± 2.5 cd 51.5 ± 2.1 d 68.3 ± 6.1 c

TP (mg GAE) g−1 d.w.
R. tataricum 25.1 ± 2.2 a 24.6 ± 2.1 a 23.6 ± 2.0 a 23.0 ± 2.1 ab 24.0 ± 2.1 a
Zaryanka cv 24.9 ± 2.0 a 19.5 ± 1.7 a 21.8 ± 1.7 ab 21.7 ± 1.9 ab 21.3 ± 1.8 ab

For each variable, the values associated to the same letters do not differ statistically according to Duncan’s test
at p < 0.05.

On the contrary, water extracts demonstrated significantly higher levels of AOA and
TP in root peel of R. tataricum compared to garden rhubarb, cv. Zaryanka (Figure 2).
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Figure 2. Total antioxidant activity (AOA) and polyphenol content (TP) in water extracts of
R. tataricum roots peel/pulp and garden rhubarb cv. Zaryanka. The values with the same letters do
not differ statistically according to Duncan’s test at p < 0.05.

The UV spectrum of R. tataricum root water extracts (Figure 3) indicates different char-
acteristics of the extracts’ absorption compared to garden rhubarb extracts, which proved
significant differences in chemical composition of water-soluble compounds in R. tataricum
and Zaryanka roots. According to the literature reports, rhubarb roots accumulate differ-
ent forms of polyphenols, such as anthraquinones, anthrones, naphthalenes, chromones,
phenylbutanones, stilbenes and tannins which absorb light in a range of 280–400 nm [20–23]
and phenolic content and composition are greatly affected both by the genetic and envi-
ronmental factors [24]. Consequently, the detected differences in the UV-spectra (Figure 3)
may refer to both factors.

Furthermore, taking into consideration a significant role of antioxidants in plants
protection against oxidative stress (salinity, drought and high temperature in particular) [25],
the results demonstrate the importance of high root peel antioxidant status in R. tataricum
grown in stress conditions.
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3.2. Proline

Salt stress is usually accompanied by ionic, osmotic, and oxidative stress due to the
overproduction of reactive oxygen species (ROS) in plants, causing the oxidation of protein,
membrane lipids and nucleic acids, and inhibiting plant growth and development [26].
Additionally, under salt stress, plants must extensively adjust various physiological and
biochemical processes, including ion and osmotic homeostasis, as well as stress damage
control and repair [27].

Proline plays a highly beneficial role in plants exposed to various stress conditions [28].
Besides acting as an excellent osmolyte, proline plays three major roles during stress, i.e., as
a metal chelator, an antioxidative defense molecule and a signaling molecule.

Apart from acting as osmolyte for osmotic adjustment, proline contributes to sta-
bilizing sub-cellular structures (e.g., membranes and proteins), scavenging free radicals
and buffering cellular redox potential under stress conditions [29]. In many plant species,
proline accumulation under salt stress has been correlated with stress tolerance, and its
concentration has been shown to be generally higher in salt tolerant than in salt sensitive
plants [30,31]. Despite the genetic differences between R. tataricum and garden rhubarb,
and significant differences in environmental stress values between the semi-desert condi-
tions of Bogdinsko-Baskunchak Nature Reserve and the experimental fields of the Federal
Scientific Vegetable Center, the obtained data indicated significant peculiarities in rhubarb
biochemistry under stress condition.

Data presented in Table 2 indicate that R. tataricum accumulates levels of proline
1.3 (root pulp), 1.4 (leaves) and 2.08 (root peel) times higher compared to the correspondent
values in garden rhubarb, indicating root peel as the most important plant part in anti-stress
tolerance. On the contrary, cv. Zaryanka accumulated thrice higher levels of proline in
stems, the most developed plant part of garden rhubarb, while R. tataricum contained an
extremely low amount in stems.

