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Abstract: Preterm birth (PTB) is a global health issue and one of the most challenging problems
affecting 12.9 million births worldwide. PTB is a multi-etiological disease and remains incompletely
understood. The major cause of PTB is infection or inflammation and disruption of the vaginal micro-
biome, which affects the maternal immunologic response leading to PTB. The vaginal microbiome
composition changes by a shift in the community are typically dominated by Lactobacillus during
pregnancy. There are complex interactions between the maternal microbiome in pregnancy and the
development of PTB, therefore, researchers have struggled to connect the maternal microbiome with
the dysregulation of the maternal immune response in cases of PTB. The host microbiome affects
alterations of the microorganisms with external stimuli such as disease, nutrition, immunity, and
behavior. In this review, we discuss the complex association between the maternal microbiome and
the risk of PTB and also focus on recent aspects of the prevention of PTB.
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1. Introduction

Preterm birth (PTB) is defined as delivery less than 37 gestational weeks due to
spontaneous onset of labor or preterm premature rupture of membranes (PPROM) [1]. PTB
is a multifactorial disease and is the major cause of mortality and short- and long-term
neonatal morbidity [2]. Many risk factors for PTB have been identified such as maternal
age, low and very high maternal body mass index (BMI), drug use, conception via in vitro
fertilization, a short cervix, previous history of PTB, and inflammation or infection of uterus,
cervix, and placenta. Among them, inflammation or infection is considered to contribute
up to 40% of PTB cases [3]. As well as maternal microbiomes, the measurement of cervical
length (CL) by transvaginal ultrasound at 20–24 weeks of gestation is a useful method
for the prediction of PTB for both singletons and twins [4]. Traditionally, PTB associated
with infection was thought to come from an ascending infection or hematogenous transfer.
During ascending infections, microbes such as Ureaplasma nucleatum, Ureaplasma parvum,
and Candida spp. from the vagina go to the placenta, fetal membranes, and uterine cavity.
In addition, using the standard clinical testing including amniotic fluid culture and PCR
can identify microorganisms such as Ureaplasma urealyticum, Ureaplasma parvum, Bacteroides
ureolyticus, Mycoplasma hominis, Gardnerella vaginalis, and Escherichia coli (E.coli) [5]. Recently,
although rare, chorioamnionitis caused by Serratia marcescens has also been a risk factor
reported [6].

In addition, asymptomatic bacteriuria during pregnancy is a possible risk factor for
PTB. The prevalence of asymptomatic bacteriuria is 2–10% in pregnant women, and the
prevalence is also the same in women who are not pregnant [7]. The common cause of
bacteriuria includes E. coli and group B streptococcus (GBS), but the route of transmission
has not yet been clearly established. Based on recent evidence that the bladder contains a
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very diverse microbiome, the role of the urinary tract in bacterial invasion of the amniotic
cavity will need to be re-studied [8].

Maternal systemic infection and low genital tract infection due to Trichomonas vaginalis
and Chlamydia trachomatis have been known, with increased risk of PTB [9]. The duration
of pregnancy was prolonged among preterm labor patients without Mycoplasma hominis
and Ureaplasma urealyticum, and screening for female genital tract Mycoplasmas during
pre-pregnancy and early pregnancy may decrease the rate of PTB [10]. In addition, when
pregnant women before 16 gestational weeks are diagnosed with bacterial vaginosis (BV),
the risk of late miscarriage or PTB before 34 gestational weeks is increased seven times [11].
Hematogenous infection is when bacteria travel through blood from other parts of the body
to cause the infection, and during pregnancy they travel to the maternal–fetal interface
of the placenta [3]. The cause of PTB can occur by bacteria from the outside, but since
numerous microorganisms are normally present in the human body, we cannot rule out
what is caused by these bacteria [12,13].

Previous studies have uncovered the unique link between the microorganisms present
in the human body and the diversity in various stages of life [2,13]. These studies revealed
that microbiomes are individualized and vary depending on the individual’s niche. In
addition, they found the relationship between the host microbiome and external stimuli
such as diabetes, inflammatory bowel disease, and PTB. The specific microbiome was
investigated for the risk of PTB but other pregnancy-related microbiomes in placenta,
uterus, and blood were not evaluated.

As seen above, the relationship between PTB and microbiomes has been continuously
raised and research is being conducted. It seems that alteration in the vaginal microbiome
interferes with the maternal immune system leading to PTB [14]. In this review, we discuss
the association between the maternal microbiome and the risk of PTB and also focus on
recent aspects of the prevention of PTB.

