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Abstract: The COVID-19 epidemic started in Libya in March 2020 and rapidly spread. To shed
some light on the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) strains circulating
in Libya, viruses isolated from 10 patients in this country were sequenced, characterized at the
genomic level, and compared to genomes isolated in other parts of the world. As nine genomes out
of 10 belonged to the SS1 cluster and one to SS4, three datasets were built. One included only African
strains and the other two contained internationally representative SS1 and SS4 genomes. Genomic
analysis showed that the Libyan strains have some peculiar features in addition to those reported in
other world regions. Considering the countries in which the strains are genetically more similar to
the Libyan strains, SARS-CoV-2 could have entered Libya from a North African country (possibly
Egypt), sub-Saharan Africa (e.g., Ghana, Mali, Nigeria), the Middle East (e.g., Saudi Arabia), or Asia
(India, Bangladesh).

Keywords: SARS-CoV2; SNP (single-nucleotite polymorphism) analysis; molecular epidemiology;
Africa; Libya

1. Introduction

On 31 December 2019, an outbreak of atypical pneumonia cases was reported in
Wauhan, in Hubei province of China, but the causative agent was not identified or confirmed
until 9 February 2020 [1]. Once identified, the agent was named SARS-CoV-2 (severe
acute respiratory syndrome coronavirus-2), and the human disease it causes was named
COVID-19 [2,3]. By 24 March, when the first case of COVID-19 was diagnosed in Libya,
the disease had already spread to 194 countries, with a total of 372,755 reported cases
(https:/ /www.who.int (accessed on 4 January 2021)).

The spread of COVID-19 in Libya came late. This could be attributed to several factors.
First, most people live in single-family houses. Second, according to the Bureau of Statistics
and Census in Libya, 68% of the population is aged 15-54 years and only 5% of Libyans
are older than 65 years. The Libyan government took very early precautionary measures.
In early March, the Ministry of Education adjourned all schools and universities. On
16 March, all borders, airports, and seaports were closed to avoid entry of infections from
abroad. Mosques were ordered to shut down, and all social congregations were banned.
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On 20 March, a curfew was imposed from 6:00 p.m. to 6:00 a.m., and only grocery stores
and pharmacies were kept open during the day.

In spite of those early measures, the first case of coronavirus was reported on 24 March,
a pilgrim returning from Saudi Arabia via Tunisia. The infection curve rose slowly, reaching
only 75 cases by 24 May [4]. However, after that, the number of daily reported cases
increased significantly, and, by 28 July, there were 3017 cases, with 579 recoveries and
67 reported deaths. Moreover, in the beginning of the infection spread, the infections
were located mainly in the coastal areas and limited to the cities of Tripoli, Misurata, and
Benghazi. However, in the last 2 months, it has involved more than 40 cities and towns,
and, during those months, the city of Sabha in the south became the main focus of the
infection nationwide.

Several published studies on the evolution of the virus, even during the short time
after its appearance, have examined the genomic mutations in order to determine the path
of COVID-19 diffusion in the various world regions [5-16]. In late February, the lineages
characterized by specific mutations were related to particular geographical distributions
and were designated as A, B, and C. Lineage A corresponds to the ancestral genome,
lineage B remained predominant in China, and lineages C and A were transmitted outside
China [8]. Then, on the basis of a larger number of publicly shared sequenced genomes,
four distinct viral clusters exhibiting high potential to undergo global transmission were
identified [16]. The four clusters were defined as super-spreader clusters 1 (SS1), 2 (SS2),
3 (S53), and 4 (S54). These are recognizable by the following specific signature mutations:
SS1 (C8782T and T28144C), SS2 (G26144T), SS3 (G11083T), and SS4 (C241T, C3037T and
A23403G). The SS clusters identified by Yang and colleagues [16] partially fit the lineages
of Forster and colleagues [8]. Lineages B and C correspond to SS1 and SS2, respectively.
The SS1 genomes were transmitted mainly in Asian countries (China, Vietnam, Japan,
South Korea, Taiwan, and Singapore) but were also detected in North America, especially
in California and Washington. SS2 was disseminated in various Asian countries, North
America (United States of America (USA)), Europe, South America (Brazil), and Australia.
SS3 was transmitted to several Asian countries, including Singapore and Japan, as well
as Europe, USA, and Australia. 554 was transmitted mainly to Europe, where it was
responsible for the explosive increase in COVID-19 incidence in March. The first genome
of this cluster was reported in Germany in late January, where the majority of S54 strains
had acquired a fourth mutation, C14408T. To explain the rapid and massive expansion of
cluster SS4, mutation A23403G, which causes the D614G substitution in the S protein, was
hypothesized to enhance virus fitness [17].

