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Abstract: SARS-CoV-2, a single-stranded RNA coronavirus, causes an illness known as coronavirus
disease 2019 (COVID-19). Long-term complications are an increasing issue in patients who have
been infected with COVID-19 and may be a result of viral-associated systemic and central nervous
system inflammation or may arise from a virus-induced hypercoagulable state. COVID-19 may incite
changes in brain function with a wide range of lingering symptoms. Patients often experience fatigue
and may note brain fog, sensorimotor symptoms, and sleep disturbances. Prolonged neurological
and neuropsychiatric symptoms are prevalent and can interfere substantially in everyday life, leading
to a massive public health concern. The mechanistic pathways by which SARS-CoV-2 infection causes
neurological sequelae are an important subject of ongoing research. Inflammation- induced blood-
brain barrier permeability or viral neuro-invasion and direct nerve damage may be involved. Though
the mechanisms are uncertain, the resulting symptoms have been documented from numerous
patient reports and studies. This review examines the constellation and spectrum of nervous system
symptoms seen in long COVID and incorporates information on the prevalence of these symptoms,
contributing factors, and typical course. Although treatment options are generally lacking, potential
therapeutic approaches for alleviating symptoms and improving quality of life are explored.

Keywords: COVID-19; long COVID syndrome; brain fog; memory; neuroinflammation; neuron;
neurologic sequelae

1. Introduction

Up to 25% of patients who have recovered from infection with severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) will experience persistent symptoms, known as
long COVID [1–4]. While greater COVID-19 disease severity is correlated with higher
risk of long COVID, long COVID can occur irrespective of the initial disease severity [5].
Long COVID, also known as post-acute sequelae of SARS-CoV-2 infection (PASC), refers to
the persistence of symptoms for at least 12 weeks after the acute phase of infection [6,7].
Long COVID often entails life-altering neurologic complications [8–10]. Among the most
common manifestations affecting mental functioning are impaired thinking (“brain fog”),
memory problems, fatigue, sleep disturbances, and headaches [11,12].

In this review, we analyzed the available data from peer-reviewed publications on
the neurological and neuropsychiatric symptoms of COVID-19. We discuss the latest
research on the detrimental effects of long COVID on cognitive function as well as the
underlying mechanisms and potential treatments with a focus on both objective measures,
such as neurocognitive testing, blood biomarkers of inflammation and imaging, as well as
subjective patient experience.
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2. Mechanisms Underlying COVID-19 Effects on the Brain

Systemic inflammation and the accompanying elevated production of cytokines and
reactive oxygen species are major stressors that, while indirect, can cause pathological
effects on the brain (Figure 1) [13–16]. Cytokines can cross even the intact BBB and the
barrier becomes more porous under inflammatory conditions; therefore, the brain receives
exposure to the elevated cytokine levels that result from COVID-19 infection [17–20].
BBB permeability is increased in human brain tissue obtained from deceased COVID-19
patients [21,22]. Lee et al. showed in an autopsy study of the brains of COVID-19-infected
patients that immune-mediated inflammation evidenced by immunoglobulin deposition
on the endothelium led to damage of endothelial cells with vascular leakage and loss of
vascular integrity [23]. They also found activation of microglia, the innate immune cells
of the CNS, and focal areas of platelet aggregation. However, this study did not detect
COVID-19 virus in brain tissue. Moreover, reactive microglia can affect oligodendrocytes,
leading to impaired myelination which, in mouse models, affects neural function [24].
Furthermore, infection with SARS-CoV-2 can provoke the production of autoantibodies
that cross-react with brain tissue and it has been postulated that this autoimmune response
could initiate a cycle of structural damage [25,26]. Entry of peripheral leukocytes through
the BBB is also facilitated in an inflammatory environment and these cells may themselves
be COVID-19-infected, release cytokines, and activate microglia [27].
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Figure 1. Possible mechanisms underlying neurologic symptoms in long COVID. Multiple factors
are postulated to contribute to neurologic manifestations of long COVID. Persistent systemic inflam-
mation leads to cytokine production, immune system activation, and production of reactive oxygen
species. Increased blood-brain barrier (BBB) permeability allows cytokines to penetrate the brain and
induce neuroinflammation. A more porous BBB may also permit direct viral invasion of the brain.
Tissue hypoxia may occur due to microclot formation. ↑ = increased.

The COVID-19 virus can directly infect cultured human brain microvascular endothe-
lium [28]. Direct invasion of microvascular endothelium by COVID-19 can weaken the
BBB and exacerbate the inflammatory response [28–30]. Inflammation impacts the brain
through activation of microglia and astrocytes, which then can dysregulate autophagy and
interfere with neurotransmitter production [31–35]. Persistence of viral antigens may play
a role in chronic immune system activation and ongoing symptoms [36].

