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Abstract: Coccidioidomycosis is an infectious disease of humans and other mammals that has seen
a recent increase in occurrence in the southwestern United States, particularly in California. A rise
in cases and risk to public health can serve as the impetus to apply newly developed methods
that can quickly and accurately predict future caseloads. The recursive and Hawkes point process
models with various triggering functions were fit to the data and their goodness of fit evaluated
and compared. Although the point process models were largely similar in their fit to the data, the
recursive point process model offered a slightly superior fit. We explored forecasting the spread of
coccidioidomycosis in California from December 2002 to December 2017 using this recursive model,
and we separated the training and testing portions of the data and achieved a root mean squared
error of just 3.62 cases/week.
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1. Introduction

Coccidioidomycosis, known also as Valley fever, is a fungal mammalian disease
caused by one of two saprophytic fungus species found in the desert Southwest of the
United States and Mexico. Based on the epidemiological profile of coccidioidomycosis
from the San Luis Obispo County Public Health Department [1], nearly 60% of people
infected with coccidioidomycosis have minimal to no symptoms, while the remaining 40%
experience a range of possible clinical symptoms including pneumonia, fatigue, cough,
chest pain, and fever, and often require hospitalization. In a small percentage of cases,
the disease disseminates to other parts of the body, including the skin, meninges, soft
tissues, and bones, and can result in death.

In the United States, approximately 150,000 infections occur annually [2]. Although
coccidioidomycosis has a higher annually cumulative total number of illness and death
than many other diseases, coccidioidomycosis has attracted comparatively little attention
over the past decade [3]. This lack of attention is somewhat surprising, given the disease’s
relatively simple transmission cycle and presentation (a community-acquired pneumonia
that is rarely transmitted between hosts) in a developed part of the world. Despite this,
it is clear that more research and public health awareness are needed to understand the
recent increase and spread of coccidioidomycosis (California incidence has risen 213% from
2014 to 2017 [4]) and to explore the role of statistical models in forecasting this spread both
during and after an outbreak.

The self-exciting Hawkes point process model [5] has been commonly used to describe
clustered phenomena, including earthquakes [6,7], crimes [8], invasive species [9], financial
transactions [10,11], neuron activity [12], terrorist attacks [13], and contagious diseases [14].
The model is specified by a conditional rate λ(t) satisfying:

λ(t) = µ(t) + K
∫ t

0
g(t− t

′
)dNt′ , (1)
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where µ(t) is the background rate, the parameter K is called the productivity, and the
density function g is called the triggering f unction. Schoenberg et al. [15] argued that in
modeling an epidemic, the expected number of transmissions for a subject infected at
time t may depend on the conditional rate at time t. For instance, early in the outbreak
of a disease, when the prevalence (or conditional rate) of the disease is low, the rate of
transmission may be much higher than at later times when the virus has already spread,
due to increased awareness, human mitigation efforts, and prior exposure to the disease.
Schoenberg et al. [15] thus introduced the recursive model, which allows for changes in the
productivity over time as the rate of incidence varies according to:

λ(t) = µ(t) +
∫ t

0
H(λ(t

′
))g(t− t

′
)dNt′ . (2)

For the recursive model, the conditional intensity depends on H, which determines
how the productivity varies with the conditional rate λ. Schoenberg et al. [15] proposed
fitting H(y) = αy−q, showing improved fit for the recursive model compared to that of
the simple Hawkes model in describing known cases of Rocky Mountain Spotty Fever in
California between 1960 and 2011.

Park et al. [16] fit a Hawkes model for the spread of Ebola during the 2014 epidemic
in Africa and showed that it described the spread of the virus better than the traditional
SEIR model shown to fit well to the same data by Althaus [17]. Of particular interest here
is whether the recursive model can outperform the Hawkes and SEIR models in its ability
to fit epidemic data and to forecast future cases. We compared the models using 17 years of
reported cases of coccidioidomycosis in California, from December 2002 to December 2017.
Such a comparison may be useful not only for studying the spread of coccidioidomycosis,
but also more generally as a test of the breadth of application of these types of models,
applied successfully in the case of Ebola and plague, to a different class of communicable
diseases with a very different transmission and infection cycle.

The structure of this paper is as follows. Following a description of the coccidioidomy-
cosis data in Section 2, we briefly review the point processes models, recursive models,
and methods of evaluation in Section 3. Our results are presented in Section 4, and Section 5
contains some concluding remarks.

