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Abstract: Introduction. The aetiology for the recent increase in pancreatic cancer incidence (PCI)
in the US is unknown. This paper provides an epidemiological investigation of the exponential
increase in PCI in young people aged 15–34 years, particularly amongst females, with a focus on the
exponential rise amongst African American females, and its relationship to substance use. Methods.
National pancreatic cancer data from recent reports. Tobacco, alcohol and daily cannabis use data
taken from the annual nationally representative National Survey of Drug Use and Health, response
rate = 74%. Results. Amongst the 15–34-year-aged cohort, PCI was found to be significantly more
common in females (females: β-est. = 0.1749 p = 0.0005). African American females are noted to
have the highest rates of daily cannabis use amongst females in the 26–34 and 35–49-year groups.
The relationship between PCI and daily cannabis use was strongly positive across all ethnicities
and in both sexes. In African American females, the Pearson correlation between daily cannabis
use and PCI was R = 0.8539, p = 0.0051. In an additive multivariable model for each sex and race,
cannabis was the only significant term remaining in the final model in the 15–34-year-aged cohort
and thus out-performed alcohol as a risk factor. The most significant term in multivariate models was
the alcohol:cannabis interaction which was highly significant in all ethnicities from p = 2.50 × 10−7

for Caucasian American females and the highest E-value pair was for Hispanic American females
(E-value estimate = 1.26 × 10102 and E-value lower bound 2.20 × 1074). Conclusion. These data
show that cannabis fulfills quantitative criteria of causality in all age, sex and ethnicity cohorts, and
thus explains both the recent surge in PCI and its ethnocentric predominance. Cannabis interacts
powerfully genotoxically and cancerogenically with alcohol, with increases in cannabis use driving
the current PCI surge. These results raise the important question as to how much cannabis might be
responsible for the modern renaissance in cancer rates amongst younger people.
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1. Introduction

Pancreatic cancer is a common and serious condition with a five-year survival rate
of only 12.5% in 2013–2019 [1]. Pancreatic cancer is becoming more common in many
places [1] for reasons which are presently obscure. Indeed, the rising incidence of many
different cancers occurring in younger people has been noted across many nations [2]. This
phenomenon begins to challenge the medical dogma that cancer is primarily a disease of
older age. A detailed review of the whole USA caseload of pancreatic cancer 2001–2018
was recently published numbering in total around 734,761 cases [3]. Very concerningly,
it showed that the disease is growing quickly across the USA and is more common in
females in many age cohorts. Indeed, in some groups, such as African American females
aged 15–34 years and for localized disease, exponential effects were noted. Some of the
curves drawn in that report suggest that a break point occurred in pancreatic incidence
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around 2006–2009. The authors suggest that an environmental intoxicant may be acting
whose effects were most marked amongst females [3] and it appears to have become more
widespread about the time of the decadal change.

In this context, recent reports from the USA and Europe that cannabis is associated
with pancreatic cancer [4–7] become both interesting and highly relevant. Moreover, as
it is well known that cannabis use is being popularized in the USA and its daily use has
doubled in that country in recent years [8,9], it is theoretically possible that the use of a
known carcinogen is becoming widespread and commonplace and indeed normalized.
Interestingly, the role of cannabis in hepatocarcinogenic changes is increasingly being
realized and the American Association of Liver Diseases has recently released a statement
to this effect [10]. This conclusion solidly implicates cannabinoids in gastrointestinal system
oncogenic pathways.

Several powerful epigenomic studies of cannabis exposure in humans and rodents
have recently appeared [11–16] which have greatly increased our understanding of cannabi-
noid pathophysiology. Global hypomethylation of DNA has been reported by many
workers [15,17,18] and this is a change which is characteristic of aging [19–21] and also
has the effect of removing the control of mobile elements from the genome which is an
oncogenic and pro-aging change [22,23]. Many cannabinoids (including cannabidiol) cause
single- and double-stranded DNA breaks [24–30] and this perturbation has been shown to
cause aging [21] by re-arranging the epigenomic machinery and causing DNA hypomethy-
lation [21]. Since epigenomic markers are concentrated at tissue defining superenhancers,
and since superenhancers play a critical and irreplaceable role in cell lineage definition
and control of differentiation state [31–35], this major change weakens cell identity and
primes them towards de-differentiation and malignant transformation in the pancreas and
also in many other tissues [36–42]. Moreover, cannabis exposure also weakens the CTCF
boundary markers [17] including superanchors which control active gene transcription
generally and superenhancer activation in particular, which further disrupts the normal
control of gene expression. Many cancers are caused by superenhancers gaining aberrant
access to the promoter regions of oncogenes such as KRAS, a process which is common in
pancreatic neocarcinogenesis [43–45].

Modern multi-channel sequencing methods are increasingly being applied in order
to advance our understanding of the pathogenesis of pancreatic cancer [45–48]. It has
recently been shown that pancreatic acinar cells remember past episodes of inflammation
epigenomically which is a change which both allows them to mobilize their genes more
rapidly the next time they are required for a similar episode and moves them along the
cancerogenic spectrum to the point where a widespread premalignant field change can
be induced [45,48]. This disruption will be exacerbated by the known frequently pro-
inflammatory [49–55] and generally pro-aging [56–58] effect of cannabinoids.

This is believed to be the underlying mechanism by which known predisposing factors
such as gall stones and alcohol act to raise the risk of pancreatic tumours which is through
chronic or recurrent inflammation in that organ [45,48].

It should be noted in passing that cancerogenesis is just one part of the broader subject of
cannabinoid genotoxicity more generally. The use of significantly genotoxic compounds may
be expected to be reflected in higher rates of cancer, congenital anomalies (birth defects) and
aging. Increased evidence of such outcomes has appeared in the recent literature [7,59–82]
which becomes important background information to the present study and is highly relevant
to the consideration of causal issues. The rising rates of cannabis use have recently been shown
to be driving breast cancer, acute lymphoid leukaemia, hepatocellular carcinoma, testicular
cancer and total paediatric cancer in the USA [10,83–90].

Accordingly, this study tested the hypothesis that the rising rate of high intensity daily
cannabis use in the USA may be an important driver of higher rates of pancreatic cancer. We
particularly wanted to test this hypothesis in population subgroups defined by age, sex and
ethnicity. The main focus of this study was on the pancreatic cancer incidence in younger
patients of 15–34 years of age and in localized disease, which are the two groups shown in
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the Abboud study where the disease appeared to be growing fastest and exponentially [3].
These dual hypotheses were formulated prior to the commencement of this study. This
study also represents a quantitative follow-up of an epidemiological investigation which
has recently been suggested [91].