2. Materials and Methods
2.1. Patients, Samples, and Whole-Genome Sequencing

Fifty-seven nasopharyngeal /oropharyngeal swabs found to be PCR-positive for SARS-
CoV-2 at the Libyan National Center of Disease Control were sent to the Scientific Depart-
ment of the Army Medical Center in Rome, Italy (AMC) for whole-genome sequencing.
Viral RNA was extracted from 125 puL of each swab sample by using the RNeasy Mini Kit
(Qiagen, Hilden, Germany) and eluted in 18 pL of nuclease-free water. To confirm the
positivity of the samples, RT-PCR was repeated by AMC using the Novel Coronavirus
(2019-nCoV) Nucleic Acid Diagnostic Kit (Sansure Biotech Inc., Changsha, China) on an
LC480 instrument (Roche Diagnostics, Mannheim, Germany). To optimize the sequencing
procedures, 10 samples were selected according to the viral titer estimated from the RT-PCR
cycle threshold (Ct range 16-25) and their geographical origin in Libya (Table 1).
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Table 1. Samples analyzed in this study; ? cycle threshold for N gene; b cycle threshold for ORF gene. M, male; F, female;
ND, not determined.

NLI;:‘?;?Lg Sample Gender Age Origin Date Ct N Gene ? ((j;teggf SCGCI;]:;I;I:‘ Coverage
Number
2068 10,230 M 54 Tripoli 13 June 2020 24 25 MW018433 10x
2084 7700 F 50 Tripoli 04 June 2020 18 20 MW018435 2738
2093 12,156 F 35 Tripoli 19 June 2020 19 20 MW018429 4017%
2095 11,040 F 40 Tripoli 15 June 2020 19 21 MW018431 964 x
2101 75 ND ND Sabha ND 22 23 MW018437 143 x
2103 449 ND ND Sabha ND 19 20 MW018436 12x
2115 12,371 M 47 Tripoli ND 25 25 MW018428 43x
2117 958 M 4 Tripoli ND 21 21 MW018434 557 x
2119 11,106 M 32 Kabaw 15 June 2020 26 28 MW018430 11x
2123 10,298 M 47 Tripoli 13 June 2020 20 23 MW018432 1779 %

Genomic RNA was reverse-transcribed using the SuperScript III Reverse Transcriptase
kit (Invitrogen, Carlsbad, CA, USA). Double-stranded DNA was subsequently synthesized
by using the Klenow enzyme (Roche, Basel, Switzerland) according to the manufacturer’s
instructions. The Nextera XT kit was used for library preparations, and whole-genome
sequencing was performed using the Illumina Miseq V3 flow cell (2 x 150 cycles) on a
MiSeq sequencer following the manufacturer’s instructions (Illumina, San Diego, CA, US).
The reads were trimmed for quality (gscore = 20) and minimum length (100 bps) using the
BBDuk trimmer integrated in Geneious Prime [18] (http:/ /www.geneious.com (accessed
on 4 January 2021)). High-quality reads were assembled by mapping to the reference
genome Wuhan-hu-1 (GenBank accession number: NC_045512.2) with the bowtie2 map-
ping algorithm also integrated in Geneious Prime. All 10 viral genomes were deposited in
Genbank (Table 1).