3.3. Carotenoids

The protective role of carotenoids in plants grown in stress conditions is connected with
their antioxidant properties and participation in phytohormone biosynthesis (especially
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abscisic acid, known to protect plants against heat stress) [32]. Furthermore, salinity is
known to alter carotenoid biosynthesis, capable of increasing the accumulation of these
compounds [33]. In this respect, the remarkable increase in β-zeacarotene (Figure 4) in
rhubarb roots grown in conditions of high salinity may be connected with Baskunchak
Reserve salt pollution. UV-spectra of hexane extracts of R. tataricum and garden rhubarb
cv. Zaryanka indicated an almost 10 times increase in β -zeacarotene accumulation in
roots of R. tataricum, compared to garden rhubarb roots which reached the concentration
of 1.94 mg-eq β-carotene g−1 d.w. versus 0.13 mg-eq β-carotene g−1 d.w in roots of cv.
Zaryanka. Notably, β -zeacarotene showed maximum values at 410, 430 and 450 nm in
hexane [34], which had been seldom found in plants and never described in rhubarb species.
Thin layer chromatography (TLC) data revealed the presence of only one spot (Rf 0.91),
indicating the peculiarity of the R. tataricum and garden rhubarb carotenoid profile.

Table 2. Proline content in rhubarb root peel and pulp (mg kg−1 d.w.).

Tissue R. tataricum Rhubarb, cv. Zaryanka

Root Peel 54.1 ± 4.0 b 26.0 ± 2.1 d
Root Pulp 55.2 ± 4.1 b 42.1 ± 3.0 c

Stems 27.1 ± 2.1 d 78.2 ± 6.1 a
Leaves 71.1 ± 6.2 a 51.0 ± 4.1 b

Values with the same letters do not differ statistically according to Duncan’s test at p < 0.05.
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3.4. Nitrates and Total Dissolved Solids

High environmental stress, especially drought, salinity, and high temperature, is
known to cause nitrates accumulation in plants [35]. The present results indicate sig-
nificantly higher levels of nitrates in R. tataricum leaves, florets, and roots, compared to
correspondent parameters of cv. Zaryanka. The exception is represented by stems, where
the nitrates levels are significantly higher in garden rhubarb (Figure 5).

The highest differences were recorded in leaves where the differences reached more
than 2. While N is an essential macronutrient for plant growth and development, it is
also closely associated with plant adaptations to various abiotic stressors. As nitrogen is
considered the most important nutrient for plant growth from a quantitative perspective,
plants have evolved efficient strategies to manage N levels in response to various complex
stressors [36].

On the one hand, salt stress in soils impairs the plant’s ability to take up water from
the rhizosphere, leading to water limitation and growth inhibition.

Total dissolved solids (TDS) accumulation to a large extent showed the same phe-
nomenon of nitrates distribution in plant parts, though this parameter reflects the content
of all soluble substances including nitrates, salts, organic acids, and sugar.