2. Dataset

We used the coccidioidomycosis dataset [18] from Project Tycho, a database providing
open access to U.S. notifiable disease data that have been reported by cities and states.
The dataset contains information from external sources of disease surveillance data, such
as the United States Centers for Disease Control or the World Health Organization.

Data on 12,202 reported case counts of coccidioidomycosis in California from 1 January
2006 to 16 December 2017 were obtained by the United States Centers for Disease Control
and the World Health Organization and compiled by Project Tycho [18]. The dataset
consisted of weekly statewide case totals during this time period. Weeks with no data over
this time frame were treated as having no confirmed cases. When fitting point process
models to the data, the estimated onset time for each infection within a given week period
was randomly drawn from a uniform distribution covering the 7-day time interval as in
Park et al. [16] and Schoenberg et al. [15]. No cases were reported between 3 January 2010
and 1 January 2011, as seen in Figure 1. We considered here data cataloged by Project
Tycho, which included only the cases from the Morbidity and Mortality Weekly Report
(MMWR), not annual data, which may have corrections or modifications made at year’s
end, showing a total of 4622 cases in 2010 [19].
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Figure 1. Histogram of coccidioidomycosis cases in California from January 2006 to December 2017.

3. Methods

Parametric Hawkes models are conventionally estimated by maximum likelihood
estimation (MLE), e.g., [6], and the resulting estimates have desirable asymptotic properties
such as consistency, asymptotic normality, and efficiency [20].

In fitting the Hawkes model (1) to the coccidioidomycosis data by MLE, we fit two
commonly used different triggering functions, g, e.g., [21]. These were the power law
function g(u) = (p − 1)c p−1(u + c)−p and the exponential g(u) = βe−βu [22–24]. We
fit the recursive model (2) with the same exponential triggering form as above and with
productivity function H(y) = αy−q.

To evaluate the fit of the Hawkes and recursive models to the data {τ1, τ2, ..., τn},
observed from Time 0 to time T, we used several diagnostics. Since, by the martingale

formula E(
T∫
0

λ(t)dt) = E(n), one way suggested by Harte [25] to check that estimates of

the conditional rate λ(t) obtained by MLE are reasonable and not merely local rather than

global optima is to inspect the ratio
∫ T

0 λ̂(t)dt
n , which should be approximately one if the

estimated conditional intensity λ̂ fits well.
Another useful goodness-of-fit diagnostic is the Stoyan–Grabarnik statistic [26], ∑ 1

Tλ̂(τi)
.

Since, as shown in [26],

E
n

∑
i=1

1
λ(τi)

= E
∫ 1

λ(t)
dN.

= E
∫ T

0
1 dt

= T,
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again by the martingale formula, the Stoyan–Grabarnik statistic should be close to 1 if the
model fits well.

A third way to evaluate the fit of point process models is by using superthinning [27].
In superthinning, after choosing some constant b > 0, e.g., the total number of observed
cases divided by the length T of the observation period as suggested in Clements et al. [27],
the existing data points are first thinned where each point is randomly kept independently
of the others with probability min{ b

λ̂(t)
, 1}, and then, new points are superposed according

to a Poisson process with rate max{b − λ̂(t), 0}. The resulting superthinned residuals
should form a homogeneous Poisson process with rate b if and only if λ̂ is the true condi-
tional rate of the observed point process [16,27]. One may thus inspect the superthinned
residuals for uniformity as a diagnostic tool. In particular, if si are the superthinned times,
one may consider the interevent times, ri = si − si−1 (with the convention s0 = 0), which
should be exponential with mean 1/b if the fitted model λ̂ is correct, and it is natural there-
fore to inspect the uniformity of the standardized interevent times ui = F−1(ri), where F
is the cumulative distribution function of the exponential with mean 1/b [15]. Clusters,
gaps, or other noticeable patterns of nonuniformity in the residuals indicate a lack of fit of
the model.

Another tool for comparing the fit of competing models is the Akaike information
criterion (AIC) [28], 2p− 2L, where p is the number of estimated parameters in the model
and L is the log-likelihood of the model. The preferred model is the one with the minimal
AIC, and the difference between nested models is, under the usual regularity conditions,
approximately χ2 distributed with p− q degrees of freedom, when comparing models with
p and q parameters, respectively.