Changes in brain function may be caused not only by the hyperinflammatory environ-
ment induced by the virus, but also by direct viral invasion of neurons. SARS-CoV-2 can
infect vascular endothelial cells and then may cross into the brain transcellularly through
the BBB endothelium [37–39]. Whether the virus replicates robustly in the vascular endothe-
lium is unresolved with conflicting data [40,41]. SARS-CoV-2 has been detected in human
brain tissue and has been found in the cerebrospinal fluid of human patients, establishing
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its penetration of the BBB into the central nervous system (CNS) [42,43]. In hamsters
and mice as well as human organoid models, further evidence supports the potential for
SARS-CoV-2 to cross the BBB and infect neurons [44,45]. Post-mortem studies in humans
show that the COVID-19 virus can enter the brain, but viral invasion is not the primary
cause of neurologic sequelae [46].

An alternate theory is that the virus directly infects olfactory receptor neurons and
reaches the brain through the olfactory bulb [47]. The ACE2 receptor is expressed in these
neuronal bodies, possibly permitting the infection to move along the olfactory nerve [48,49].
Neuroinvasion by the virus does not generally cause massive spread or replication [50].

The precise contribution of persistent systemic or neuroinflammatory response versus
viral invasion of neurons to the development of neurologic and neuropsychiatric symptoms
in COVID-19 is still under investigation [24,51]. Emerging evidence suggests that direct
neural infection plays a secondary role, while dysregulation of immune-inflammatory path-
ways plays a more significant role in the development of neurologic and neuropsychiatric
symptoms [52]. A summary of the modes through which COVID-19 inflicts damage to the
brain and nervous system can be found in Table 1. Environmental and lifestyle disruptions
also likely contributed to deteriorating mental health, especially in the face of a worldwide
pandemic that resulted in isolation, lack of access to healthcare, and drastic changes in
everyday existence on a massive scale for a protracted period of time.

Table 1. Neuropathological mechanisms of SARS-CoV-2 long-term effects.

Mechanism Cellular and Molecular Changes References

Cytokines and leukocytes cross the BBB Microglial activation, production of
neuroinflammatory mediators [17–20,23,24]

Direct viral invasion of microvascular
endothelium of the blood-brain barrier

Impaired blood flow in the brain,
unclear whether virus enters brain

parenchyma via infected endothelium
[28–30,40,41]

Entry of viral particles into the brain via
the nasal epithelium and olfactory bulb Neurotoxicity and neuronal loss [47–49]

BBB = blood-brain barrier.

Many of the symptoms of long COVID are shared by other disease processes [53,54].
Certainly, other viral infections particularly parvovirus B19 and Epstein–Barr virus, are
known to cause myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) [55–57].
Lyme disease and rheumatologic diseases, such as lupus and inflammatory arthritis may
also be associated with ME/CFS [58–60]. Clinically, some of these symptoms are shared by
patients with mild traumatic brain injury, particularly the attentional deficits, fatigue, and
pain [61,62].

This leads to a hypothesis that, although injuries to the nervous system may occur
through multiple different mechanisms in different diseases, there may be a final common
clinical pathway for relatively mild injury that produces the symptoms seen in: Long
COVID, chronic fatigue, myalgic encephalomyelitis, and fibromyalgia. Teodoro proposed
that reduced externally directed attention due to injury or pain could cause the clinical
symptoms and is responsible for the suggested overlap between syndromes [61,63].

This is a topic of future importance and may be addressable by creating a large
database not only of long COVID, but also the other diseases discussed above to explore
common and distinct symptoms [64]. Combining this clinical information with molecular
and imaging markers will help in clarifying the pathophysiology.

3. Symptoms of Long COVID
3.1. Fatigue

Fatigue is considered a fundamental core symptom of long COVID and occurs after
infection with many other viruses [65–69]. This symptom has been reported in a third or
more of COVID-19 patients and commonly persists for upwards of 6 months and is an
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indicator of worse prognosis [70–72]. Stefanou et al. conducted a longitudinal analysis
of 1733 acute COVID-19 patients and found that, at 6 months, 63% had fatigue or muscle
weakness [73]. Fatigue is a somewhat subjective experience that is not easily quantified. In
long COVID patients, fatigue has been defined as an energy deficit that may be physical,
mental, and/or emotional that makes normal daily activities difficult, frequently leaving
the patient with post-exertional malaise [74,75]. The acute COVID-19 illness may not have
been severe, but ramifications, such as intractable fatigue can be profound.