3.5. Organic Acids

Organic acids are a core component inside cellular metabolism. Many plant stress re-
sponses involve the exudation of organic acids at the root–soil interface, which can improve
soil mineral acquisition and toxic metal tolerance [37]. Thus, oxalate in soils may enhance
phosphate availability, promote mineral dissolution, and increase the mobility of aluminum
and heavy metal cations by complexation. Oxalate might stimulate microbiological growth
and phosphate mobilization in the rhizosphere [38]. The mitochondria are the prime site for
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the intracellular biosynthesis of organic acids such as citrate, malate, and oxalate. Citrate,
malate, and oxalate are implicated mainly for their roles in Al detoxification at the root–soil
interface. The chelating property of organic acids is well expressed by citric and oxalic ones.
After synthesis, organic acids are circulated among various plant parts, via various trans-
porters, for functions such as the xylem loading of minerals, cell pH and redox equilibrium
maintenance, drought tolerance, and tolerance towards fungal pathogens. Sometimes these
organic acids are secreted by the roots into the soil, where they can mobilize minerals that
are fixed due to various chemicals and microbial activities in the soil. They can also bind to
toxic cationic species, such as Al and Mn+2, to inhibit their binding to the root tips. Secretion
of organic acids into the soil also helps soil carbon sequestration, which is an important
phenomenon for underground carbon fixation. Organic acids can also attract various
microbes towards the root for helpful symbiotic associations and malate can also help in
Mn detoxification internally by chelating it in both photosynthetic and non-photosynthetic
tissues [39]. Moreover, citrate and malate can chelate other heavy metals that affect plants
adversely, such as Cu, Ni, and Cd. The transportation of organic acids is not confined
to the root–soil interface. In a few cases, the apoplastic secretion of organic acids plays a
pivotal role in plant stress tolerance. Recently, it was established that organic acids also
participate in regulating primary root growth under P deficiency. Furthermore, organic
acids are known to protect plants against drought and other environmental stresses [37].
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Compared to garden rhubarb, R. tataricum is characterized by a lower content of oxalic
and succinic acids (1.7 and 3.5 times, respectively) and significantly higher content of
malic and tartaric acids (12.6 and 4.2 times, respectively) (Table 3). The investigations of
Sun et al. [40] revealed a significant role of malic enzyme (regulating malic acid metabolism)
in antioxidant defense of plants via reduction in oxidative damage caused by reactive
oxygen species including salinity and H2O2 production.

Table 3. Organic acids content in dry Rhubarb stems (mg g−1 d.w.).

Organic Acid R. tataricum Rhubarb cv. Zaryanka

Citric 64.00 ± 9.60 a 74.25 ± 11.10 a
Oxalic 7.50 ± 1.12 b 12.76 ± 1.91 a
Malic 3.40 ± 0.50 a 0.27 ± 0.04 b

Succinic 2.60 ± 0.39 b 8.99 ± 1.34 a
Tartaric 0.50 ± 0.07 a 0.12 ± 0.02 b

Total 78.0 ± 11.7 a 96.40 ± 14.50 a
Along each line, values with the same letters do not differ statistically according to Duncan’s test at p < 0.05.
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3.6. Mineral Composition

The mineral composition of plants reflects both genetic peculiarities of a species and
elements’ bioavailability in soil. Despite great differences in soil characteristics, salinity
levels and climate parameters of the semi-desert territory of Bogdinsko-Baskunchak Nature
Reserve and the experimental fields of the Federal Scientific Vegetable Center in Moscow
region, comparison of the mineral distribution of leaves/roots in R. tataricum and garden
rhubarb provides an indirect evaluation of the role of macro and trace elements in plant
adaptability. Indeed, mineral distribution between different plant tissues is highly valuable
in plant physiology and molecular biology [41]. In the conditions of salt stress of the
Baskunchak environment, which is reflected in an Na content 63 times higher in rhubarb
roots and 288 times higher in leaves compared to the garden rhubarb, grown in non-stressed
condition, significant changes in Ca and Mg content were also recorded (Table 4).

Table 4. Root and leaf mineral composition of R. tataricum and rhubarb cv. Zaryanka (mg kg−1 d.w.).

Element
R. tataricum Rhubarb cv. Zaryanka

Roots Leaves Roots Leaves

Macroelements
Ca 36,239 ± 3624 a 6550 ± 655 c 18,675 ± 1868 b 6738 ± 674 c
K 7029 ± 703 c 29,212 ± 2921 a 5730 ± 573 c 17,583 ± 1758 b
Mg 2052 ± 205 c 3507 ± 351 b 843 ± 84 d 5795 ± 580 a
Na 1841 ± 184 b 27,298 ± 2730 a 29.08 ± 2.91 d 55.89 ± 5.59 c
P 858 ± 86 c 4244 ± 424 a 1681 ± 168 b 5117 ± 512 a