2. Molecular-Based Approach of Microbial Communities

During last decade, bacteriology was limited to microorganisms that were easily
isolated and that could be cultured outside the human body. However, it is difficult to
isolate microorganisms through culture only due to the complexity of microorganisms.

Recently, molecular-based techniques have been developed without using culture
methods, and information on the various microorganisms in the human body have been
obtained [13]. ‘Microbiota’ defines the total microorganisms in a defined community,
and ‘microbiome’ refers to a combination of the words ‘micro’ and ‘biome’ meaning a
‘characteristic microbial community’ in a reasonably well-defined habitat. Microbiome
defines a microbial community including properties, functions, and interaction with its
environment. The definitions contain the general concepts of microbe–microbe and microbe–
host interactions. The microbiota constitute all living microorganisms including bacteria,
archaea, fungi, algae, and small protists forming the microbiome. The human microbiome
is now even considered to be last organ of humans. In addition, metagenomics refers to
the collection of genomes and genes from the microbiota community and is obtained by
shotgun sequencing for DNA. Metataxonomics is defined as the high-throughput process
used to characterize the entire microbiota and create a metataxonomic tree, which shows
the relationships between all sequences obtained. Microbial research starts with studying
the microbial potential, and then studies the metabolic potential using available genetic
materials. It is evolving toward the study of microbial functions using metabolic pathways
(Table 1).
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Table 1. Development of methods for microbiome research [15].

Microbial Function Methods Description

Cells Microscopy Detection of microbial phenotype and
colonization pattern

Cultoromics Species characterization and
cellular function

DNA Metabarcoding Community composition and
microbial networks

Metagenomics The collection of genomes and genes from
microbiota community

Single cell genomics Cell individuality
RNA Metatranscriptomics Gene expression and active gene function

Protein Metaproteomics Protein expression and metabolic function

Metabolite Metabolomics Metabolite production and
microbial production

3. The Vaginal Microbiome in Normal Pregnancy

The vaginal microbiome plays a very important role in women’s health and disease
development [16]. The vaginal microbiome changes during a woman’s reproductive period
from puberty to menopause, and it also varies a lot within the menstrual cycle [17]. The
human vaginal microbiome is unique compared to the other human microbiomes, and
lactobacilli are dominant for non-pregnant women of reproductive age [18]. Lactobacillus
spp. produce hydrogen peroxide and lactic acid that defend for intrinsic and extrinsic
pathogens [19]. During pregnancy, the vaginal microbiome goes through specific changes
such as unbalanced colonization of Lactobacillus spp. and low bacterial diversity because of
estradiol levels [20]. Ravel et al. [17] investigated characteristics of the bacterial component
of the vaginal microbiome using the first application of next generation sequencing-based
approaches. They collected the vaginal samples from asymptomatic women and described
five distinct vaginal community state types (CST) using hierarchical clustering of relative
abundance data. Four Lactobacillus spp. including Lactobacillus crispatus, L. gasseri, L. iners
or L. jensenii dominate (CST-I, II, III, and V respectively). CST IV depletes lactobacilli and
consists of anaerobic bacteria including Gardnerella, Atopobium, Prevotella, and Sneathia
that are characterized by a highly diverse, polymicrobial community resembling bacterial
vaginosis (BV). CST IV-A includes Peptoniphilus and Prevotella species, and CST IV-B is
characterized by the enrichment of Atopobium and Gardnerella species.

Throughout the pregnancy period, IgG takes a key role in maintaining balance
by neutralizing pathogens and controlling the innate immune system by complement
activation [21]. The uterine immune environment undergoes a proinflammatory state,
known as a Th1 dominant response, during the first and third trimester but changes the
anti-inflammatory state, known as a Th2 dominant shift [2]. In addition, as glycogen
increases after 20 weeks of gestation, the vaginal microbiome changes in the direction of
increasing concentration of Lactobacillus [22]. Vaginal epithelial cells produce glycogen
and it is transformed into lactic acid that induces a low vaginal pH (<4.5), which makes
a favorable environment to inhibit the growth of microorganisms [23]. In uncomplicated
normal pregnancies, the overall microbiomes remain less complex and less diverse, and
more Lactobacillus are dominant than in the non-pregnant status, despite mild fluctua-
tions in the subpopulation [24]. This stability is caused by more stable hormonal levels,
the lack of period, and potential changes in sexual habits during pregnancy [25,26]. The
diversity of the vaginal microbiome is higher during the first trimester than the second
and third trimester of pregnancy due to elevated estrogen levels as the gestational age
progresses [27]. Interestingly, as pregnancy approaches term, the microbiome becomes
more similar to the non-pregnant state [28]. L. iners usually increases in older pregnant
women and, in particular, it has been shown to be more prevalent towards the end
of pregnancy [29]. As we describe, the role of vaginal microbiota is diverse during
pregnancy (Table 2).
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Post-term pregnancies are associated with obstetrical complications compared to term
pregnancies [30]. Judging from the report that PTB is related to the microbiome, it can
be inferred that post-term pregnancies are also linked to the microbiome, but the exact
relationship has not been studied yet; thus, this is an interesting field that needs further
study in the future.