All the data in this study were anonymized by deleting all sensitive information.
According to the Italian Data Protection Code (Legislative Decree of 30 June 2003, n. 196 ),
this made it unnecessary to obtain ethics approval (Legislative Decree of 24 June 2003, n.
211—article 6).

2.2. SNV Analysis

SNVs (single-nucleotide variants) of each sequenced genome were obtained by ap-
plying the Find Variation/SNPs tool, a Geneious Prime feature, to the read mappings,
using a minimum variant frequency of 0.85. The resulting information was integrated with
amino-acid translation (Figure 1).

A set of ad hoc scripts (available on demand), written in python language and working
in pipeline, was created to identify the genomes in the GISAID (global initiative on sharing
all influenza data—https:/ /www.gisaid.org (accessed on 4 January 2021)) database carry-
ing the same mutations of the new sequenced genomes. The examined part of the GISAID
database consisted of 48,782 sequences comprising all those submitted until 29 July 2020
with a collection date until 30 June 2020 that passed the filters “complete”, “high coverage”,
and “low coverage exclusion”. They are available for download from the GISAID site. For
analysis, the sequences were divided in groups of no more than 3000 members, and each
group was aligned with the same reference (Wuhan-hu-1, NC_045512.2) using MAFFT
(multiple alignment using fast Fourier transform) v7.453 with strategy FFT-NS-1 [19]. From
the resulting alignments, a script determined the mutation profile of each genome, using a
uniform code related to the positions of the reference sequence. A second script compared
a query SNV profile with the created SNV profile database, identifying the genomes with
mutations common to the query.


http://www.geneious.com
https://www.gisaid.org
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Nspdb. ‘Nsps.
protein w popts | Nepz_s0sr2719 Nsp3_2720/8554 s?s‘sr‘ Nsp6_10973/11842 20021 Nsp12_13442/16236 Nsp14_18040/19620 Nsp15_19621/20658
mautation 10054 12685
position 241 361 939 | 1943 | 3037 | 5359 | 6337 | 8097 | 8327 | 8420 | 8782 | 11083 | 11575 | 12223 | 13629 | 13960 | 14218 | 14408 |15407| 18877 | 19086 | 19955 | 20339 | 20340 | 20341
ancestral allele C A A | C C T G C C A C G C G C G | T cTlT¢c C | ¢ C T T A
mutate allele T: G G | T T c T 71T 1TT1T 71T ¢ T T 1 T T T [ AT 7T T 1T T | I T | del | del | del
locus/gene 5 UTR ORF1ab
CDS position 96 674 1678 | 2772 | 5094 | 6072 | 7832 | 8062 | 8155 | 8517 | 10818 | 11310 | 11958 | 13365 | 13696 | 13954 | 14144 | 15143 18613 18822 | 19691 | 20075 | 20076 | 20077
Protein effect None | k>R | R>C | None | None | None | T->1 | L->F | M>v | None | L->F | None | None | None | v=>i | D>y | P>L [a>v None K>N| T>1 | del del del
Codon Number. 32 225 560 924 | 1698 | 2024 | 2612 | 2688 | 2719 | 2839 | 3606 | 3770 | 3986 | 4455 | 4566 | 4652 | 4715 | 5047 6204 6274 | 6564
Sample Tsolation loc.
10230 RIPOLIT T G il T T T i3 il
958 RIPOLI T
7700 RIPOLI T T A T
75 ABHA del del del
) ABHA
T106 CABAW N
2156 POL| G T
1040 OL|
0298 TRIPO) G
2371 0
protein w S_21563/25384 ORF3_25393/26220 E-z'g?,;‘"’ "ﬁfgf” ORF6_27202/27387 (2’:12747 g;‘;;ﬁ N_28274/29533 °RF;25335W
mutation 27887 | 28250
position 22444 | 22459 | 22468 | 23403 | 23539 | 25249 | 25563 | 25593 | 25641 | 26461 | 26735 | 27208 27384 | 27863 | 28144 | 28854 | 28878 [29449| 29642 | 29742 | 29757
ancestral allele C A G A A G G G G c C C G T T T C G G C G G
mutate allele T 1 7 1T 7 1T ¢ [ T 1 T T_L T ] °F T 2[: T ] T ] ¢C C C T I A 1T T A T
locus/gene ORF3a E M ORF 6 ORF7b | ORF8 N ORF10
CDS position 882 897 906 | 1841 | 1977 | 3667 171 201 249 217 213 7 181 183 108 251 581 605 | 1176 85
Protein effect None | None | None | D->G | None | M1 | @>H | KN | L>F | L>F | None | H>v | D>y | None | None | L>s | s>i | s>N | None | TRUNCATION
Codon Number. 294 299 302 614 659 | 1229 57 67 83 72 71 3 61 61 36 84 193 201 | 392
Sample isolation loc.
10230 TRIPOL] T T G T a8 N T T T
958 RIPO] T C
7700 TRIPOI T T T C
75 SABHA
449 SABHA
1106 ABAW T:
215 1POL C
104 1POL C
029: TRIPC c
237 TPC C