In order to guard against overfitting and to investigate forecasting performance, we
separated the coccidioidomycosis dataset into two portions, a training set from 1 January
2006 to 28 December 2014, the latter being the last date of records in the year 2014, and a
testing portion from 29 December 2014 to 31 December 2017. After re-fitting a model by
MLE using only the training data, we inspected its performance during the testing period.
For any given week during the testing period, we used the parameters from training and
all the data up to the beginning of the week in question and integrated the estimated
values of λ̂ over the week to obtain our forecasted number of events, and assuming an
approximately Poisson number of new cases each week, this forecasted rate would also
equal the variance of the number of forecast events in the week; this can be used to obtain
an approximate 95% confidence interval around each weekly forecast. This forecasted total
can be readily compared to the observed number of cases during the week in question.

4. Results

The estimated conditional intensities of the fitted Hawkes models with power law
or exponential triggering densities and the fitted recursive model are shown in Figure 2,
along with the histogram of coccidioidomycosis cases in California. The models were fit by
maximum likelihood to the entire coccidioidomycosis dataset; thus, it is not surprising that,
retrospectively, the models fit the data closely. The differences in fitted intensities were
nearly imperceptible. The mean estimated conditional rate for the three models was 5.55,
5.73, and 5.75 points per day, respectively.
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(a)

(b)

(c)

Figure 2. Histogram of coccidioidomycosis cases in California along with the estimated conditional intensity of the
fitted Hawkes model with (a) power law triggering, (b) the Hawkes model with exponential triggering, and (c) the
recursive model.
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Table 1 shows the martingale ratio
∫ T

0 λ̂(t)dt
n and Stoyan–Grabarnik statistic for the

recursive and Hawkes models. Neither of these two diagnostics indicated any appreciable
sign of a lack of fit for any of the three models. The log-likelihood and AIC are also reported
in Table 1 and showed that, for this coccidioidomycosis dataset, compared with the other
two models, the recursive model had a significantly higher log-likelihood and lower AIC
value, indicating a superior fit to the data.

Table 1. Test Result Comparison Table.

Hawkes Power Law Hawkes Exponential Recursive

Martingale Ratio 1.0000254 0.999974 1.002272
Stoyan–Grabarnik 0.9996276 0.999956 1.000336

Log-Likelihood 5499.55 5498.71 5525.49
AIC −10,991.11 −10,991.42 −11,042.99

Figure 3 displays histograms of the superthinned points corresponding to each of the
three point process models fit to the coccidioidomycosis data. No substantial lack of fit
was detected. However, from the standardized interevent times ui for the superthinned
residuals shown in Figure 4, one sees that all three interevent time histograms showed
some non-uniformity in the form of an excess number of the largest interevent times. This
suggests that the models were not adequately accounting for several large gaps in the
dataset when no cases were recorded. Figure 5 shows the superthinned residuals si along
with their corresponding standardized interevent times ui, as well as the cumulative sum
of the standardized interevent times and the individual 95% confidence bounds based
on 1000 simulations of an equivalent number of uniform random variables. No clear
departures from uniformity were discerned, though the normalized cumulative sum of the
standardized interevent times for the Hawkes model with power law triggering exceeded
the upper confidence bound from 2008 to 2010 and was lower than the lower bound from
the middle of the year 2010 until 2012. Similarly, for the Hawkes model with exponential
triggering, the normalized cumulative sum of standardized interevent times was below
the lower bound from 2011 to 2013, and similarly for the recursive model from 2010 to
2014. Figure 6 shows lag plots of the standardized interevent times ui of the superthinned
residuals for each of the three point process models. Again, no strong evidence of a lack of
fit was discerned, other than an excess of large interevent times that were also followed by
large interevent times.

To guard against overfitting and to see how the recursive model would perform in
forecasting, we re-fit the recursive model using only training data from 1 January 2006 to
28 December 2014, yielding parameter estimates (µ̂ = 0.0507 pts/day, α̂ = 1.284 pts/day,
q̂ = 0.1737, β̂ = 0.6501) points/day, with estimated standard errors of 0.01459, 0.04004,
0.01825, and 0.02561, respectively. The fitted value of µ̂ indicates that, according to the
fitted model, only approximately 18.5 cases per year were attributable to the background
or immigration of cases, with the remainder of points attributed to triggering, and the
estimated mean triggering time in the fitted model was 1/β̂ = 1.54 days. The positivity
of q̂ indicates higher productivity when the conditional intensity was low, in agreement
with the hypothesis that transmission rates are highest at the beginning of the outbreak.
Figure 7 displays the forecasting results from the fitted recursive model. Some forecasts
exceeded the observed number of events, especially at the end of 2015–2016. However,
the recursive model seemed to perform well in the testing period, with most realizations
falling within two standard errors from our predictions. The root mean squared error for
the recursive model forecasts was 3.62 events/day.
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(a)