Al, As and heavy metals
Al 83.1 ± 8.3 b 161.0 ± 16.0 a 39.9 ± 3.9 c 104.0 ± 10.0 b
As 0.04 ± 0.01 c 0.2 ± 0.02 a 0.03 ± 0.004 c 0.14 ± 0.01 b
Cd 0.06 ± 0.01 c 0.27 ± 0.03 a 0.05 ± 0.01 c 0.13 ± 0.01 b
Cr 1.18 ± 0.12 b 3.24 ± 0.32 a 0.29 ± 0.03 d 0.81 ± 0.09 c
Ni 1.66 ± 0.17 b 1.72 ± 0.17 b 1.93 ± 0.19 b 3.03 ± 0.30 a
Pb 0.20 ± 0.02 c 0.73 ± 0.09 a 0.13 ± 0.01 d 0.53 ± 0.06 b
Sr 172.0 ± 17.0 a 21.5 ± 2.1 c 109.0 ± 11.0 b 20.3 ± 2.0 c
V 0.41 ± 0.05 b 0.77 ± 0.09 a 0.13 ± 0.02 c 0.36 ± 0.04 b

Microelements
B 9.93 ± 0.99 b 17.01 ± 1.70 a 5.22 ± 0.52 c 4.92 ± 0.49 c
Co 0.12 ± 0.01 b 0.43 ± 0.05 a 0.05 ± 0.01 c 0.34 ± 0.04 a
Cu 1.96 ± 0.20 c 7.75 ± 0.77 a 2.89 ± 0.29 b 8.71 ± 0.87 a
Fe 189.0 ± 19.0 c 429.0 ± 43.1 a 82.1 ± 8.0 d 269.0 ± 27.0 b
I 0.45 ± 0.06 bc 0.53 ± 0.06 b 2.07 ± 0.21 a 0.39 ± 0.04 c
Li 0.29 ± 0.03 b 3.99 ± 0.40 a 0.06 ± 0.01 c 0.24 ± 0.02 b
Mn 16.6 ± 1.7 c 116.0 ± 12.0 b 12.8 ± 1.3 c 194.0 ± 19.0 a
Mo 0.13 ± 0.01 c 1.36 ± 0.14 a 1.02 ± 0.10 b 0.95 ± 0.11 b
Se 0.04 ± 0.01 bc 0.34 ± 0.04 a 0.03 ± 0.01 c 0.05 ± 0.01 b
Si 3.29 ± 0.33 bc 23.65 ± 2.37 a 2.80 ± 0.28 c 3.67 ± 0.37 b
Sn 0.010 ± 0.002c 0.050 ± 0.007 b 0.120 ± 0.015 a 0.110 ± 0.013 a
Zn 7.60 ± 0.81 d 30.01 ± 3.01 b 13.82 ± 1.41 c 43.60 ± 4.40 a

Along each line, values with the same letters do not differ statistically according to Duncan’s test at p < 0.05.

Salinity is known to cause ion and osmotic stresses resulting in raising Ca2+ via
activation of Ca2+ channels [42]. Comparison of macroelements content in R. tataricum
and garden rhubarb root revealed twice higher levels of Ca content and 2.4 times higher
levels of Mg in R. tataricum roots. These facts may both be connected to the Ca protection
of plants against salt loading and the existence of Ca/Mg excess in the environment. A
high content of oxalic acid in rhubarb results in Ca precipitation. Thu et al. [43] indicated
that salt-tolerant rice genotypes accumulated several times higher levels of Na in roots
that non-tolerant genotypes, preventing the penetration of this element into leaves. Tester
et al. [44] reported that the most significant plant adaptation to salinity is the ability to
restrict the transportation and accumulation of Na in leaves. High root Mg in salt-tolerant
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varieties may increase the osmotic pressure in the roots, thereby allowing them to absorb
water from saline solutions [45].

High levels of Na, Ca, Mg, Fe in R. tataricum indicate typical characteristics of the
Reserve soil enriched with NaCl, and gypsum [12]. Increased levels of Cr and Sr reflect the
peculiarities of the Reserve environment and the ability of plants to hyperaccumulate Sr
in roots.