Table 2. Diversity of vaginal microbiota in pregnancy [31].

Species Microbiota Effects of Microbiota

Lactobacillus spp. L. crispatus Protective
L. iners Controversial

L. jensenii Protective
L. gasseri Protective

Bacterial Vaginosis Gardnerella Harmful
Bacteroides Harmful
Mobiluncus Controversial/Harmful
Prevotella Harmful

Anaerobic Microbiota Ureaplasma Harmful
Mycoplasma Harmful

Klebsiella Harmful
Aerobic Microbiota Group B Streptocuccus Controversial/Harmful

Staphylocuccus spp. Controversial
E. coli Controversial

4. Vaginal Microbiome and Preterm Birth

During pregnancy, feto-maternal tolerance regulates the maternal immune response
between anti-inflammatory and proinflammatory states. If this balance is disrupted by
ascending microorganisms, the maternal immune system changes and leads to preterm
labor [2]. It has been observed that the complexity and diversity of the vaginal microbiome
increases with PTB, whereas the vaginal microbiome is less complex and less diverse in
normal pregnancy. As mentioned before, the complement system plays an important role in
normal pregnancy, therefore, complement activation leads to the chemotactic recruitment
of immune cells including macrophage and dendritic cells involving PTB [32]. PTB is also
related to proinflammatory cytokine profiles such as IL-1β, IL-6, macrophage inflammatory
protein (MIP)-1β, and eotaxin [33]. Park et al. [34] investigated the roles of cytokines in the
cervicovaginal fluid as predictive markers of PTB. MIP-1α, MIP-1β, IL-6, IL-7, and IL-17α
in the cervicovaginal fluid were associated with PTB and IL-6, and IL-17α had a higher
sensitivity than the fetal fibronectin test.

Previous studies showed that Lactobacillus iners was associated with an increased
risk of PTB despite the differences depending on ethnicity, whereas Lactobacillus crispatus
showed a protective effect against PTB in all ethnicities [35,36]. In addition, the dominant
population of Lactobacillus iners around 16 gestational weeks was closely related to the
increased risk of shortening of the cervix and PTB before 34 gestational weeks [37]. As well
as Lactobacillus spp., bacterial vaginosis-associated bacteria including Gardnerella vaginalis,
Atopobium vaginae, and Veillonellaceae bacterium were associated with an increased risk of
PTB before 34 gestational weeks [33]. Son et al. [38] investigated the comparisons of
obstetrical outcomes according to the vaginal microbiota grouped by trimester. Abnormal
vaginal microbiota, especially the presence of Klebsiella pneumonia, in the 2nd trimester was
associated with a significant increase in PTB before 28 weeks.

Results of recent studies between the vaginal microbiome and PTB are presented in
Table 3. Molecular-based new technologies have been applied to take advantage of the
new information about the role of the vaginal microbiota in spontaneous labor and PTB.
However, the current evidence is still limited, and clinical data have poor quality and
results are controversial. Recently, most of the studies have demonstrated an association
between the composition of the vaginal microbiota and PTB (Table 3). The more recently
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published studies provide evidence of an association between a dysbiotic microbiota
and PTB, especially the role of L. iners in vaginal eubiosis and dysbiosis.

Table 3. Recent studies between Vaginal Microbiome and Preterm Birth.

Condition Studied Summary

2019 Fettweis et al. [33] 45 preterm and 90 term birth
controls

Preterm-delivered women had
significantly lower vaginal levels of

Lactobacillus crispatus and higher
levels of Sneathia amnii, and Prevotella

species.