Figure 1. Sample single-nucleotide variants (SNVs) and AA changes. Colors: blue = super-spreader 1 (SS1) signature
mutations; green = recurrent mutations in SS1 genomes; yellow = 554 signature mutations; orange = SS3 signature mutations.

2.3. Phylogenetic Analysis

In silico phylogenetic analysis was performed on the newly sequenced Libyan viral
genomes against three different genome datasets retrieved from GISAID until 30 June 2020.
The first was related to the African high-coverage Sars-CoV-2 complete genomes, while the
second and third consisted of international genomes coming from all five continents and
representative of SS1 and SS54 clusters.

Raw datasets were aligned to the reference genome NC_045512.2 by using MAFFT
v7.453 with default settings [19]. Then, to obtain a higher-quality dataset, the flanking re-
gions of the aligned sequences were trimmed to the consensus range of 54 bps to 29,783 bps
according to the reference sequence. Moreover, sequences containing >0.1% of N were
detected with an ad hoc script (available on demand) and removed from the dataset. The
final high-quality datasets consisted of 501 sequences (first dataset), 84 sequences (second
dataset), and 98 sequences (third dataset). All the phylogenetic trees were calculated with
PhyML v3.0 [20] (http:/ /www.atgc-montpellier.fr/phyml/ (accessed on 4 January 2021))
on the basis of the maximum likelihood principle, with AIC (Akaike information criterion)
as the substitution model [21,22], and with 200 bootstraps as the branch support test. The
accession numbers of the Libyan genomes are reported in Table 1; those of all analyzed
genomes are shown in dendrograms of Figures 2—4.


http://www.atgc-montpellier.fr/phyml/

Microbiol. Res. 2021, 12 142

A e S R S

0.00005]
o,
% o o
"0ty o Py, S, . NN
N oot W
- e
eSS 0 -
- SEEeaae e
S o e D A i o SO -
A L Y = Wﬁ\
SREEReSE e ey e e
=~ ﬁ el S rad %
SR e e e
s, CR e -
"Dl S s R Ry o
S S s e
e e
A e e
oA e s 4
e B s —r—Y
- — T tEp! 5t 481092020010
- AR S e mor s
e TR A s ot et L sz cr,
oot i ;swdmi,; e & e
2R oo e e e L
reov oA e e e S
- e A e
m s S0z o L 560a
e il
s air