Despite the well-known restriction of Na accumulation in soil and the translocation
of this toxic ion to leaves in many plant species tolerant to salinity and drought, Na
leaves/roots distribution in R. tataricum indicates enormous levels of Na concentration in
leaves. The data in Figure 6 indicate that intensive translocation to leaves in R. tataricum is
also typical for such elements as Li, Mo, Se, Si, Sn and Cd. Among them, Mo, Se, and Si are
known to enhance plants tolerance to draught and salinity. Li is the analog of Na, and its
behavior repeats the behavior of Na. Known to be toxic for plants at high concentrations,
Li may stimulate plant growth and the absorption of water by macromolecules at low
concentrations [46]. Thus, intensive translocation of Li to leaves in R. tataricum may be
beneficial in plant tolerance to high salinity.
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Molybdenum involved in ABA synthesis is known to play an important role in tran-
spiration and water absorption, especially in stress-related responses including salinity
and drought [47]. On the other hand, the protection role of Si against drought and salin-
ity has also been documented [48]. The beneficial effects of silicon include regulation of
Na+ uptake, transport, and distribution, improvement of antioxidant defense, root water
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uptake [49] and modulation of various genes expression. Despite low Si content, its signifi-
cant translocation from roots to leaves in R. tataricum seems to be directly connected with
increased proline accumulation in leaves [50]. Furthermore, studies proved that Si and
Se demonstrate synergism in alleviating the toxic effects of salt stress via improvement of
plants antioxidant status and accumulation of osmoprotectants such as proline and soluble
sugar [51]. Selenium may also affect nitrogen accumulation [52] which is in accordance
with the obtained data on elevated levels of nitrates and Se in R. tataricum leaves (Figure 6,
Table 4). It worth mentioning that Se, a powerful natural antioxidant, may provide signifi-
cant antioxidant protection to R. tataricum grown in semi-desert conditions and increased
salinity levels.

In general, compared to garden rhubarb, R. tataricum accumulated significantly higher
levels of Mn, Fe, Co, B, Li, V, Sr, Pb, Cr and Al. Soil mineral composition revealed low levels
of Pb and Cd and high contents of Fe, Sr, and Cr at the territory of Baskunchak Nature
Reserve. According to the data in Table 5, R. tataricum recorded a Sr hyperaccumulation
phenomenon reflected in high coefficient of biological accumulation. reaching 16.

Table 5. R. tataricum coefficients of biological accumulation (CBA) in accordance with the correspon-
dent soil data (mg kg−1 d.w.).

Parameter Soil Total Content
of Elements

Soil Bioavailable Forms
of Elements

R. tataricum
CBA

Soil salinity 4825 ± 450 - -
Fe 284.3 ± 28.0 3.5 ± 0.1 0.66
Mn 47.4 ± 4.0 5.9 ± 0.5 0.35
Pb 0.28 ± 0.02 - 0.92
Cd 0.14 ± 0.01 - 0.42
Cu 4.95 ± 0.50 0.52 ± 0.05 0.40
Zn 10.04 ± 1.00 0.14 ± 0.01 0.85
Sr 10.60 ± 1.00 - 16.23
Cr 7.22 ± 0.70 - 0.16

4. Conclusions

A comparison of the biochemical characteristics and mineral content between R. tataricum
and European garden rhubarb revealed, for the first time, the factors participating in R. tataricum
stress tolerance, with much higher levels of plant antioxidants in the semi-desert conditions of
Bogdinsko-Baskunchak Nature Reserve. These included the accumulation of: polyphenols,
carotenoids and proline in roots; malic acid in stems; more intensive nitrate; and Na, Li, Mo,
Si and Se roots–leaves translocation in R. tataricum compared to garden rhubarb grown in
conditions of low intensity of environmental stresses. Further investigations are needed to
reveal the actual biologically active compounds of R. tataricum and evaluate the chances of its
utilization in plant breeding, medicine, and the food industry.
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