2. Methods
2.1. Pancreatic Cancer Rates

Pancreatic cancer rates were taken from two of the graphs in the report of Abboud
et. al. [6] which were Figure 4C for males and females aged 15–34 and Figure 6C for
localized tumours presenting in males and females. The senior study author disclosed that
data had been provided to them on a confidential basis only and they were not permitted
to release it for secondary analysis (Gaddam S, personal communication). The data were
taken from the graphs very carefully using highly exploded images of the graphs using
WebDigitizer [92] which is a highly accurate platform for performing such tasks. These
two sex-specific rates were log transformed in the interests of improving compliance with
normality assumptions as indicated by the Shapiro–Wilks test.

2.2. Drug Use Rates

The data on national levels of drug use by age group, sex and ethnicity were derived
from the Substance Abuse and Mental Health Services Administration (SAMHSA) 2020
National Survey of Drug Use and Health (NSDUH) [11]. This is a nationally representative
study of the non-institutionalized US population conducted each year by SAMHSA. Con-
sideration was restricted to the major ethnicities Caucasian American (“White”), African
American (“Black”) and Hispanic American (“Hispanic). The annual results of NSDUH
appear as a Public Data Archive System (PDAS) on the Substance Abuse and Mental Health
Data Archive (SAMHDA) and can be searched manually. The major terms of interest were
for age (CATAG3), ethnicity and sex combined (SEXRACE) and then substance. The three
substances of interest and their metrics were for tobacco, the percentage which reported
tobacco consumption in the previous month (TOBMON); for alcohol, the percentage which
reported alcohol consumption in the previous month (ALCMON); and for cannabis, the
percentage reporting daily or near daily use for 20–30 days per month (MRJMDAYS).
In each case, cross-tabulations were performed with the sex–race metric as the columns,
substance exposure as the rows and the age category as the control variable. In the anal-
ysis, these three substance exposure rates were not log transformed as indicated by the
Shapiro–Wilks test.

2.3. Data Analysis

The data analysis was performed in February 2023 in R Studio v 2002.12.0 Build
353 based on R version 4.2.2 (2002-10-31 ucrt)). Multiple regression and correlation matrices
were constructed using the R Base and stats modules. Graphs were drawn in ggplot2
from the tidyverse [93]. Multiple graphs were arranged using the R packages ggpubr and
patchwork [94,95]. Multiple regression models were reduced by the classical technique of
removal of the least significant term. p-values were adjusted for multiple testing using the
false discovery rate or adjustment method described by Holm. Multiple linear or exponen-
tial models were analysed simultaneously using the purrr-broom workflow described in
the tidyverse [93,96,97]. E-Values were calculated using the package EValue in R [98–100].
Correlograms including correlograms of significance levels were drawn with the R Package
corrplot [101]. p-values less than 0.05 were considered significant.

2.4. Data Extrapolation

Data on the rate of pancreas cancer incidence were available from the source paper by
Abboud from 2001 to 2018 [3]. Drug use data from SAMHDA were available from 2002
to 2019. To match up this slight discrepancy in the time periods of the two datasets, an
extra year was added in 2001 to the SAMSHA dataset and in 2019 for the pancreatic cancer
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dataset. Extrapolation was performed with the predict function on the log model as detailed
in the accompanying R Code. Each dataset was processed separately (pancreatic cancer
15–34 years, localized pancreatic disease, tobacco, alcohol and daily cannabis use rates).

3. Results
3.1. Input Data

Pancreatic cancer (PC) rates were taken from the figures in the paper by Abboud and
colleagues as described [3]. Our main focus of interest was on the exponentially rising
cancer rates in younger patients 15–34 years of age. The sex differential of this rise was
first published in 2021 from the SEER dataset [102]. Abboud et.al. extended this finding
by confirming the sex differential in the data of the US Cancer Statistics (USCS) dataset
without the data from states contributing to the SEER data [3]. Whilst both the USCS and
SEER data are available publicly, the data used by the Abboud group which omits data
from the states contributing the SEER data are not publicly available. This is why the
data employed had to be derived from the figures of the later publication [3]. The sex
differential of the three datasets are compared directly in Supplementary Figure S1 (present
publication) and are found to be qualitatively similar across all three datasets. Data on
disease incidence by stage are not publicly available so this also had to be similarly derived
from the published figures.

Drug use data were taken from online databases at NSDUH as discussed in the
Methods section. This survey has a reported completion rate of 74% [103].

The rates of PC by sex in younger patients of 15–34-years-of-age are shown graphically
in Figure 1 on linear and log scales with both quadratic and loess curves fitted. As suggested
in these figures, the rates were significantly different between the two sexes when sex
was considered in an additive exponential model with time (females: β-est. = 0.1749,
t = 3.838, p = 0.0005; model Adj.R.Squ. = 0.90, F = 1598.1, df = 2.33, model p < 2.2 × 10−16).
When sex was considered as an interactive term with time, both sex as a factor (females:
β-est. = −35.99, t = −2.148, p = 0.0394; model Adj.R.Squ. = 0.9103, F = 119.4, df = 3.32,
model p < 2.2 × 10−16) and in a sex:time interaction (Females: β-est. = 0.0180, t = 2.159,
p = 0.0385) were significant.

Figure 2 shows the rates of tobacco consumption by the ethnicity, gender and age
cohorts over time and a general decline is observed consistent with the overall trend to
reduced tobacco consumption in the community.

Figure 3 is a similar representation of alcohol consumption. This pattern also shows
an earlier rise followed by a later decline in all ethnicities and age cohorts.

Daily or near daily cannabis use trends are shown in Figure 4 by age, sex and ethnicity.
Strong rises are noted in all sub-groups. African American females are noted to have the
highest rates of daily cannabis use amongst females in the 26–34 year group and in the
35–49 year group. Indeed, amongst African American females in this age cohort, daily
or near-daily use rose from 3.11% in 2002 to 9.59% in 2019 which represents more than a
tripling in rate (308% rise). This compares to rises amongst Hispanic American females from
1.05% to 5.02% (334%) and in Caucasian American females from 3.19% to 7.72% (242%).

The rises in near daily cannabis use in males in this age cohort across this period
for these three ethnicities were for African Americans 7.08% to 15.9% (224%), Caucasian
Americans 7.51% to 12.8% (170%) and for Hispanic Americans 3.45% to 10.1% (292%).

In Figure 5, NSDUH respondents have been dichotomized into patients older than
50 years and those who are younger. There is a clear trend to increased substance use for
all types in younger patients. This difference is particularly marked in the case of cannabis
where monotonic rises are also observed (Figure 5E,F).