(b)

(c)

Figure 3. Histogram of standardized interevent times u for (a) the Hawkes model with power law triggering, (b) the
Hawkes model with exponential triggering, and (c) the recursive model.
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(a)

(b)

(c)

Figure 4. Histograms of superthinned residuals for (a) the Hawkes model with power law triggering, (b) the Hawkes
model with exponential triggering, and (c) the recursive model.



Infect. Dis. Rep. 2021, 13 566

(a)

(b)

(c)

Figure 5. Superthinned residuals si using b = 100 points/year and their corresponding standardized interevent times
ui along with 95% confidence bounds, for (a) the Hawkes model with power law triggering, (b) the Hawkes model with
exponential triggering, and (c) the recursive model.



Infect. Dis. Rep. 2021, 13 567

(a)

(b)

(c)

Figure 6. Lag plot of the standardized interevent times ui of the superthinned residuals using b = 100 points/y for (a) the
Hawkes model with power law triggering, (b) the Hawkes model with exponential triggering, and (c) the recursive model.
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(a)

(b)

(c)

Figure 7. Forecasts of the weekly total number of coccidioidomycosis cases in California using the fitted recursive model
and approximate 95% confidence bands, along with reported weekly totals, for (a) 2015, (b) 2016, and (c) 2017. For each
week, simulation-based upper and lower 95% confidence bands for the coccidioidomycosis case totals are shown via the
whiskers, while the solid black curve shows the observed case count totals.
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5. Discussion

Coccidioidomycosis is an infectious disease of mammals, including humans, caused
by inhaling spores of one of two species of fungi, that rarely spreads between hosts [29].
Nevertheless, the results here suggest that the Hawkes and recursive point process mod-
els, previously successfully applied to contagious diseases that move between hosts (e.g.,
Ebola), were also able to capture the main features of diagnosed coccidioidomycosis cases
in California. Indeed, the clustering apparent in the California coccidioidomycosis data
appeared to be well summarized by the point process models, particularly the recursive
model. It is important to note that clustering attributed by the model to causal triggering
from one individual to another may more likely be attributable to external factors, such as
fungal density, spore activity, or disturbance dynamics, or changes to community exposure
or environmental conditions [30], which were not recorded as part of this dataset. In all
aspects of the fitting and evaluation of the spread of the infection we performed, the recur-
sive point process model appeared to fit slightly better than the corresponding Hawkes
point process models with power law or exponential triggering functions. However, future
work should focus on more complex models where fungal (spore and adult) and human
population densities, as well as exposure likelihood are explicitly modeled. We hope this
work will spur the collection of such data in the future, as well as draw attention to the
limitations of the coccidioidomycosis data considered here, especially unreported cases
and missing data issues that may have biased the present analysis. Despite these caveats,
the ability of point process models to accurately capture incidence increases in emergent
infectious diseases, regardless of the means of transmission, presents an exciting new
opportunity to inform public health and mitigation efforts during future outbreak events.

Author Contributions: Conceptualization, R.J.H. and F.P.S.; methodology, F.P.S.; software, J.W. and
F.P.S.; validation, J.W.; formal analysis, J.W. and F.P.S.; investigation, J.W.; resources, F.P.S.; data
curation, R.J.H.; writing—original draft preparation, J.W.; writing—review and editing, R.J.H. and
F.P.S.; visualization, J.W.; supervision, F.P.S.; project administration, F.P.S.; funding acquisition, F.P.S.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Science Foundation under Grant Number DMS
1513657.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Coccidioidomycosis data were provided by Project Tycho, https:
//www.tycho.pitt.edu (accessed on 7 May 2021), and were compilations of published reports by the
World Health Organization and the Centers for Disease Control and Prevention.