A qualitative study by Ladds et al. explored the experience of fatigue as described
subjectively by patients [76]. They recount a need to adjust their performance of basic
activities and disruption of work life with a major decline in functional status due to
exhaustion. Self-reported fatigue is associated with impaired quality of life after COVID-19
and this link was also found in studies where fatigue was assessed using more quantitative
screening tools [77–79].

The decrease in physical and/or mental performance that results from fatigue may be
traced back to changes in CNS provoked by COVID-19 infection and postulated to be a
result of both systemic and neuro-inflammatory processes within the brain itself [80,81].
Systemic inflammation and surging cytokine levels can cause or exacerbate tiredness [82].

Diminished neurotransmitter levels in the CNS post-COVID-19 may be responsible
for at least some of the fatigue [62,83,84]. A study of 12 post-COVID-19 patients who had
recovered from severe pneumonia, but had sustained profound fatigue and 10 healthy
controls found neurophysiological indications of disruption of the primary inhibitory
neurotransmitter GABA, with evidence of overall reduced GABAergic cortical activity
in the post-COVID-19 group [85]. Depleted levels of serotonin may also contribute to
fatigue [86,87].

Neuropsychological factors that can contribute to fatigue include anxiety, confusion,
depression, apathy, and anger [88,89]. Neuropsychiatric aspects of long COVID are covered
in greater detail in the next section.

Nevertheless, another factor that may contribute to the experience of fatigue is the ef-
fect of COVID-19 on skeletal muscle which is vulnerable to the ACE2 surface protein [83,90].
Patients may note muscle pain and muscle weakness which limit endurance [91].

3.2. Neuropsychiatric Sequelae

The most common long-term neuropsychiatric manifestations of COVID-19 are anxiety,
PTSD, and depression and may include pain disorder, delirium, mood swings, and, at
the extreme, psychosis [92–95]. Anxiety and depression symptoms have been positively
correlated with COVID-19 disease severity and decline in function post-COVID-19 [96].
Alghamdi et al. corroborated these findings with an online survey of 2218 COVID-19
patients finding mood alteration and depression to be common symptoms, which were
positively correlated with female sex and disease severity [97]. Recovery is possible as
percentage reporting depression decreased over time, but for many patients, symptoms
persist for a year and beyond [98].

As with fatigue, inflammatory cytokines are thought to play a pathophysiological
role in COVID-19-related depression [99,100]. In a retrospective cohort study of 236,379
patients conducted by Taquet et al., 17.4% were diagnosed with anxiety disorder and 13.7%
with a mood disorder in the 6 months following a COVID-19 diagnosis [101]. Long COVID
may cause metabolic dysregulation, including the new onset of insulin resistance [102].
Al-Hakeim et al. found an association between insulin resistance and depression in long
COVID patients, which they link to the neurotoxicity of oxidative stress in an insulin-
resistant milieu [103].

External circumstances, such as isolation, extended quarantines, financial distress,
and the stress inflicted by living through the pandemic have all been documented to
raise anxiety, incite behavioral changes, increase loneliness, and provoke avoidance be-
haviors [104–106]. Adding to these environmental factors are the physical changes in
permeability of the BBB discussed previously which lead to cytokine overload, inflamma-
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tion, and direct viral neuronal invasion with subsequent CNS damage that may mediate
neuropsychiatric sequelae [107].

Obsessive-compulsive disorder (OCD) has been reported in many studies with up to
20% of screened patients experiencing symptoms at follow-up [108,109]. OCD symptoms
may worsen in persons who already have the disorder, possibly due to the added stressors
of masking, hygiene, and isolation and may also appear in those who have not had the
diagnosis previously [110–112].

For some patients, neuropsychological symptoms are accompanied by PTSD with
potentially debilitating flashbacks, hyperarousal, and intrusive thoughts [113–115]. PTSD
occurs in both hospitalized and non-hospitalized patients. In a cohort of 238 patients who
were hospitalized in Italy with COVID-19, 17% had PTSD at 4 months post-discharge as
assessed by the Impact of Event Scale-Revised [116]. In a study from the Netherlands,
Houben et al. found that among 239 patients (62 hospitalized, 177 not hospitalized),
PTSD symptoms at 3 months of follow-up were found in 43.5% of patients who had been
hospitalized versus 35% of those who had not been hospitalized (p = 0.23) while at 6 months
of follow-up PTSD symptoms were found in 30.6% of patients who had been hospitalized
versus 25.4% of those who had not been hospitalized (p = 0.42) [117]. Savarraj et al. found
an association between pain and PTSD in a prospective study of hospitalized COVID-19
patients in Texas. Patients who were experiencing pain were seven times more likely to
have PTSD at 3 months after hospitalization [118].