Figure 6 sets out the relationship of pancreatic cancer incidence (PCI) to the various
substance exposures. The relationship of PCI with tobacco appears to be inverse (lower
panels). The relationship with alcohol is apparently non-descript (upper panels). However,
for all ethnicities and in both sexes the relationship with daily cannabis use is clearly
strongly positively correlated (middle panels).
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3.2. Correlations

Figure 7 is a correlogram showing the correlation between the two different pancreatic
cancer rates (15–34 years and localized disease (HOP) shown in third and fourth rows)
and tobacco, alcohol and cannabis in males of a Caucasian background 18–34 years. The
left-hand panel depicts the correlation coefficients and the panel on the right shows the
statistical significance. The left-hand panel indicates the strong correlation of both pancre-
atic cancer and localized disease with cannabis exposure (Pearson R = 0.83, 0.70) which
are both significant (p = 0.006 and 0.023), respectively. Negative correlations of pancreatic
cancer with both alcohol and tobacco are observed. A weak and non-significant positive
correlation between daily cannabis and alcohol use is noted here (R = 0.1657, p = 0.1369).
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Figure 2. Tobacco Consumption by Sociodemographic Strata.

In African American males of 18–34 years, a similar pattern is observed (Figure 8). In
this case, the Pearson correlation coefficients for pancreatic cancer and for localized disease
are 0.83 and 0.64 which are again significant (0.007 and 0.038).
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In Hispanic American males, a very similar pattern is again observed (Supplementary
Figure S2).

Figure 9 shows the situation in white females 15–34 years of age. There, the correlation
between PCI and daily cannabis exposure is 0.9309 and between localized disease and
cannabis is 0.9040. These correlations are significant at the p = 0.0008 and 0.0005 levels,
respectively.

When African American females are considered, there is again a strong relationship
(Figure 10). The Pearson correlation coefficients for PCI and localized disease are 0.8539 and
0.8421 which are significant at the p = 0.0051 and 0.0056 levels, respectively. In this figure, a
weak correlation and non-significant correlation between daily cannabis use and alcohol
use is noted (R = 0.59, p = 0.68). Similar patterns are observed when Hispanic American
females are considered (Supplementary Figure S3). The correlation in this group with daily
cannabis exposure is 0.8982 and 0.9133 which are significant at the 0.0008 and 0.0005 levels,
respectively.

Thus, similar changes are observed in all age and ethnicity sub-groups.
The exact values of these various correlation coefficients are shown in tabular form in

Table 1 and their corresponding significance levels are given in Table 2. If one compares
these tables closely, it emerges that the only consistent positive correlations of interest are
between cannabis and PCI and localized disease. Most of these correlations are 0.8–0.9
which indicate statistical significance mostly in the range 0.001–0.01.

Table 1. Stratified Correlation Matrix.

Covariate PDAC.Rate HOP Tobacco Alcohol Cannabis

Males, White
PDAC.Rate 1 0.8225 −0.7732 −0.2712 0.8308

HOP 0.8225 1 −0.6628 −0.3257 0.7015
Tobacco −0.7732 −0.6628 1 0.7601 −0.3816
Alcohol −0.2712 −0.3257 0.7601 1 0.1657

Cannabis 0.8308 0.7015 −0.3816 0.1657 1
Males, Black
PDAC.Rate 1 0.8225 −0.6820 −0.2524 0.8312

HOP 0.8225 1 −0.4851 −0.2569 0.6359
Tobacco −0.6820 −0.4851 1 0.5705 −0.3691
Alcohol −0.2524 −0.2569 0.5705 1 0.0738

Cannabis 0.8312 0.6359 −0.3691 0.0738 1
Males, Hispanic

PDAC.Rate 1 0.8225 −0.8191 0.1464 0.8980
HOP 0.8225 1 −0.7125 0.1052 0.7840

Tobacco −0.8191 −0.7125 1 0.2834 −0.6757
Alcohol 0.1464 0.1052 0.2834 1 0.3221

Cannabis 0.8980 0.7840 −0.6757 0.3221 1
Females, White

PDAC.Rate 1 0.9350 −0.8865 0.3475 0.9309
HOP 0.9350 1 −0.8052 0.4427 0.9040

Tobacco −0.8865 −0.8052 1 0.0211 −0.7555
Alcohol 0.3475 0.4427 0.0211 1 0.5538

Cannabis 0.9309 0.9040 −0.7555 0.5538 1
Females, Black

PDAC.Rate 1 0.9350 −0.3878 0.4460 0.8539
HOP 0.9350 1 −0.2896 0.5253 0.8421

Tobacco −0.3878 −0.2896 1 0.3687 −0.1939
Alcohol 0.4460 0.5253 0.3687 1 0.5877

Cannabis 0.8539 0.8421 −0.1939 0.5877 1
Females, Hispanic

PDAC.Rate 1 0.9350 −0.8151 0.6311 0.8982
HOP 0.9350 1 −0.7138 0.6912 0.9133

Tobacco −0.8151 −0.7138 1 −0.4312 −0.6870
Alcohol 0.6311 0.6912 −0.4312 1 0.7699

Cannabis 0.8982 0.9133 −0.6870 0.7699 1
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Table 2. Significance Levels (p-Values) of Correlation Matrix.

Covariate PDAC.Rate HOP Tobacco Alcohol Cannabis

Males, White
PDAC.Rate 0 0.0029 0.0023 0.0439 0.0063

HOP 0.0029 0 0.0015 0.0210 0.0229
Tobacco 0.0023 0.0015 0 0.0115 0.0303
Alcohol 0.0439 0.0210 0.0115 0 0.1369

Cannabis 0.0063 0.0229 0.0303 0.1369 0
Males, Black
PDAC.Rate 0 0.0052 0.0002 0.0607 0.0068

HOP 0.0052 0 0.0041 0.0304 0.0376
Tobacco 0.0002 0.0041 0 0.0553 0.0139
Alcohol 0.0607 0.0304 0.0553 0 0.1487