2018 Freitas et al. [24] 46 preterm and 170 term
birth controls

The preterm-delivered women had
increased richness and diversity and

higher Mycoplasma or Ureaplasma
prevalence.

2017 Callahan et al.
[39]

Low risk for PTB:
predominantly Caucasian
(n = 39) high-risk for PTB:

predominantly African
American (n = 96)

Lactobacillus crispatus was related to
low risk of PTB, while Lactobacillus
iners and Gardnerella vaginalis had

association with PTB.

2017 Stafford et al. [40]
No preterm labor group

(n = 121), preterm labor group
(n = 41)

The microbiome of women who
experienced PTB showed 2-fold lower

community state type (CST)
I-dominated microbiota at 20–22

weeks. CST V was 2-fold higher in
the preterm-delivered women

compared to term-delivered women.

2017 Stout et al. [41] Nested case-control study,
24 cases and 53 controls

The vaginal microbiome
demonstrated decreased vaginal

richness and Shannon diversity in
preterm delivery.

2016 Nelson et al. [42]
Nulliparous African American

women, 13 preterm and
27 term birth controls

Decreased bacterial diversity with
lower abundance of Coriobacteriaceae,

Sneathia, Prevotella, and Aerococcus
were found in preterm delivery.

2014 Romero et al. [43] Nested case-control study,
18 cases and 72 controls

As pregnancy progressed, four
Lactobacillus spp. were increased and

anaerobic microbiomes were
decreased.

About one-third of PTB are preceded by preterm premature rupture of membranes
(PPROM) [44]. The cause of PPROM seems to be ascending microorganisms, and the
rupture of membranes also can become the entrance of ascending microbes, so infection
can be both a cause and a result of PPROM. Ascending pathogens trigger inflammation
pathways, leading to the development of chorioamnionitis and funisitis [45]. A few
studies have investigated the relationship between vaginal microbiota and the risk of
PPROM [46,47]. One study showed that vaginal microorganisms collected from normal
pregnant women were characterized by Lactobacillus spp. dominance and low diversity,
whereas about half of the pregnant women who subsequently experienced PPROM had
intermediate or low Lactobacillus spp. dominance and high diversity [47]. In another
prospective cohort study, the authors reported that reduced Lactobacillus spp. abundance
and high diversity were shown in about 25% of pregnant women prior to PPROM, but
only 3% of women delivered the baby at term without the rupture of membranes [48].
PPROM was associated with changes in the microbiome during pregnancy and a shift
toward higher diversity, predominantly occurring during the second trimester, although
a vaginal microbiota dominated with any bacterial species rather than Lactobacillus
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was related to subsequent PPROM throughout all of the pregnancy period including
during the first trimester [46]. This study also found that the first trimester miscarriage
associated with a Lactobacillus spp-depleted vaginal microbiome and women who had
the risk of miscarriage in the first trimester had a 2-fold increased risk of PTB and 3-fold
increased risk of PPROM [49]. This study showed the potential relationship between
miscarriage and PPROM and the first trimester microbiome.

5. Endometrial Microbiome in Preterm Birth

The endometrium is the important site where the blastocyst is implanted during
pregnancy and is a crucial place, not only for supporting fetal growth by supplying oxygen
and nutrients but also for preventing infections to protect the embryo and fetus [50].
During the implantation period, the endometrium undergoes significant morphologic
and functional change, which is followed by decidualization, and many immune cells’
compositions are altered. The endometrium is not a sterile tissue, and microorganisms
at the endometrium interact with the endometrial epithelium and modify immune cell
expression and cytokines. This change can affect endometrial receptivity and may impair
adequate implantation [51].

As well as implantation, modification of the endometrial immune system during preg-
nancy has been related to adverse pregnancy outcomes including miscarriage, preeclampsia
(PE), FGR, and PTB [52]. A previous study reported a relationship between reduced levels
of Lactobacillus species in the endometrial microbiota and adverse pregnancy outcome [53].
Interestingly, the endometrial bacterial population was different from the bacterial com-
position of the vagina but was similar with that of the cervix regarding bacterial load and
composition. To date, the role of endometrial microbiota in pregnancy outcomes is not fully
understood and much remains to be investigated.

6. Oral-Placental Microbiome in Preterm Birth

The tolerogenic maternal immune response is the most important factor for a healthy
pregnancy. Interruption of this state leads to maternal anti-fetal rejection, placental damage,
and obstetric complications such as FGR and PTB. The cause of this allograft rejection is
either a cellular (T cell) or humoral (antibody) immune response, and severe rejection leads
to fetal death akin to graft failure in organ transplantation. The fetal systemic inflammatory
is similar to allograft rejection despite the absence of pathogens [54].