Psychosis was also found at higher rates in COVID-19 cohorts than in controls [119,120].
Though a relatively uncommon neuropsychological symptom, multiple case studies have
reported patients with sudden onset psychosis both with and without prior medical history
after presenting with SARS-CoV-2 [121]. An analysis from Smith et al. of 2396 papers found
48 patients with psychosis lasting between 2 and 90 days, most commonly experiencing
delusions [122].

Delirium has also been noted in some COVID-19 patients, especially in older persons
and those who are hypoxic or have high fever [123,124]. A study of 516 patients across four
Italian medical centers found 73 patients presenting with delirium on admission. Delirium
was found to correlate to older age and in-hospital mortality [125].

3.3. Sleep Disorders

Among the most commonly reported neurological long COVID symptoms are sleep
disturbances [126]. In a study by Huang et al., of 1733 patients suffering from long COVID
symptoms, 26% had sleep disturbances [127]. In another study on 251 survivors, 41.8%
experienced insomnia at 1 month post-discharge and at 3 months 25.5% still had insomnia.
It is estimated that half of patients, even months after acute COVID-19 infection, report
sleep-related problems. There is also a bidirectional association between mental health
problems and sleep disturbance which may contribute to the mental health complications
related to COVID-19 [128]. Patients have reported both trouble sleeping, nightmares and
lucid dreaming, which may be a long COVID symptom or a reflection of the stress of
life-altering pandemic circumstances [129].

3.4. Sensorimotor Deficits
3.4.1. Prevalence and Spectrum of Symptoms

Sensorimotor symptoms of COVID-19 can take a number of forms, including peripheral
neuropathy, paresthesias, neuropathic pain, myalgia, and persistent weakness [130–133]
(Figure 2). Pilotto et al. found that, at the 6 month follow-up appointment, 40% of previously
hospitalized COVID-19 patients had neurologic deficits and that 7.6% of these survivors
had subtle motor or sensory deficits [134]. However, an online survey of 3762 patients
with COVID-19 from multiple countries found that in the initial 6 months following acute
infection, sensorimotor deficits were among the most commonly reported symptoms (91%),
exceeding the percentage reporting emotional/mood disorders (88%), headache (77%), and
smell/taste disorders (58%). The same study revealed that 55.7% of patients experienced
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those symptoms for at least 6 months and that 53.7% were still experiencing those symptoms
after 6 months [71]. There are many factors that could be contributing to the difference
in numbers seen in these publications, most prominently the variability in defining the
spectrum of sensorimotor symptoms as well as the method of collecting data, but it is clear
that more work needs to be carried out to assess accurately the prevalence of sensorimotor
symptoms following COVID-19.
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Figure 2. Sensorimotor effects of long COVID. Long COVID can cause multiple symptoms in the
periphery affecting nerves and muscles as depicted in this figure. Patients may experience nerve
pain or paresthesias, most often due to involvement of small nerve fibers. Muscle pain and weakness
and joint pain can also be part of long COVID syndrome. Causes of these manifestations are not
completely understood, but may result from inflammation and infection-triggered immune system
dysregulation. Vasculitis with microclots may also damage nerve and muscle.

3.4.2. COVID-19-Associated Neuropathic Pain and Neuropathies

Neuropathic pain in long COVID patients may involve sensations of itching, tingling,
or burning. Although neuropathic pain can have central or peripheral etiologies, neuro-
pathic pain persisting for 3 months after acute COVID-19 infection has been attributed to
peripheral neuropathy [135–138]. Although both small and large fiber nerves are affected,
recent evidence has shown that it is the small diameter, lightly myelinated or unmyelinated
nerves that are most susceptible to damage [139]. The lack of myelination leaves axons
subject to local stressors, including those produced by immune dysregulation. Fortunately,
these fibers grow continuously throughout a person’s lifetime. If the stressful stimulus is
removed, reinnervation may occur to a degree sufficient to alleviate symptoms. Although
small fiber neurons have been classically thought of as having sensory functions, these
nerves are also responsible for innervation of sweat glands, bone, and small blood vessels.
Sweat dysfunction has been reported in some post-COVID-19 patients [140]. Interestingly,
a small study of 90 patients revealed that patients suffering from neuropathic pain were
4.9 times more likely to have experienced headache during the acute phase of COVID-19
than those suffering from non-neuropathic pain [141].