Cannabis 0.0068 0.0376 0.0139 0.1487 0
Males, Hispanic

PDAC.Rate 0 0.0028 0.0014 0.6334 0.0009
HOP 0.0028 0 0.0021 0.5626 0.0068

Tobacco 0.0014 0.0021 0 0.4703 0.0073
Alcohol 0.6334 0.5626 0.4703 0 0.7493

Cannabis 0.0009 0.0068 0.0073 0.7493 0
Females, White

PDAC.Rate 0 0.0002 0.0010 0.4540 0.0008
HOP 0.0002 0 0.0028 0.4089 0.0005

Tobacco 0.0010 0.0028 0 0.6000 0.0068
Alcohol 0.4540 0.4089 0.6000 0 0.3435

Cannabis 0.0008 0.0005 0.0068 0.3435 0
Females, Black

PDAC.Rate 0 0.0003 0.0013 0.8324 0.0051
HOP 0.0003 0 0.0038 0.7778 0.0056

Tobacco 0.0013 0.0038 0 0.9841 0.0147
Alcohol 0.8324 0.7778 0.9841 0 0.6839

Cannabis 0.0051 0.0056 0.0147 0.6839 0
Females, Hispanic

PDAC.Rate 0 0.0001 0.0000 0.0344 0.0008
HOP 0.0001 0 0.0002 0.0280 0.0005

Tobacco 0.0000 0.0002 0 0.0351 0.0010
Alcohol 0.0344 0.0280 0.0351 0 0.0166

Cannabis 0.0008 0.0005 0.0010 0.0166 0

3.3. Bivariate Regressions

Table 3 sets out the results of the regression studies for PCI against the three substances
of interest considered separately. The rate of pancreatic cancer which was regressed as
the dependent variable was the sex-specific rate taken from the Abboud paper [3]. The
main positive and significant terms in this table relate to cannabis in both sexes and alcohol
in females. If one compares the size of the β-estimates, they are clearly much greater for
cannabis (19–32 in females) than alcohol (5–6 in females). Interestingly, the relationship
between sex and alcohol seems to be somewhat different.

These various regression coefficients are associated with applicable E-Values as indi-
cated in the Table. The E-Value estimates are very high for cannabis in females (2 × 1028 to
3.46 × 1053) and also in males (3.74 × 1021 to 2.97 × 1038). Whilst the E-Values for alcohol
are also elevated, they are much less elevated than those for cannabis.

Indeed, considering the lower bounds of these E-Values, those for cannabis are
all strongly positive and highly significant (6.88 × 1019 to 1.20 × 1042 in females and
2.53 × 1015 to 4.73 × 1030 in males). Two of the four lower E-Values for alcohol are
significant in this table, and they are both for females.

Thus, the uniform finding from this table is that cannabis is a much more powerful
covariate for pancreatic cancer incidence than alcohol.
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Table 3. Bivariate Regression Results for 15–34-Year Cohort.

Subs Race Sex β-Estimate (S.E.) p-Value P.Adj.Holm P.Adj.FDR E-Value
Estimate

E-Value
Lower
Bound

Cannabis White Female 29.05 (22.7, 35.4) 7.00 × 10−8 1.19 × 10−6 6.30 × 10−7 3.46 × 1053 8.41 × 1041

Cannabis Hispanic Female 32.1 (24.45, 39.75) 2.50 × 10−7 4.00 × 10−6 1.50 × 10−6 1.32 × 1055 1.20 × 1042

Cannabis Black Female 19.67 (13.71, 25.63) 5.80 × 10−6 6.96 × 10−5 1.49 × 10−5 2.04 × 1028 6.88 × 1019

Alcohol Hispanic Female 6.28 (2.62, 9.94) 0.0037 0.0296 0.0060 3.19 × 106 785.71
Alcohol Black Female 4.76 (0.84, 8.68) 0.0292 0.1750 0.0404 3.26 × 104 10.81
Alcohol White Female 6.01 (−0.36, 12.37) 0.0817 0.4087 0.1051 2.20 × 105 1.00
Tobacco Black Female −6.67 (−16.72, 3.38) 0.2107 0.8428 0.2529 4.53 × 105 -
Tobacco Hispanic Female −12.6 (−17.52, −7.69) 1.04 × 10−4 1.04 × 10−3 2.08 × 10−4 3.27 × 1015 -
Tobacco White Female −8.37 (−10.83, −5.91) 3.97 × 10−6 5.16 × 10−5 1.19 × 10−5 3.02 × 1012 -

Cannabis Hispanic Male 15.44 (12.28, 18.6) 3.00 × 10−8 5.40 × 10−7 5.40 × 10−7 2.97 × 1038 4.73 × 1030

Cannabis White Male 14.66 (10.68, 18.64) 1.43 × 10−6 2.15 × 10−5 6.44 × 10−6 1.64 × 1029 2.42 × 1021

Cannabis Black Male 11.35 (8.05, 14.64) 3.43 × 10−6 4.80 × 10−5 1.19 × 10−5 3.74 × 1021 2.53 × 1015

Alcohol Hispanic Male 2.57 (−2.55, 7.7) 0.3389 1.0000 0.3813 770.9897 1.00
Alcohol Black Male −1.09 (−4.91, 2.73) 0.5838 1.0000 0.5838 23.24 -
Alcohol White Male −1.82 (−6.48, 2.83) 0.4530 1.0000 0.4797 129.86 -
Tobacco Black Male −6.21 (−9.93, −2.49) 0.0045 0.0315 0.0067 1.14 × 108 -
Tobacco White Male −4.83 (−7.1, −2.56) 6.47 × 10−4 0.0058 0.0012 1.02 × 107 -
Tobacco Hispanic Male −6.51 (−8.83, −4.2) 3.72 × 10−5 0.0004 8.36 × 10−5 8.94 × 1010 -

Table 4 sets out the findings for localized disease with again very similar findings.

Table 4. Bivariate Regression Results for Localized Disease.

Substance Race Sex β-Estimate (S.E.) p-Value P.Adj.Holm P.Adj.FDR E-Value
Estimate

E-Value
Lower
Bound

Cannabis Hispanic Female 24.47 (18.25, 30.69) 6.00 × 10−7 1.08 × 10−5 1.08 × 10−5 5.10 × 1051 4.63 × 1038

Cannabis White Female 21.48 (15.68, 27.29) 1.34 × 10−6 2.28 × 10−5 1.21 × 10−5 2.41 × 1043 5.86 × 1031

Cannabis Black Female 14.69 (9.72, 19.66) 2.15 × 10−5 0.0003 0.0001 2.56 × 1025 8.62 × 1016

Alcohol Hispanic Female 5.16 (2.46, 7.86) 0.0016 0.0179 0.0037 1.59 × 107 3.91 × 103

Alcohol Black Female 4.23 (1.36, 7.09) 0.0101 0.0707 0.0152 2.61 × 105 90.28
Alcohol White Female 5.73 (1.07, 10.38) 0.0275 0.1648 0.0380 7.45 × 106 34.35
Tobacco Black Female −3.32 (−11.31, 4.67) 0.4267 0.9056 0.4518 4.51 × 103 -
Tobacco Hispanic Female −8.13 (−12.71, −3.56) 0.0028 0.0254 0.0051 7.14 × 1010 -
Tobacco White Female −5.64 (−8.06, −3.22) 2.76 × 10−4 0.0039 0.0010 4.34 × 108 -