Acknowledgments: This material was based on work supported by the National Science Foundation
under Grant Number DMS 1513657.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

References
1. San Luis Obispo County Public Health Department Epidemiologic Profile of Coccidiodomycosis in San Luis Obispo County,

CA. 2014. Available online: https://www.slocounty.ca.gov/getattachment/4f135e93-609a-4a29-b2c6-d6b80250d072/Valley-
Fever-Profile-Report.aspx (accessed on 2 March 2019).

2. Odio, C.D.; Marciano, B.E.; Galgiani, J.N.; Holland, S.M. Risk factors for disseminated Coccidioidomycosis, United States. Emerg.
Infect. Dis. 2017, 23, 308–311. [CrossRef] [PubMed]

3. Pierce, H. Forecasting an Epidemic: How Weather Contributes to Valley Fever Outbreaks. 2016. Available online:
https://voiceofoc.org/2016/11/forecasting-an-epidemic-how-weather-contributes-to-valley-fever-outbreaks/ (accessed on 2
March 2019).

https://www.tycho.pitt.edu
https://www.tycho.pitt.edu
https://www.slocounty.ca.gov/getattachment/4f135e93-609a-4a29-b2c6-d6b80250d072/Valley-Fever-Profile-Report.aspx
https://www.slocounty.ca.gov/getattachment/4f135e93-609a-4a29-b2c6-d6b80250d072/Valley-Fever-Profile-Report.aspx
http://doi.org/10.3201/eid2302.160505
http://www.ncbi.nlm.nih.gov/pubmed/28098554
https://voiceofoc.org/2016/11/forecasting-an-epidemic-how-weather-contributes-to-valley-fever-outbreaks/


Infect. Dis. Rep. 2021, 13 570

4. Wilson, L.; Ting, J.; Lin, H.; Shah, R.; MacLean, M.; Peterson, M.W.; Stockamp, N.; Libke, R.; Brown, P. The rise of valley
fever: Prevalence and cost burden of coccidioidomycosis infection in california. Int. J. Environ. Res. PublicHealth 2019, 16, 1113.
[CrossRef]

5. Hawkes, A.G. Spectra of some self-exciting and mutually exciting point processes. Biometrika 1971, 51, 83. [CrossRef]
6. Ogata, Y. Statistical models for earthquake occurrences and residual analysis for point processes. J. Am. Stat. Assoc. 1988, 83,

9–27. [CrossRef]
7. Ogata, Y. Space-time point-process models for earthquake occurrences. Ann. Inst. Stat. Math. 1998, 50, 379–402. [CrossRef]
8. Mohler, G.; Short, M.; Brantingham, P.J.; Schoenberg, F.; Tita, G. Self-exciting point process modeling of crime. J. Am. Stat. Assoc.

2011, 106, 100–108. [CrossRef]
9. Balderama, E.; Schoenberg, F.P.; Murray, E.; Rundel, P.W. Application of branching point process models to the study of invasive

red banana plants in Costa Rica. J. Am. Stat. Assoc. 2012, 107, 467–476. [CrossRef]
10. Bacry, E.; Mastromatteo, I.; Mastromatteo, I. Hawkes processes in finance. Mark. Microstruct. Liq. 2015, 1, 1550005. [CrossRef]
11. Bauwens, L.; Hautsch, N. Modelling financial high frequency data using point processes. In Handbook of Financial Time Series;

Springer: Berlin/Heidelberg, Germany, 2009; pp. 953–979.
12. Johnson, D.H. Point process models of single-neuron discharges. J. Comput. Neurosci. 1996, 3, 275–299. [CrossRef] [PubMed]
13. Porter, M.D.; Porter, M.D. Self-exciting hurdle models for terrorist activity. Ann. Appl. Stat. 2012, 6, 106–124. [CrossRef]
14. Meyer, S.; Elias, J.; Höhle, M. A space-time conditional intensity model for invasive Meningococcal disease occurrence. Biometrics

2012, 68, 607–616. [CrossRef]
15. Schoenberg, F.P.; Hoffmann, M.; Harrigan, R.J. A recursive point process model for infectious diseases. Ann. Inst. Stat. Math.

2019, 51, 1271–1287. [CrossRef]
16. Park, J.; Chaffee, A.W.; Harrigan, R.J.; Schoenberg, F.P. A Non-Parametric Hawkes Model of the Spread of Ebola in West Africa. J.

Appl. Stat. 2020. [CrossRef]
17. Althaus, C.L. Estimating the reproduction number of Ebola Virus (EBOV) during the 2014 outbreak in West Africa. PLoS Curr.