Paresthesias, experienced as abnormal sensations of tingling, burning, cold, or itch
that often occur in the upper or lower extremities, may indicate peripheral neuropathy
following COVID-19 infection [142]. A meta-analysis of 36 studies with over 9900 patients
found that 33.3% of those with long COVID symptoms reported paresthesias [143]. In
agreement with this result, an observational study from Mexico of 280 patients (median age
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55) who had been hospitalized with the diagnosis of COVID-19 infection were evaluated
up to 6 months after discharge and 35% reported paresthesias [144].

Small fiber peripheral neuropathy may develop within a month of COVID-19 on-
set [130]. Ser et al. screened patients with a history of COVID-19 infection at least 4 weeks
prior to evaluation, and based on an online survey, selected those with high scores in
autonomic and neuropathic complaints for further evaluation with electrophysiologic
studies [145]. Thirty-eight patients (35.8%) had neuropathic and/or autonomic symptoms
and 13 had neuropathic complaints only. The neuropathic symptoms were patchy, mostly
proximal, and not symmetrical. An abnormally high cutaneous silent period suppression
index (p = 0.002) compared to a healthy control group indicated small-fiber dysfunction.

Mononeuropathies that persist have been reported following COVID-19 in many parts
of the world [146,147]. New York Presbyterian and Columbia found an association between
long COVID and the development of mononeuropathy multiplex [148]. A respiratory clinic
in Scotland found elevated hemidiaphragm on chest X-ray in about 3% of patients after
COVID-19 pneumonia, likely due to phrenic nerve mononeuritiis. The hemidiaphragm
elevation persisted for an average of 7 months after diagnosis of COVID-19 [149].

There has been evidence that COVID-19 infection is associated with demyelinat-
ing polyneuropathies, such as Guillain–Barré syndrome (GBS) and Miller–Fisher syn-
drome [150–152]. Time lapse between COVID-19 onset and symptoms of GBS vary, but
may develop in under 2 weeks and generally respond well to standard treatment—either
IVIG or plasma exchange [153].

Neuropathy resulting from COVID-19 may be falsely attributed to the state of critical
illness seen in some severe acute infections or to compression and traction from pro-
longed immobility [154]. The treatment options for neuropathy related to COVID-19 are
those used for inflammatory neuropathy: Intravenous immunoglobulin (IVIG) and/or
corticosteroids [130,131,155]. A short course of steroids is a relatively safe empirical op-
tion [156]. Utrero-Rico et al. used prednisone at a dose of 30 mg per day for 4 days while
McWilliam used prednisolone at a starting dose of 60 mg per day with tapering over about
8 weeks [157,158]. Dosage of IVIG is generally 2.0 g/kg or higher over a period of 5–7 days,
but Thompson et al. used a course of 0.5 g/kg given every 2 weeks, with a plan to continue
for between 6 months and 1 year to alleviate symptoms in a small highly subjective study
of six long COVID patients [159]. A randomized clinical trial “Immunotherapy for Neuro-
logical Post-Acute Sequelae of SARS-CoV-2” is in progress using 0.4 g/kg/day for 5 days
versus normal saline with an estimated completion date of April 2024 (NCT05350774).

Gabapentinoids and antidepressants can also be tried [160,161]. Moreover, patients
may improve without intervention. COVID-19 can cause a variety of long-lasting sensori-
motor symptoms that may not always be reported. Symptoms of neuropathy that linger in
long COVID patients are distressing and sometimes disabling and can be difficult to treat
pharmacologically [162].

In addition to being an issue for patients as a symptom itself, sensorimotor neuropathy
can have profound adverse effects on quality of life. Lasting deficits can make return
to work difficult or impossible, cause pain, and impair the ability to perform activities
of daily living. The sensorimotor aspect of long COVID is one that may be overlooked,
underdiagnosed, and cause lasting problems for patients. More study is needed to grasp
the full extent of the problem in order that effective rehabilitation can ensue [163].

3.4.3. Myalgias

The long COVID syndrome frequently includes chronic pain commonly in the form of
neuropathic pain, but also in the form of myalgias. New onset pain following acute infection
with COVID-19 has been seen most frequently in the lower back, the joint space, the neck,
and the calf. Risk factors for chronic pain after COVID-19 infection include increasing
age and female gender. Older age was positively correlated with the development of
non-neuropathic pain [141].
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A meta-analysis of over 25,000 COVID-19 patients showed that the prevalence of long
COVID myalgias, joint pains, and chest pain ranged from 5.65% to 18.15%, 4.6% to 12.1%,
and 7.8% to 23.6%, respectively. Numbers were obtained at onset, as well as 30 days, 60 days,
and <180 days after acute infection. The prevalence of musculoskeletal pain decreased
between onset and 30 days of infection, increased between 30 and 60 days following
infection, and decreased between 60 and <180 days of follow-up [164]. A cohort study at a
single center in Turkey showed that, amongst patients with rheumatic or musculoskeletal
symptoms after acute infection, at the 3 month follow-up 40.6% had myalgias. Whereas at
the 6 month follow-up, only 15.1% had myalgias. Of note, this study also found a significant
association between female gender and the development of myalgias following COVID-19
infection [165]. A cross-sectional study from Northern Spain also found female gender
to be associated with post-COVID-19 myalgias [166]. Moreover, this study observed that
those suffering from post-COVID-19 myalgias had a higher fibrinogen level than those
without myalgias (510 ± 82 mg/dL vs. 394 ± 87 mg/dL; p = 0.013) [166]. A number of
studies have found that higher BMI was associated with the persistence of myalgias in the
setting of COVID-19 [167,168].