Cannabis Hispanic Male 7.06 (4.35, 9.77) 8.74 × 10−5 0.0013 0.0004 4.62 × 1020 7.36 × 1012

Cannabis White Male 6.37 (3.28, 9.47) 8.60 × 10−4 0.0103 0.0022 2.84 × 1016 4.20 × 108

Cannabis Black Male 4.49 (1.84, 7.15) 0.0041 0.0330 0.0067 5.60 × 1010 3.79 × 104

Alcohol Hispanic Male 0.56 (−2.27, 3.39) 0.7032 0.9056 0.7032 20.3545 1.00
Alcohol Black Male −1.09 (−3.11, 0.92) 0.3019 0.9056 0.3396 223.3997 -
Alcohol White Male −1.79 (−4.2, 0.62) 0.1645 0.6580 0.1974 5.40 × 103 -
Tobacco Black Male −2.61 (−4.85, −0.36) 0.0361 0.1805 0.0464 4.95 × 105 -
Tobacco White Male −2.42 (−3.73, −1.11) 0.0021 0.0211 0.0042 1.35 × 106 -
Tobacco Hispanic Male −3.23 (−4.64, −1.82) 3.28 × 10−4 0.0043 0.0010 8.74 × 108 -

3.4. Multivariable Regressions

A multivariable model with additive terms for the three substances of concern was
tested during exploratory investigations. In each subgroup, only cannabis was left as the
significant term in the final model. This is illustrated in Table 5 where the only significant
terms in the table relate to cannabis exposure in all subgroups. As shown in this table, the
levels of significance are high and the E-Values are also very elevated. This again shows
that, statistically, cannabis is a more powerful covariate for pancreatic cancer incidence
than alcohol and indeed cannabis terms would knock alcohol terms out of final regression
models were model reduction to proceed by the classical method.
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Table 5. Additive Multivariable Regression for Substances for 15–34-Year Age Group.

Race Sex Substance β-Estimate (S.E.) p-Value P.Adj.Holm P.Adj.FDR E-Value
Estimate

E-Value
Lower
Bound

Black Female Cannabis 18.17 (7.87, 28.46) 0.0038 0.0461 0.0099 5.59 × 1025 2.27 × 1011

Black Female Alcohol 1.36 (−2.59, 5.31) 0.5105 1 0.5743 1.60 × 102 1.00
Black Female Tobacco −5.37 (−12.79, 2.04) 0.1775 0.8876 0.2282 6.77 × 107 -

Hispanic Female Cannabis 27.84 (13.14, 42.54) 0.0023 0.0325 0.0084 4.81 × 1050 1.34 × 1024

Hispanic Female Alcohol −0.77 (−3.99, 2.44) 0.6443 1.0000 0.6822 4.99 × 101 -
Hispanic Female Tobacco −4.95 (−9.64, −0.27) 0.0572 0.5147 0.1029 1.85 × 109 -

White Female Cannabis 14.28 (−1.19, 29.76) 0.0919 0.7350 0.1393 9.44 × 1037 1.00
White Female Alcohol 2.71 (−1.74, 7.17) 0.2523 1 0.3028 2.88 × 107 1.00
White Female Tobacco −5.99 (−9.58, −2.39) 0.0057 0.0624 0.0128 1.23 × 1016 -
Black Male Cannabis 9.63 (6.34, 12.91) 5.14 × 10−5 9.24 × 10−4 4.63 × 10−4 4.20 × 1021 2.26 × 1014

Black Male Alcohol 0.11 (−2.17, 2.39) 0.9284 1 0.9284 2.83 × 100 1.00
Black Male Tobacco −3.96 (−7.09, −0.84) 0.0262 0.2617 0.0523 1.19 × 109 -

Hispanic Male Cannabis 8.97 (4.05, 13.89) 0.0031 0.0399 0.0092 1.33 × 1031 1.75 × 1014

Hispanic Male Alcohol 2.16 (−0.28, 4.6) 0.1047 0.7350 0.1449 5.25 × 107 1.00
Hispanic Male Tobacco −4.38 (−6.53, −2.23) 0.0013 0.0202 0.0060 2.24 × 1015 -

White Male Cannabis 9.9 (6.52, 13.29) 0.0001 0.0009 0.0005 2.84 × 1038 2.80 × 1025

White Male Alcohol 2.65 (−0.23, 5.53) 0.0929 0.73497576 0.1393 3.23 × 1010 1.00
White Male Tobacco −5.18 (−7.37, −2.99) 3.81 × 10−4 0.0060976 0.0023 1.83 × 1020 -

When a model which was interactive between the three substance exposure terms was
tested during exploratory data mining, in each case the alcohol:cannabis interaction was
the most significant and indeed only remaining term in the final model and excluded all
other terms including daily cannabis use. For these reasons, this interaction was tested
against PCI specifically across all combinations of race and sex in this 15–34-year cohort. As
shown in Table 6, in every subgroup the alcohol:cannabis interaction was highly significant
which in general terms was more marked amongst females. The lowest p-value shown in
this table was for Caucasian American females (p = 2.50 × 10−7) and the highest E-Value
pair was for Hispanic American females (E-Value estimate = 1.26 × 10102 and E-Value lower
bound of 2.20 × 1074).

Table 6. Multivariable Interactive Regression Results for 15–34-Year Age Group.

Race Sex ß-Estimate (S.E.) p-Value P.Adj.Holm P.Adj.FDR E-Value
Estimate

E-Value Lower
Bound

Black Female 37.76 (25.24, 50.28) 2.19 × 10−5 6.57 × 10−5 3.29 × 10−5 1.60 × 1054 2.33 × 1036

Hispanic Female 61.97 (45.04, 78.9) 2.21 × 10−6 8.84 × 10−6 4.42 × 10−6 1.26 × 10102 2.20 × 1074

White Female 48.15 (37.05, 59.26) 2.50 × 10−7 1.50 × 10−6 1.41 × 10−6 5.70 × 1090 8.62 × 1069

Black Male 17.46 (10.63, 24.29) 1.28 × 10−4 2.56 × 10−4 1.38 × 10−4 8.62 × 1028 5.71178 × 1017

Hispanic Male 25.9 (19.63, 32.17) 4.70 × 10−7 2.35 × 10−6 1.41 × 10−6 1.38 × 1060 4.84 × 1045

White Male 18.26 (11.07, 25.46) 1.38 × 10−4 2.56 × 10−4 1.38 × 10−4 1.32 × 1030 2.48 × 1018

When localized disease was considered, similar results were obtained (Table 7).