The possibility that the microbiome is present in the placental site was suggested [55].
The presence of fetal genital tract microbes colonization in the placenta or amniotic mem-
branes has been thought to result in subclinical infection and a concomitant initiation of
labor [56]. It is well known that ascending microbes from the vagina such as Ureaplasma,
Mycoplasma, and GBS species have been related to placental colonization, chorioamnionitis,
and PTB. Moreover, oral cavity microbes including Streptococcus and Fusobacterium spp.
are known to contribute to the placental microbiome through hematogenous transfer [57].
Harboring bacteria were found in the placentas from term pregnant women who delivered
by sterile cesarean section without infection sign and the amniotic fluid from women who
had intact membranes [58]. A previous study reported that the placental microbiome
from the vaginal and oral microbiomes was identified at the time of delivery using 16S
ribosomal RNA gene sequencing analysis. An increased Fusobacterium nucleatum, Gemella
asaccharolytica, and Ureaplasma spp. was found in the fetal membranes, and this is asso-
ciated with shorter gestation and PTB [59]. A placental microbiome that is similar to the
oral cavity, the tonsils and tongue, including Firmicutes, Tenericutes, and Fusobacteria, was
found in placentas that were previously undetectable in the microbiome using 16S rRNA
sequencing [56].
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Even though common oral pathogens were identified in the placenta of women with
periodontal disease, which is related to increased risk of PTB, it is not clear if the manage-
ment of periodontal disease during pregnancy decreased PTB [60]. There is insufficient
information to determine whether periodontal management can prevent preterm birth.
Many studies have been performed to reveal the relationship between the existence of an
oral-placental microbiome and adverse pregnancy outcomes, but this research area is still
controversial.

7. Gut Microbiome and Adverse Pregnancy Outcomes

The gastrointestinal tract has the largest surface area in the body, and it is exposed to a
diverse microbiome including bacteria, fungi, protozoa, viruses, and archaea. The most
abundant bacteria in the human gastrointestinal tract is Bacteroidetes, occupying 70%–90%
of the total gastrointestinal tract bacteria [61]. In addition to this, there are Firmicutes,
Actinobacteria, and Proteobacteria, and about 1000 species of microorganism have diverse
physiological roles to regulate immune homeostasis. Many studies have been performed
about the gut microbiome in gastrointestinal diseases such as inflammatory bowel diseases,
including ulcerative colitis and Crohn’s disease.

During pregnancy, the maternal metabolic system shifts to increased gluconeogenesis,
lipolysis, and insulin resistance for the growing fetus because maternal food intake and fat
deposition increase as gestational age advances. Therefore, the maternal gut microbiome
changes significantly during pregnancy. Previous studies investigated changes in the
gut microbiome at the serial time points throughout pregnancy, and the composition
of bacterial communities remained relatively stable during pregnancy. [61,62]. The gut
microbiota in the first trimester of pregnancy is almost the same as the microbiota of healthy
non-pregnant women. There are three different classes or enterotypes of gut microbiota
in pregnancy: Enterotype I is dominated by Bacteroides; enterotype II is characterized
by Prevotella; enterotype III is characterized by Ruminococcus. The three enterotypes are
different depending on the diet and BMI of the individual and have different functions,
metabolizing carbohydrates and proteins. Enterotype II clusters involved in lipid synthesis
increase in vegetarian women, on the other hand, abundant enterotype I is associated
with women who have rich animal protein and lipids [63]. For overweight and obese
pregnant women, having abnormal insulin and adipokines levels, leads to alterations
in bacterial abundance. There is an association between the microbiota and the level
of metabolic hormones and cytokines during pregnancy. During normal placentation,
uterine natural killer cells that are the most abundant immune cell type within the decidua
have an important role for trophoblast invasiveness. However, obese pregnant women
have reduced levels of decidual uterine natural killer cells and decreased proangiogenic
factors [64]. Obesity is associated with increased proinflammatory cytokines including T
cells, B cells, macrophages, neutrophil, and mast cells.