There is limited data on the effective treatment of long COVID myalgias and more
work is needed in this area. Physical activity may be helpful in reducing myalgia [169].

3.4.4. Pathophysiology of Long COVID Effects on the Peripheral Nerves

The mechanisms by which neurologic damage occurs have yet to be determined defini-
tively, but current theories include invasion of the virus into the nerves directly or indirect
effects from toxic processes that change the neural environment. Direct toxicity could occur
via invasion of the virus into nerve cells via the angiotensin-converting enzyme 2 (ACE2)
receptor or other means, followed by replication and possibly neuronal spread [170,171].

Indirectly, COVID-19 may leave in its wake a milieu of increased cytokine production
and release contributing to chronic inflammation and oxidative stress [172]. COVID-19-
induced vasculitis may also cause neuropathy since it can lead to microthrombosis within
the vasa nervorum [173–175]. A known cause of autoimmune neuropathy seen with other
viruses is induction of auto-immunogenicity, possibly by molecular mimicry leading to
breaking of self-tolerance. A post-infectious autoimmune cascade could then lead to nerve
damage [176].

3.5. Cognitive Impairment and Brain Fog

Cognitive deficits are a debilitating symptom experienced between 20 and 35% of pa-
tients with post-COVID-19 syndrome following resolution of acute COVID-19 [82,177–180].
Cognitive deficits may be seen in multiple domains compromising concentration, attention,
and frontal/executive function [181,182].

A systemic review by Llana et al. of 13 studies of mostly middle-aged adults who
had required hospitalization found that one third had subjective cognitive complaints
and a highly variable but significant portion had objective deficits in verbal memory at
4–6 months post-COVID-19 [183]. The severity and clinical course of acute COVID-19
infection do not correlate consistently with the appearance or persistence of cognitive
symptoms [184,185]. The lack of consistency makes it difficult to predict risk or gain insight
into contributing factors and underlying causes of cognitive problems in long COVID
patients [186].

Although the term “brain fog” does not have a universally accepted definition, it is
a hallmark of long COVID widely used by the lay public and the medical community to
describe difficulty thinking and focusing with confusion and lack of mental clarity [107].
Brain fog is generally one part of a symptom cluster, often correlated with decreased
psychological and psychomotor performance [187]. A study of 1680 patients aged 18–55
from hospitals in Iran with long COVID symptoms found that 7.2% reported brain fog.
Brain fog was positively correlated with factors including female sex, ICU admission, and
respiratory problems at the onset of disease [188]. An analysis of retrospective cohort
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studies including nearly 1.3 million patients showed that up to 2 years after COVID-19
infection, risk of brain fog continued to be elevated [189]. Other long COVID symptoms
(discussed further in other sections), such as fatigue, sleep disturbances, and mood dis-
orders are known contributors to cognitive deficits and may worsen the feeling of brain
fog [190]. Neuropsychiatric symptoms, such as depression are connected to cognitive
impairments in the realms of global cognition, episodic memory, executive functioning, pro-
cessing speed, visuospatial memory, attention, and working memory [191]. In a study from
Whiteside et al. conducted on 49 patients diagnosed with COVID-19 with self-reported
cognitive concerns, neuropsychological tests were administered to observe different areas
of cognition: Performance validity, attention/working memory, processing speed, memory,
language, visual-spatial, executive functioning, motor, and emotional functioning. Mean
scores on objective cognitive measures were not in the impaired range, but there were
elevated mean scores for mood measures [192]. The association between depressed mood
and brain fog was corroborated in 137 patients in a year-long follow-up after COVID-19
recovery where depression was found to be the strongest predictor of brain fog, leading
the authors to suggest that brain fog is a depressive state or the same neuroinflammation
is responsible for both symptoms [193]. This study also found that the patients did not
have severe cognitive deficits despite brain fog. The link between brain fog and depression
is considered an indication that clinical treatment of brain fog would be most effective
using a multidisciplinary approach taking neuroinflammation, mental health, sleep quality,
stress management, and lifestyle adjustments into account in order to properly address all
possible contributing factors [191,194].