Table 7. Multivariable Interactive Regression Results for Localized Disease.

Race Sex ß-Estimate (S.E.) p-Value P.Adj.Holm P.Adj.FDR E-Value
Estimate

E-Value Lower
Bound

Black Female 27.2 (18.43, 35.98) 1.24 × 10−5 4.94 × 10−5 2.47 × 10−5 1.98 × 1048 6.99 × 1032

Hispanic Female 46.53 (34.52, 58.54) 7.40 × 10−7 4.44 × 10−6 3.09 × 10−6 7.76 × 1096 1.02 × 1072

White Female 32.85 (24.15, 41.54) 1.03 × 10−6 5.15 × 10−6 3.09 × 10−6 1.59 × 1067 3.41 × 1049

Black Male 6.94 (1.77, 12.11) 0.0174 0.0174 0.0174 1.67 × 1015 1.37 × 104

Hispanic Male 11.95 (7.33, 16.57) 9.42 × 10−5 2.83 × 10−4 1.41 × 10−4 4.26 × 1034 2.46 × 1021

White Male 8.14 (3.28, 12.99) 0.0044 0.0087 0.0052 1.44 × 1019 8.63 × 107
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4. Discussion
4.1. Main Results

As the most detailed data to date on the relationship between cannabis and pancreatic
cancer, this study explores the sociodemographic profiling of younger pancreatic cancer
patients in greater detail than has appeared previously. Of the many striking results de-
scribed herein, arguably the most impressive is the clear direct linear relationship between
daily cannabis exposure and pancreatic cancer incidence across all sex and ethnic cohorts
in the 15–34-year age group as shown unequivocally in Figure 6 and Tables 1–5. This high
performance is reflected in the unexpected supersession of cannabis over alcohol as a risk
factor for pancreatic disease of any type and pancreatic malignant disease in particular.
The predominant picture which emerges from this study is that the heightened and expo-
nentially rising rate of PCI in young African American females appears to relate largely to
their tripled environmental exposure to cannabinoids. The determination of any genetic
contribution to this predisposition conferred by ethnicity must await further research.

The effect of increased cannabis use was so strong that in an additive multivariable
model, cannabis knocked out the other terms for tobacco and alcohol in all sociodemo-
graphic strata in this age cohort. Given that alcohol is a long-established risk factor for
pancreatic disease of any type, this is a most remarkable finding; albeit, it could be pre-
dicted from the shape of the curves in Figure 6. At multivariable interactive modelling, the
cannabis:alcohol interaction was shown to be the only thing more powerful than the effect
of the cannabis variable itself. This was also predominant across all sociodemographic
strata clearly demonstrating the co-carcinogenicity of these two agents and the importance
that consideration of this co-genotoxicity should take in public health planning in this field.

Importantly, Figure 5 shows clearly that the level of cannabis use in populations
aged older than 50 years is much less than younger groups. This has two implications.
Firstly, it implies that since cannabis is a significant pancreatic carcinogen this effect will
be less marked in older populations, which is indeed what is observed because the rise
in pancreatic cancer seems to be disproportionate amongst younger patients. Secondly,
many studies show that both cannabinoid genotoxicity [25,104–109] and cannabinoid
metabolic toxicity [110–115] follow exponential dose-response curves. We note again
that metabolomotoxicity and epigenotoxicity are closely and inherently interrelated in
numerous ways. It is also clear that the rise in the prevalence of cannabis use, the intensity
of people smoking cannabis daily and the THC concentration of cannabis herb and resin
and the many other cannabinoid products widely available on the market are all occurring
at the same time. From a public health perspective, this can be expected to launch the
community relatively abruptly into the high cannabis use zones where genotoxic outcomes
become much more commonplace. It seems clear from the evidence that this is exactly
what is occurring in younger populations with cannabis use prevalence and the intensity
of use such as in younger African American females in the USA over the past decade.

4.2. Interpretation

Our interpretation of these data is that in this younger patient cohort, cannabis is
clearly linked with pancreatic carcinogenesis across all sex and ethnic cohorts considered in
this younger patients age cohort. Given that younger patients are normally considered to
be at a low risk for pancreatic carcinogenesis, this is a signal finding indeed. The findings
from this and similar studies are consistent with those from Europe [4–7].

4.3. Causal Inference
4.3.1. Qualitative Causal Inference

In 1965, after his experience with the tobacco-induced lung cancer epidemic of the
1950s, renowned epidemiologist A.B. Hill laid out nine criteria which were required to
be fulfilled to confidently denote any particular epidemiological relationship as being
causal in nature. These criteria were: strength of association, consistency amongst studies,
specificity, temporality, coherence with known data, biological plausibility, a dose-response



Gastroenterol. Insights 2023, 14 223

curve, similar analogies elsewhere and experimental confirmation. The current data clearly
indicate that the cannabis–pancreatic cancer link fulfils the first eight of these criteria.
Experimental confirmation is still lacking but only because laboratory studies have not
yet been performed to the best of our knowledge at the time of writing. However, given
the centrality of the biological pathways and mechanisms to supporting the causality
of the cannabis–pancreatic cancerogenesis causal argument, discussion on this topic is
expanded below.

4.3.2. Quantitative Causal Inference

One of the major limitations of observational studies is that they are subject to a
failure to include the full universe of covariates in their analytical models. This error of
uncontrolled confounding is known by several names. For an unknown covariate to disrupt
a relationship which at first appears to be causal in nature, it must be correlated with both
the exposure of interest and the outcome of concern. This co-correlation is quantified as the
E-Value which is a mathematical re-formulation of the relative risk. As noted above, an
E-Value greater than 1.25 generally denotes a causal relationship [100]. E-Values in excess
of nine, such as those between lung cancer and tobacco smoking, are said to be high [116].
Studies of E-Values of 1.32 × 1055, 3.46 × 1053 and 2.04 × 1028 for Hispanic American,
Caucasian American and African American females, respectively (Table 3), are far in excess
of these levels, and are observed in causal relationships [100]. Moreover, the E-Value has
a 95% lower bound which signifies the bottom end of the applicable confidence interval.
In Table 3, the lower bounds for these E-Values are given as 1.20 × 1042, 8.41 × 1041 and
6.88 × 1019. These are also far in excess of the typical cut-offs required to show causality
and provide robust arithmetical support to the main conclusions of the study. For these
reasons, the study data provide epidemiological evidence of causality; albeit, this is not the
same thing as experimental evidence of causality.