Setns
S SO
e e e
e SR S

ISP ol G TS L S S
st R T T
sl ‘&ng,,;%'f:'“'“

ey

a5 S

o S oy e S S
wﬂ“wﬁﬁﬂmﬁ A

s

P R A A S

s e

S,

P

e ey

Figure 2. Dendrogram comparing the Libyan new sequenced genomes (marked by a dot) with a selection of representative
African strains. The SNVs characterizing the main groups are shown as group names. The notation “ABS position” in
brackets, adjacent to the name of a sample, means that the sample lacks the mutation in that position, albeit inserted in a
group depicted as containing that mutation. Note that 554 refers to the evolved 554 comprising also the mutation C14408T,
unless indicated otherwise. The asterisks indicate the supported clusters (bootstrap value >60%).
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Figure 3. Dendrogram comparing the Libyan new sequenced genomes (marked by a dot) with international SS1 strains.

The SNVs characterizing the main groups are shown as group names. The notation “ABS position” in brackets, adjacent
to the name of a sample, means that the sample lacks the mutation in that position, albeit inserted in a group depicted as
containing that mutation. The asterisks indicate the supported clusters (bootstrap value >60%).
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3. Results and Discussion
3.1. SNV Analysis

To investigate the genetic diversity of SARS-CoV-2 in Libya, the 10 genomes isolated
from Libyan patients living in different regions were sequenced and analyzed. Seven
of these were from Tripoli, one was from Kabaw in the northwest, and two were from
Sabha in the south. Genome analysis was performed relative to the Wuhan-Hu-1 reference
sequence (NC_045512.2). The mutational profiles were classified following the genetic
cluster scheme, suggested by Yang and colleagues, consisting of four clusters (S51-554) [16].
The resulting genomic SNVs and the corresponding amino-acid positions and variations
inside the proteins are shown in Figure 1. Due to their unique features, two samples (10,230
and 11,106) were included in this analysis although they had N percentage >0.1%: genome
10,230 was the only one belonging to the 554 cluster and 11,106 was the only one isolated
in Kabaw. The mutational analysis revealed 47 SNVs, of which 20 were silent mutations
(synonymous), 23 were missense, three were deletions (20339delTTA20441), and one is
a stop codon in ORF (open reading frame) 10. The ratio between synonymous and non-
synonymous mutations was 1:1.77 across the entire set of Libyan genomes. Furthermore,
30 SNVs were found only once (63.8%), 10 were recurrent (21.3%), and seven were SS
signature mutations.

During the mutational analysis, we found that nine genomes belonged to the SS1
group (signature mutations C8782T and T28144C) and one (10230, from Tripoli) belonged
to SS4. This genome had the S54 signature mutations (C241T, C3037T, A23403G) plus
C14408T, as well as 11 other SNVs, of which six were missense, five produced an AA
(amino acid) substitution in ORFlab protein (K225R, T26121, K6274N), one was in ORF3a
(Q57H), one was in ORF6 (D61Y), and one was in N (S193L).

All nine SS1 Libyan strains were characterized by a haplotype consisting of the
mutations G22468T, G28878A, and G29742A. Moreover, all SS1 strains except 958 also
shared five other mutations; among them, A361G was the most relevant in the comparison
with genomes originating in other regions, as explained below (Figure 3).

One of the SS1 genomes (7700) was different from all the others in this group. Although
sharing with them 10 SNVs, it also had the SS3 mutation G11083T, a stop codon on ORF10
(K85StopCodon), and an AA mutation on E (L72F).

Moreover, the S51 genomes also showed sporadic SNVs, some of them resulting in
AA changes.

Two genomes coming from Sabha had the same SNV profile; however, in one of them
(genome 75), there was a deletion of three nucleotides (20339delTTA20441). This deletion
was reported in two other genomes coming from the Netherlands (EPI_ISL_455224) and the
United States (EPI_ISL_485840). As these genomes did not share any other mutations with
the Libyan genome 75, it seems likely that these deletions occurred independently. Mutation
20339delTTA20441 resulted in an amino-acid loss (phenylalanine) and the replacement of a
serine (polar) with a cysteine (nonpolar).