While no single pathological hypothesis fully explains brain fog, the presumed etiology
is cytokine-mediated during a prolonged immune response in which inflammatory cells
and mediators cross the blood-brain barrier, inciting neuroinflammation [195,196]. A study
by Nuber-Champier et al. found that higher plasma levels of the inflammatory cytokine
tumor necrosis factor (TNF)-α during the acute phase of COVID-19 infection predicted the
future risk of memory problems 6–9 months later [197]. He et al. also found a relationship
of TNF-α to cognitive deficits even at 15 months after recovery from acute COVID-19
infection [198].

Direct infection of neurons and brain support cells and other mechanisms are also
considered as etiologic factors [31,199,200]. Irrespective of causes and objective testing,
subjectively, the experience of brain fog is a difficult one for long COVID patients that
causes emotional distress and changes in everyday functioning [201].

3.6. Hyposmia, Hypogeusia, Hearing Loss

A decline in sensory function has been reported as a symptom associated with long
COVID presenting as varying levels of hyposmia (dulled sense of smell), hypogeusia
(dulled sense of taste), and hearing loss [73,202]. Although the cause of these symptoms
is not fully understood, it is thought that damage to nasal and tongue epithelium due to
inflammation as well as viral antigen persistence contribute [203,204]. In relation to smell,
olfactory receptor neurons that normally turnover rapidly, exhibit diminished regenerative
capability after COVID-19 infection [205]. In a recent meta-analysis, Trott et al. found that
about 12.2% of patients experience complete loss of smell (anosmia) and 11.7% lose all
sense of taste (ageusia) that continues beyond 12 weeks after COVID-19 infection [206]. A
study from Poland conducted from September 2020 to September 2021 of 2218 patients
(36.4% female, 63.6% male, mean age 53.8 ± 13.5 years) who had recovered from COVID-19
found that 98 patients (4.4%) reported smell and taste disorders up to 3 months after COVID-
19 infection with no difference in the incidence of smell and taste disorders related to disease
severity [207]. A study from Wuhan China of 1733 long COVID patients discharged from
the hospital between January and May of 2020 found that 11% reported impairment of
smell and 7% reported impairment of taste at 6 months [127]. A recent meta-analysis
encompassing time-to-event data from 3699 patients in 18 studies utilized self-reported
recovery of smell and taste over time after infection to project a likely outcome and predicted
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that, similar to the study from Poland, about 5% of patients who had problems with
smell and taste initially were likely to suffer persistent dysfunction [208]. Helmsdal et al.
performed phone interviews on 170 people who had been diagnosed with COVID-19
between March 2020 and April 2020 in the Faroe Islands and found that by a median of
22.6 months after infection 9% still described symptoms affecting smell and taste [209].

A study from the University of Vienna enrolled 102 patients with COVID-19-related
olfactory dysfunction for an in-person evaluation at an average of 216 days after symptom
onset. They used not only questionnaires, but also applied chemosensory testing of or-
thonasal, retronasal, and gustatory function. In this group, recovery proved to occur slowly
with only 23.5% returning to normosmia after 216 days. However, only 4% had persistent
anosmia, indicating that for most patients, olfactory neurons resume function [210,211].
Some patients who have experienced hyposmia or anosmia as a result of COVID-19 infec-
tion also report parosmia, where olfactory response is negatively altered. In one case series,
the distortion in smell was reported as reminiscent of sewage, with others reporting rotten
meat, rotten eggs, moldy socks, and citrus odors [212]. For the majority of patients, most
odors triggered parosmia, but some only experienced this phenomenon for one specific
smell, such as perfume, frying smell, or meat. The majority of these patients also experi-
enced dysgeusia, distorted taste. Patients with dysgeusia have described food that was
previously appealing as tasting “bland and metallic” [213]. For a significant period after the
initial infection, viral presence was found in tongue epithelial cells and taste receptor cells,
disrupting taste response. Mucosal inflammation leads to a reduction in epithelial cells
and these cells are replenished slowly, causing dysgeusia to be a persistent long COVID
symptom [214,215].

Treatment of decreased and distorted sense of smell after COVID-19 infection may
encompass olfactory training through exposure to smell essences or oils and odor identifi-
cation [216,217]. Training can be self-administered or given by a health professional.

Hearing loss is less well-documented after COVID-19 even though it is relatively
rare [218,219]. Tinnitus is also reported [220]. In an online survey of over 3700 people,
5.2–6.4% reported hearing loss between months 4–7 after COVID-19 infection [71]. How
SARS-CoV-2 affects the auditory pathway is not fully elucidated, but hearing problems
may result from epithelial damage and vascular issues, such as microthrombosis [220–222].