4.4. Mechanisms
4.4.1. Epigenomics

Cannabis has been found to have a large epigenomic footprint and changes the methy-
lation status of up to 9% of the whole genome [15]. This has far-reaching implications on vir-
tually every cellular system including the epigenomic machinery for DNA methylation and
demethylation, for histone methylation and acetylation and their reversal and for the active
repositioning of the nucleosomes to allow new gene transcription to occur [17,77–79,117].
Cannabis causes DNA breaks [24–30] which ages the genome [21]. Cannabis interferes with
actin and tubulin and thus the cytoskeleton and machinery of the mitotic spindle [21] and
the kinetochore–centrosomal machinery of chromosomal segregation at mitotic and meiotic
division [17,118]. This interference with mitotic and meiotic division sets up micronucleus
formation and chromosomal shattering (chromothripsis) [73] which is a powerful engine
for major and widespread genomic rearrangement and instability [73,119–130] and also
powerfully stimulates innate immunity through cyclic AMP-GMP (cGAS)–STimulator of
Interferon Gamma (STING) signalling [43,130–136]. cGAS-STING has been shown to be the
prime driver of the senescence-associated secretory phenotype (SASP) [135,137] which both
drives innate immunity with the release of TNFα (tumour necrosis factor α), and interferon
IL1β and interleukin 6 (IL6) [132]. Together, this drives senescence induction in nearby
cells systemically [135,138] and also induces the inflammaging which is known to drive
DNA damage and further exacerbate cellular aging [128,130–133,136–147]. The growth
factors and cytokines and chemokines of the SASP are also known to drive malignant
transformation [137,138,140,141]. cGAS-STING activation both increases the degree of
malignancy and drives metastasis [148] which also provides an explanation for the many
reports of increased incidence of cancer in young patients and their rapid demise due to a
widespread and aggressive disease at presentation [149–152].

The action of cannabinoids is often directly immunostimulatory especially when act-
ing via the type 1 cannabinoid receptor (CB1R) [90,153–158]. Cannabis disrupts both
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the tubulin code and the histone code [17,26,118,159–163]. By inhibiting mitochondrial
metabolism [111,112,164–170], cannabinoids interfere with the supply of substrates to the
epigenomic machinery and the supply of energy for both genomic and epigenomic main-
tenance. Due to mitochondrial inhibition, the cellular levels of lactate rises [171–175]
which induces both passive and enzymically mediated lactylation of key metabolic en-
zymes [176,177]. This further reinforces the increase in cellular dependence on glycol-
ysis and a stem-like cellular de-differentiated state and locks cells into a premalignant
metabolomic–epigenomic state [176–179].

Low doses of cannabidiol have also been implicated directly in genotoxicity and have
been shown to induce both DNA breaks and DNA base oxidation [25].

Since all of these changes are pro-carcinogenic, the link between cannabis and pancre-
atic cancer is not surprising from a mechanistic perspective.

4.4.2. Alcohol: Cannabis Interaction

As mentioned above, alcohol is a classical cause of acute pancreatitis and the mecha-
nisms by which it predisposes to cancer has been shown several times to arise from the
incomplete resolution of the inflammatory changes in the epigenome of the acinar stem
cells [45,48]. Such epigenomic changes are an example of antagonistic pleiotropy in that
they help the cells reactivate subsequent to another episode, but also reset the epigenome to-
wards cancer and aging based on this alteration [45,48,180–182]. The fact that cannabis way
outperformed the recognized pancreatic disease risk factor of alcohol in the study results
presented above is one of the most remarkable findings to emerge from the present study.

As noted above, the effect of cannabinoids in tissues is often pro-inflammatory espe-
cially when acting through CB1R [90,153–158]. Cannabinoids interfere with the machinery
of DNA methylation and the net effect of this is to cause DNA hypomethylation which is an
aging change and also tends to weaken epigenomic cell linage specification and therefore
the epigenomic hills between the “Waddington valleys” (to borrow Waddington’s now fa-
mous analogy [183]) and thus drive the cells both towards aging and de-differentiation [21].
Cannabinoids (including cannabidiol) also cause DNA breakages [24–30] which attract the
large multiprotein epigenomic complexes to the sites of DNA breakage and away from
their usual stations on the genome which directly lead to DNA demethylation and cellular
aging [21]. By inducing chromosomal mis-segregation, cannabis drives chromosomal shat-
tering releasing fragments of double-stranded DNA into the cytoplasm where it is a power-
ful stimulus for cytosolic sensors and a driver of both intracellular and extracellular innate
immune effectors including cGAS-STING, some of the toll-like receptors (TLRs 3, 7 and
8), the RIG1 sensors, the AIM1 (Absent in Melanoma 1) and ASC1 (Apoptosis-associated
Speck-like protein containing a CARD (caspase activation and recruitment domain) in-
flammasomes, the SASP [128,131,132,136–139,184–186] and a long list of cytosolic sensors
of DNA including RNA polymerase III, DAI (DNA-dependent activator of interferons or
Z-DNA binding protein), IFI16 (interferon gamma inducible protein 16), DDX4 (DEAD-
Box helicase 4), LSm14A (LSM14A MRNA Processing Body Assembly Factor), LRRFIP1
(LRR Binding FLII Interacting Protein 1), Sox2 (SRY-Box Transcription Factor 2), DHX9/36
(DExH-Box Helicase 9/36) and Ku70 (X-Ray Repair Cross Complementing 6) [187].

Therefore, it is not at all surprising that there should be a powerful carcinogenic
synergism between the two genotoxins, cannabis and alcohol, as documented above in
our multivariate regression models both for PCI and for localized disease. However, it
was surprising to us that this interactive effect was so powerful statistically as to lead to
the complete deletion of cannabis from the final interactive models across all sociodemo-
graphic categories.

4.5. Future Research Directions

As this study is the most detailed investigation of the cannabis–pancreatic cancer link
to have been published, it raises many further research questions both epidemiological
and mechanistic in nature. Epidemiologically, with a combined sample of 734,761 cancers
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this dataset almost certainly lends itself to small area–space–time studies. Epidemiological
studies would be facilitated by the availability from SAMHSA of NSDUH results in 405
small substate areas across the USA. Assuming that pancreatic cancer incidence could be
similarly mapped at such fine spatial resolution across a series of aggregated years, this
would lend itself to further space–time epidemiological models which is conceptually very
powerful. Ideally such space–time modelling could also incorporate inverse probability
weighting to allow causal geospatial models to be developed, although to our knowledge
this methodology has not yet been invented.