We searched for mutational profiles resembling those in the Libyan genomes within a
large section of the GISAID database. The search covered 48,782 sequences corresponding
to those submitted until 29 July 2020, with a collection date until 30 June 2020, and passing
the quality filters available in the GISAID site.

The SS1 Libyan genome haplotype (G22468T, G28878A, G29742A plus the SS1 sig-
nature mutations) was found in 80 genomes. The subgroup most similar to the 554
Libyans (eight out of nine) was constituted by 16 genomes that also contained the mutation
A361G, prevalently originating from African countries (Egypt, Benin, Mali, Ghana, Nige-
ria), four from Belgium (but isolated from a patient who had recently traveled to Niger:
EPI_ISL_487433-36), and three from USA. Of all those, the genome with the earliest isolation
date was EPI_ISL_424907 from USA (06 March 2020), followed by EPI_ISL_419713 from
USA (11 March 2020) and EPI_ISL_422402 from Ghana (30 March 2020); no genome showed
the basic mutational state (no mutations outside of the six characterizing the whole group),
but the genomes with the lowest number of mutations (seven) were the aforementioned
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three genomes with the earliest isolation date and the two genomes originating from Benin
and Egypt. The remaining 66 genomes, those lacking the mutation A361G, came from India
(29), Saudi Arabia (18), Bangladesh (five), Australia (one), Nigeria (four), Egypt (two), Mali
(two), and Russia (two). The earliest isolated genomes were EPI_ISL._469243 from Saudi
Arabia (15 March 2020) and EPI_ISL_420077 from Senegal (20 March 2020), while there
were five genomes with the basic SNV: three from Saudi Arabia and two from Russia.

The most similar genome to 10,230, the only 554 Libyan sample, originated from India
(EPI_ISL_461484, isolated on 27 May 2020) and shared 10 mutations with 10,230: the four
554 signature mutations plus C18877T, G19086T, C22444T, G25563T, C26735T and C28854T.
A total of 200 sequences showed a similarity of nine mutations (those mentioned, except
for G19086T), which originated mainly from Asian countries (India (144), Bangladesh (15),
Oman (10), and Saudi Arabia (nine)) and more rarely from other countries (Ireland (nine),
Australia (three), and Egypt (three)). Of these, the genomes with the earliest isolation dates
were EPI_ISL_490003 (16 February 2020) and EPI_ISL._490004 (17 February 2020), both
from Saudi Arabia, while there were eight genomes with the basic nine SNVs: five from
India, two from Saudi Arabia, and one from the Netherlands.

3.2. Phylogenetic Analysis

To obtain a more comprehensive representation of the genetic diversity of the SARS-
CoV-2 isolates included in this study, four phylogenetic trees were constructed. The first
(Figure 2) compares the Libyan genomes to other African samples (501). The second and
the third make comparisons with the SS1 (84; Figure 3) and S54 (98; Figure 4) international
strains, respectively. SS4 was the SS cluster gathering most African strains (445 out of
511; 87%), followed by SS1 (45; 9%) and SS2 (8; 1.6%) (Figure 2). Cluster SS1 was found
in countries in the northern, southern, and central parts of the continent. All the African
SS1 strains but one (EPI_ISL_418216 from Senegal) also carried mutations G28878A and
G29742A. A subgroup of SS1 (26 samples) also contained G22468T in addition to the
aforementioned mutations. Within this subgroup, 15 sequences also had mutation A361G,
including seven Libyan sequences (however, in sample 11,106, no base could be confirmed
in this position) and the other eight from Egypt, Nigeria, Mali, Benin, and Tunisia. One
Libyan strain had G22468T but not A361G, while the 10 sequences with the same mutational
profile originated in Nigeria (four), Senegal, Mali, and Egypt (Figure 2).