2014. [CrossRef]
18. Panhuis, W.V.; Cross, A.; Burke, D.S. Counts of Coccidioidomycosis reported in United States of America: 2002–2017 (version 2.0,

1 April 2018): Project Tycho data release. Project Tycho 2018. [CrossRef]
19. Centers for Disease Control (CDC). Valley Fever (Coccidioidomycosis) Statistics. 2020. Available online: https://www.cdc.gov/

fungal/diseases/coccidioidomycosis/statistics.html (accessed on 26 February 2019).
20. Ogata, Y. The asymptotic behaviour of maximum likelihood estimators for stationary point processes. Ann. Inst. Stat. Math. 1978,

30, 243–261. [CrossRef]
21. Reinhart, A. A review of spatio-temporal point processes and their applications. Stat. Sci. 2018, 33, 299–318.
22. Brillinger, D.R.; Guttorp, P.M.; Schoenberg, F.P. Point processes, temporal. Encycl. Environ. 2013. [CrossRef]
23. Schoenberg, F.P. Facilitated estimation of ETAS. Bull. Seismol. Soc. Am. 2013, 103, 601–605. [CrossRef]
24. Zhuang, J.; Ogata, Y.; Vere-Jones, D. Diagnostic analysis of space-time branching processes for earthquakes. Case Stud. Spat. Point

Process Model. 2006, 185, 275–292.
25. Harte, D. Log-likelihood of earthquake models: Evaluation of models and forecasts. Geophys. J. Int. 2015, 201, 711–723. [CrossRef]
26. Stoyan, D.; Grabarnik, P. Second-order characteristics for stochastic structures connected with gibbs point processes. Math. Nachr.

1991, 151, 95–100. [CrossRef]
27. Clements, R.A.; Schoenberg, F.P.; Veen, A. Evaluation of space-time point process models using superthinning. Environmetrics

2012, 23, 606–616. [CrossRef]
28. Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [CrossRef]
29. Nguyen, C.; Barker, B.M.; Hoover, S.; Nix, D.E.; Ampel, N.M.; Ampel, N.M.; Ampel, N.M.; Galgiani, J.N. Recent advances in our

understanding of the environmental, epidemiological, immunological, and clinical dimensions of Coccidioidomycosis. Clin.
Microbiol. Rev. 2013, 26, 505–525. [CrossRef]

30. Gorris, M.; Cat, L.; Zender, C.; Treseder, K.; Randerson, J. Coccidioidomycosis dynamics in relation to climate in the southwestern
united states. GeoHealth 2018, 2, 6–24. [CrossRef]

http://dx.doi.org/10.3390/ijerph16071113
http://dx.doi.org/10.1093/biomet/58.1.83
http://dx.doi.org/10.1080/01621459.1988.10478560
http://dx.doi.org/10.1023/A:1003403601725
http://dx.doi.org/10.1198/jasa.2011.ap09546
http://dx.doi.org/10.1080/01621459.2011.641402
http://dx.doi.org/10.1142/S2382626615500057
http://dx.doi.org/10.1007/BF00161089
http://www.ncbi.nlm.nih.gov/pubmed/9001973
http://dx.doi.org/10.1214/11-AOAS513
http://dx.doi.org/10.1111/j.1541-0420.2011.01684.x
http://dx.doi.org/10.1007/s10463-018-0690-9
http://dx.doi.org/10.1080/02664763.2020.1825646
http://dx.doi.org/10.1371/currents.outbreaks.91afb5e0f279e7f29e7056095255b288
http://dx.doi.org/10.25337/T7/ptycho.v2.0/US.60826002.
https://www.cdc.gov/fungal/diseases/coccidioidomycosis/statistics.html
https://www.cdc.gov/fungal/diseases/coccidioidomycosis/statistics.html
http://dx.doi.org/10.1007/BF02480216
http://dx.doi.org/10.1002/9781118445112.stat07484
http://dx.doi.org/10.1785/0120120146
http://dx.doi.org/10.1093/gji/ggu442
http://dx.doi.org/10.1002/mana.19911510108
http://dx.doi.org/10.1002/env.2168
http://dx.doi.org/10.1109/TAC.1974.1100705
http://dx.doi.org/10.1128/CMR.00005-13
http://dx.doi.org/10.1002/2017GH000095

	Introduction
	Dataset
	Methods
	Results
	Discussion
	References