From a mechanistic perspective, many studies in the basic sciences should be under-
taken to explore cannabinoid-induced pancreatic tumourigenesis in molecular detail. The
above-described convergence of pro-inflammatory, pro-aging, de-differentiating, direct
genotoxic and various epigenotoxic pathways should all be dissected to define the route to
carcinogenesis induced by cannabis. It needs to be resolved how many cannabinoids are
implicated in pancreaticocarcinogenesis especially in the light of earlier demonstrations
that the genotoxic moiety resides with the olivetol nucleus on the C-ring which is common
to all cannabinoids [26]. It is common for the profusion of names for modern cannabinoids
such as ∆8-, ∆0-, ∆10, ∆11-tetrahydrocannabinol etc. to confuse lay people. However, as
these designations only refer to the carbon atom on the A ring which is hydroxylated and
the genotoxic moiety is the olevitol nucleus of the C-ring, none of these modifications have
been found to materially impact the genotoxic actions after extensive in vitro testing [26]
and nor would they really be expected to do so (because it is the wrong benzene ring).
Dose-response and timing studies need to be performed for cannabinoids in clinically rele-
vant concentrations. It may be that as such processes are understood, agents acting either
in the endocannabinoid system or perhaps in other pathways may be developed which will
become lead candidates for further therapeutic development for this very serious disease.

Cannabinoids are known to negatively impact the mitochondria in many ways [111,112,
164–170]. This will induce genotoxic stress through mitonuclear signalling and also impede
the genomic and epigenomic machinery which are both dependent on mitochondrially
derived substrates and energy and homeostatic mechanisms to ensure genomic stability.
Therefore, the cannabinoid-induced mitochondriopathy can reasonably be expected to
interact powerfully and negatively with the cannabinoid-induced epigenotoxicity. Since as
described the lactylation state is modified by cannabinoids and is involved in numerous
cancerogenic pathways, it is likely that the impact of cannabinoids on the lactylation
machinery and metabolome presents a key investigative window which will likely find
downstream utility in areas such as stem cell and regenerative medicine and cancer biology.
These mechanisms need to be investigated both in the mitochondria and in the epigenome
and genome in a coordinated and comprehensive manner.

As described above, cannabinoids generally have a heavy epigenetic footprint. The
general footprint of cannabinoids is DNA hypomethylation which is a classical age-related
change. Thus, phytocannabinoids can be expected to relatively de-differentiate cells. This
putative cannabinoid-induced de-differentiation needs to be compared with premalignant
de-differentiation and also that occurring normally in inflammatory and post-inflammatory
states to investigate how this might compare to these better characterized states. In addition,
the epigenome is known to be further impacted by immune and metabolic processes, all of
which are disrupted by cannabinoid exposure.

The deep learning algorithms of artificial intelligence may find a place in the epidemi-
ological and other studies of pancreatic cancer in years to come. Some of these directions
have been explored in a recent paper on the application of integrative medicine to the
pathobiology of cancer of the pancreas [188].

Thus, the present study strongly suggests many lines for further research investigations
both in epidemiology and in the basic sciences.
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4.6. Generalizability

Given that the sample on which this study is based is the whole US population of
pancreatic cancer from 2001 to 2018 combined with SAMHSA’s highly reputable nationally
representative annual NSDUH study including its high response rate, and given also that the
present results are closely concordant with other published reports and with recent analyses
from Europe, we are confident that these results are indeed generally applicable [4–7]. This
view is reinforced by the very high E-Values reported throughout which exclude significant
effects of unmeasured confounder covariates. The E-Values reported in the present study
are far in excess of the threshold for causality which is usually said to be 1.25 [100] and also
exceed the E-Value of the relationship of tobacco use with lung cancer incidence which is
said to be nine and is typically regarded as being in the high range [116]. For these reasons,
it is clear that the relationship between cannabis use and pancreatic cancer is much stronger
than the tobacco–lung cancer relationship which is widely acknowledged to be causal. The
present findings are also supported by the robust observation that the effects of cannabis
interact with, and are exacerbated by, those of alcohol which is a known carcinogen in the
pancreas [45,46,48].

4.7. Strengths and Limitations

This study has a number of strengths. Cancer incidence data were based on a national
sample across the USA from 2001 to 2018. Drug use data were taken from the nationally
representative survey with a high response rate which was SAMHSA’s NSDUH. The
analysis was stratified separately for each sex and major ethnic group with the single
15–34-year age group. Highly concordant and consistent results were obtained from
bivariate, additive multivariable and interactive multivariable models. Furthermore, the
findings for cannabis were noted to positively interact with alcohol which is a known
pancreatic carcinogen. For these reasons, we regard the present analysis as being powerful
in its elegant analytical simplicity. Importantly, the high incidence rate of pancreatic cancer
in young African American females was found to be likely related mainly to their lifestyle
exposures. Study shortcomings are that, in common with many other epidemiological
studies, individual participant data were not available to the present investigators. Stratified
data on income were not available to the present research team. Controlling for these and
other covariates remains for future research projects. However, in view of the very high
E-Values reported herein, its consistency with other studies both in the USA and Europe, its
concordance with a variety of basic aetiological mechanisms from laboratory and cellular
science, and of similar studies which do take income into account [4–6], and its relationship
with the known carcinogen ethanol, we are confident that controlling for these external
covariates will not materially impact the major study conclusions.

5. Conclusions

The main results from this study are to confirm the opening hypotheses that cannabis
is involved causally in pancreatic carcinogenesis in all sex and ethnic cohorts in the
15–35-year age bracket and thus it appears to be at least one of the previously unknown
principal driver/s of the present renaissance in PCI across the USA. The present results
are supported by other studies from both the USA and Europe and by much experimental
research [4–7]. Cannabis was observed to powerfully interact at the epidemiological level
with alcohol exposure and clearly this cooperative carcinogenicity requires further basic
science and epidemiological research. Importantly, this report adds cancer of the pancreas
to the growing list of cancers which cannabis has been shown to be driving including
testicular, liver and breast cancer, childhood leukaemia and total paediatric cancer. Clearly,
further research is indicated of the pathways to cannabinoid-induced tumourigenesis par-
ticularly in the metabolomic, immunomic and epigenomic fields. However, in the light of
now-robust epidemiological evidence implicating cannabis in yet another significant cancer
renaissance nationwide across the USA [10,83–90], it becomes essential and imperative
that communities take cannabinoid carcinogenesis seriously and restrict access of their
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populations to cannabinoid genotoxicity just as it is for many other significantly genotoxic
compounds. This is not only for cancer prevention and public health concerns in regard to
extant populations, but also to protect the generations to come from the implicit and now
well-defined multigenerational cannabinoid epigenotoxicity with which carcinogenicity is
so often intricately and intimately involved [77–79,117,189–193].
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