Newer variants of COVID-19, such as Delta and Omicron are less likely than the
original to cause chemosensory problems. A study by Coelho et al. using a dataset of over
3.5 million cases of COVID-19 found that the probability of smell and taste loss was only
17% for Omicron [223]. The effects of future variants are unknown and the problem may
resurge with BA.5. Studies are ongoing to understand the mechanisms through which
COVID-19 affects sensory systems and particularly how it may inflict damage to cells that
are not specifically infected [224].

3.7. Ocular Symptoms

Ocular complications, such as epiphora, hyperemia, and chemosis have occurred in
patients who were diagnosed with COVID-19, presumably due to the ACE2 receptors
on the cornea, limbus, and conjunctiva. COVID-19 can in turn cause damage to cranial
nerves, pupils, lacrimal system, conjunctiva, sclera, retina, choroid, and other parts of the
eye [225]. These complications are uncommon, but the virus has been found in tears at
low prevalence. In a study performed at a hospital in Turkey, ophthalmologists examined
359 patients hospitalized with a diagnosis of COVID-19 and found that four developed
conjunctivitis, five developed subconjunctival hemorrhage, and one experienced vitreous
hemorrhage [226]. These complications can develop during infection or at a later time
during follow-up. In a study from Egypt, 100 patients who had recovered from an acute
COVID-19 infection and 100 control patients who did not have COVID-19 were given
ophthalmologic screens. The results of the screening found higher levels of retinal vascular
occlusion, uveitis, central serous chorioretinopathy, and anterior ischemic optic neuropathy
in those who had been infected with COVID-19 [227]. Retinal microvascular changes may
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also be detected after recovery from COVID-19 [228,229]. Endogenous endophthalmitis
and ocular surface abnormalities, such as dryness and different tear osmolarity have
been reported, as well [230]. Inflammation and elevated coagulation after infection are
implicated in significantly higher levels of ocular morbidities due to COVID-19 [229].

4. Conclusions

Persistence or appearance of neurologic symptoms after clearance of SARS-CoV-
2 infection is a major global health challenge resulting from the COVID-19 pandemic.
Adverse effects persisting months after COVID-19 infection can be debilitating and include
fatigue, neuropsychiatric sequelae, sleep disturbances, sensorimotor symptoms, cognitive
impairment/brain fog, hypoguesia/hyposmia, hearing loss, and ocular symptoms (Table 2).
Effective therapies have remained elusive in most cases in these immediate years following
the onset of the pandemic. More strategies are needed in order for physicians to effectively
treat and manage the long-term neurologic sequelae of COVID-19 infection. However, it
is essential for the astute clinician to recognize the chronic neurological manifestations of
COVID-19. This knowledge can help in guiding clinical diagnosis and management and
ultimately leading to a reduction in unnecessary testing. Further research should bring
about improved patient outcomes and satisfaction.

Table 2. Neurologic manifestations of long COVID and associated symptoms.

Neurological Sequelae Symptoms and Presentation References

Fatigue
Physical, mental, or emotional energy
deficit that worsens after physical or

mental exertion
[65–69,76]

Neuropsychiatric
Anxiety, post-traumatic stress

disorder, pain disorder, delirium,
mood swings, psychosis

[96,97,113–115,119,120]

Sleep disturbances Insomnia, low sleep efficiency,
nightmares, lucid dreaming [126,129]

Sensorimotor deficits
Peripheral neuropathy, paresthesias,

neuropathic pain, myalgia,
persistent weakness

[130–133,141,142]

Brain fog
Poor concentration, slowed thinking,

difficulty paying attention,
and focusing

[181–183]

Hyposmia/parosmia
Partial or total loss of sense of

smell/misperceiving odors (often
pleasant odors seem unpleasant)

[202,206–208,210,212]

Hypogeusia/dysgeusia Partial or total loss of sense of
taste/altered perception of taste [202,206–208,211,213]

Hearing problems Hearing loss, tinnitus [76,218–220,222]

Ocular symptoms
Tearing, hyperemia, chemosis

(conjunctival swelling), conjunctivitis,
damage to ocular nerves

[225,227]

Since COVID-19 has affected a large number of patient groups worldwide, we may
never fully grasp the impact of long COVID on humanity. The subjective nature of many
of the symptoms make them difficult to quantify. Further research is required to better
characterize and manage neurologic sequelae in COVID-19 patients. Helping these patients
to recover as fully as possible will benefit not only those affected, but also their families
and society in general.
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