The 554 genomes are ubiquitous in Africa. Almost all 554 African strains analyzed
here contained the C14408T SNV, which characterizes also the majority of S54 strains in
Europe [14]. Subclusters within 554 were distinguished by the main additional muta-
tions: the three subsequent and associated mutations G28881A, G28882A, and G28883C
(156 samples), frequently present also in strains originating in other continents (America,
Europe) [10], mutation G25563T (87 samples), also frequent outside Africa, especially in
Europe [10], and mutations C15324T (44 samples), C16376T (38 samples), and A20268G
(32 samples) (Figure 2). Libyan sample 10,230 was contained in an S54 subcluster character-
ized by the previously mentioned G25563T and C18877T mutations. The other 27 members
of this subcluster were prevalently from North Africa (Egypt, Morocco, Tunisia), as well as
from sub-Saharan countries (Nigeria, Democratic Republic of Congo (DRC)) (Figure 2).

The SS1 international reference dendrogram (Figure 3) shows that the additional muta-
tions found in African genomes were also disseminated in other continents. The mutations
G28878A and G29742A were both present in strains isolated in Australia, the Netherlands,
and USA. Strains with G22468T associated with the previous two mutations were found in
Asian (India, Saudi Arabia, and Bangladesh) and European (Russia) countries.
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Likewise, as the S54 international reference dendrogram shows (Figure 4), genomes
with mutations in common with Libyan sample 10,230 were disseminated outside Africa.
Mutations G25563T and C18877T were present, coupled, in genomes from Europe and
America (USA, Austria, Belgium, Greece, England, and Finland). Around the world, the
genomes most similar to 10,230 (with shared mutations C26735T, C22444T, and C28854T,
plus the previously mentioned G25563T and C18877T) originated primarily from Asian
countries (India, Saudi Arabia, Oman, and Turkey), as well as from the Netherlands.

4. Conclusions

On the basis of the genomic features found in this study, the following can be affirmed
about SARS-CoV-2 in Libya:

1. SS1 (type B) seems to be predominant in Libya (as in East Asian countries) and
likely entered before the first case was reported; genome 958 had only a few SNVs in
addition to the SS1 signature mutations.

2. In Libya, the SS1 lineage evolved through human-to-human transmission and ac-
quired mutations, but the parental strain remained within the population. The SNVs
increased in number from five to 10, forming a SNV pattern typical of Libyan strains.

3. Genome 7700 had the SS3 signature mutation G11083T, which was found in only one
of our patients, as well as the signature mutations of SS1 and other mutations common
with Libyan SS1 genomes. Thus, it can be considered an SS1 with a subsequent
G11083T mutation rather than a true SS3. It probably represents the evolution of an
SS1 branch already present in Libya rather than a sign of an independent entry of SS3
into Libya.

4. A second separate entrance is suggested by the finding of an S54 genome, 10,230.
The countries from which SARS-CoV-2 entered Libya can be inferred from the regions

of the world where the strains are genetically most similar to the strains isolated in Libya.

Our results indicate that the SS1 Libyan genomes carrying A361G descended from a strain

that was introduced from sub-Saharan or North African countries (Egypt) (Figure 3). It

could also represent the evolution of a strain lacking A361G coming from a Middle Eastern
country (likely Saudi Arabia) or Asia (India) (Figure 3). Libyan strain 958, which lacks

A361G, could have come from other African countries or directly from Middle Eastern

regions. Two strains isolated in March 2020, originating in the USA and having four

mutations in common with the SS1 Libyan strain (including A361G), suggest an alternative
hypothesis. Strain 10,230 of cluster S54 was likely introduced from Asia or the Middle

East. India is the most probable origin, followed by Bangladesh, Saudi Arabia, and

Oman. However, given that a few strains with a high similarity to this Libyan strain

have been isolated in Egypt, it is not possible to exclude an origin from adjacent African

countries (Figure 4).

In conclusion, our study demonstrated the simultaneous circulation of distinct variants
of SARS-CoV-2 in Libya and local SS1 lineage evolution.
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