A previous study showed that the alterations in the gut microbiota during early
pregnancy are related to an increased risk of hypertension and gestational diabetes
mellitus (GDM) [65,66]. In particular, Ruminococcus and Blautia species are enriched in
pregnant women with GDM. Another study showed that changes in the gut microbiota
are associated with early-onset PE, and the composition of gut microbiota with early-
onset PE patients are significantly different from healthy pregnant women [67]. They
also investigated that gut microbiota related to PE were associated with obesity, glucose
metabolic disease, intestinal disorder, and proinflammatory states such as interleukin-
6 and lipopolysaccharide (LPS). Tersigni et al. [68] evaluated that increased bacterial
translocation across the epithelium in early pregnancy is related to increased maternal
levels of LPS, proinflammatory cytokines at the endometrial level, leading to increased
risk of pregnancy loss.
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In order to maintain a stable pregnancy, it is important to maintain an anti-inflammatory
state, but it is converted to an inflammatory state for parturition in the third trimester of
pregnancy. Premature and unfavorable changes in the diversity and composition of the
gut microbiota result in inflammatory status and lead to spontaneous preterm labor [69].
Moreover, it is possible for microbial seeding between the vagina and gut because there are
anatomical links between the lower intestinal tract and the lower reproductive tract.

A recent study compared postpartum fecal samples of preterm birth women and term
birth women, and they revealed decreased α-diversity and reduction in operational taxo-
nomic unit abundances of the Bifidobacterium and Streptococcus species [70]. Bifidobacterium
inhibits LPS-induced NF-κB activation, IL-8, and COX-2 levels in vitro, thus, decreased
Bifidobacterium could be the cause of inflammatory-induced preterm labor. As we have
reviewed, the increased intestinal permeability of gut microbiota is associated with the
increased risk of obstetric complications.

8. Microbiomes. The Prevention of the PTB

There is evidence to show the relationship between maternal microbiome profiles
and increased risk of PTB, therefore, a large number of studies have investigated the effec-
tiveness of antibiotics for the treatment and prevention of PTB. The maternal microbiome
including the vaginal, oral-placenta, and gut microbiomes can play important roles in
causing preterm birth (Figure 1).
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The target of treatment for pregnant women was usually BV and the results were
inconsistent [71,72]. The double blinded PREMEVA trial was conducted to evaluate the
effect of oral clindamycin in early pregnancy to prevent late miscarriage (16–21 weeks of
gestation) or spontaneous early PTB (22–32 weeks of gestation). There was no difference
between the treatment and the placebo group [73]. However, another study showed
that screening and treating BV in pregnant women with previous history of PTB is still
effective in preventing PTB [71]. The use of certain antibiotics such as metronidazole may
cause bacterial lysis and the release of endotoxins [74], and these are strong stimulators
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of inflammation and may enhance the inflammatory phenotype [75]. In addition, some
antibiotics may be effective against Lactobacillus but not against microorganisms associated
with BV, which was commonly found in antibiotic resistance genes [76].

Antibiotic treatment to ameliorate PTB could fail for women with abnormal vaginal
microbes, positive fetal fibronectin, or previous PTB history, and it has raised interest in
the positive regulation of vaginal microbiomes using probiotics or live bio-therapeutic
products. Several studies have been conducted to reveal the effectiveness of probiotics
to prevent PTB. Probiotics may be taken orally or, less commonly, vaginally. One study
found that oral probiotic use in pregnancy did not decrease the risk of PTB [77], but an
observational study revealed that probiotic milk intake in early pregnancy, not mid to
late pregnancy, was related to reduce the risk of PTB [78]. Recent randomized controlled
studies have reported that oral probiotics do not affect the vaginal microbiome during
pregnancy [79,80].

Increased concentration of folic acid has been found in the placenta of PTB women
without excess gestational weight gain [81]. One study showed that folic acid consumption
started after the first and second trimester is related to an increase in the risk of PTB [82],
but another study found folic acid supplementation slightly reduces the risk of PTB [83].

9. Conclusions

The human microbiome plays an important role in female health and the pregnancy
period. Dysbiosis of the vaginal, placental, or oral microbiomes are important triggers of
infection and inflammation, and treatments could be used to modulate the composition
of the microbiomes. Maternal microbiomes seem to be associated with the risk of PTB by
modulating the maternal immune response. Among the maternal microbiomes, the vaginal
microbiome has the strongest relationship with PTB. Other risk factors including genetic
and anatomical factors cannot be modified but interventions for the maternal microbiomes
could potentially decrease the risk of PTB. Understanding the complicated mechanisms
and relationships between protective and harmful microorganisms could potentially help
us to prevent and predict PTB.
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