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Abstract: Background: There is increasing interest in the role of EEG in neurorehabilitation. We
primarily aimed to identify the knowledge base through highly influential studies. Our secondary
aims were to imprint the relevant thematic hotspots, research trends, and social networks within the
scientific community. Methods: We performed an electronic search in Scopus, looking for studies
reporting on rehabilitation in patients with neurological disabilities. We used the most influential
papers to outline the knowledge base and carried out a word co-occurrence analysis to identify
the research hotspots. We also used depicted collaboration networks between universities, authors,
and countries after analyzing the cocitations. The results were presented in summary tables, plots,
and maps. Finally, a content review based on the top-20 most cited articles completed our study.
Results: Our current bibliometric study was based on 874 records from 420 sources. There was
vivid research interest in EEG use for neurorehabilitation, with an annual growth rate as high as
14.3%. The most influential paper was the study titled “Brain-computer interfaces, a review” by L.F.
Nicolas-Alfonso and J. Gomez-Gill, with 997 citations, followed by “Brain-computer interfaces in
neurological rehabilitation” by J. Daly and J.R. Wolpaw (708 citations). The US, Italy, and Germany
were among the most productive countries. The research hotspots shifted with time from the use
of functional magnetic imaging to EEG-based brain–machine interface, motor imagery, and deep
learning. Conclusions: EEG constitutes the most significant input in brain–computer interfaces
(BCIs) and can be successfully used in the neurorehabilitation of patients with stroke symptoms,
amyotrophic lateral sclerosis, and traumatic brain and spinal injuries. EEG-based BCI facilitates the
training, communication, and control of wheelchair and exoskeletons. However, research is limited to
specific scientific groups from developed countries. Evidence is expected to change with the broader
availability of BCI and improvement in EEG-filtering algorithms.
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1. Introduction

After severe traumatic brain injury (sTBI) and spinal cord injury (SCI), stroke, and
other neurodegenerative disorders, patients frequently experience significant neurological
disabilities. Traditional rehabilitation focuses on teaching compensatory skills and allows
the patient to return home as soon as possible but does not seem to reduce impairment [1,2].
Alternatively, functional recovery might result in more-sustainable outcomes, as it has been
associated with a long-term reduction in impairment and offers an improvement in quality
of life [1,2]. Thus, neurorehabilitation has recently shifted toward more-active paradigms,
particularly in patients with motor and communication disabilities [1,2]. Several approaches
can improve motor learning, including massed and task-specific practice, multisensory
stimulation, and motor imagery [1,2]. Similarly, intensive speech and language therapies,
including constraint-induced aphasia therapy, which activates both the linguistic and the
concordant motor circuits, can rapidly improve language performance [1,2].
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Lately, brain–computer interfaces (BCIs), communication systems that recognize users’
commands only from the brain signals and react according to them, have been used in
inpatient rehabilitation, with promising results [3,4]. Various invasive and noninvasive
modalities, such as electroencephalography (EEG), near-infrared spectroscopy (NIRS), and
electrocorticography (ECoG) [3,4], are frequently used to identify proper brain signals.
High-density EEG constitutes an advanced and quantitative technique based on the multi-
channel recording of the brain’s electrical activity to localize underlying brain structures [5].
To the best of our knowledge, there is a paucity in the pertinent literature on quantitative
studies reviewing the role of EEG in neurologic rehabilitation.

In our current study, we used bibliometrics, a systematic and reproducible way to
review the literature on the basis of the statistical analysis of highly cited records, to analyze
and evaluate the literature on EEG in neurorehabilitation [6,7]. Bibliometrics are based on
the assumption that the number of citations could reflect the impact or value of a particular
article to a certain extent. We primarily aimed to identify the knowledge base through highly
influential studies. Our secondary aims were to examine the relevant research front, focusing
on active authors, thematic hotspots, and research trends. We also aimed to track the pertinent
social networks within the scientific community regarding co-operations between institutions,
countries, and authors. By referring to this article, readers can learn literature trends and
characteristics of scientific documents to gain insights to guide future studies.

2. Material and Methods

We conducted a bibliometric analysis according to the workflow recommended for
science mapping (M. Aria and C. Cuccurullo), using the statistical environment R, the bib-
lioshiny interphase (package bibliometrix), and VOSviewer [6,7]. Bibliometrix is a popular
tool used for bibliometric analysis, particularly in health sciences [6]. Since we gathered litera-
ture data without involving any patients, the current study was exempted from Institutional
Review Board (IRB) approval and patient informed consent [8].

2.1. Search Strategy

Our electronic search was carried out in the medical database Scopus. We preferred
the particular database because it is a broad database with many records and permits the
extraction of scientometric metadata [9,10]. To avoid duplicates and because of inherent
software limitations, we limited our search to a single database. In this study, rehabilitation
was defined as the field of science involved in neurologic recovery after sTBI, SCI, stroke,
and other central nervous system disorders, such as amyotrophic lateral sclerosis (ALS)
and locked-in syndrome (LiS) [11]. Neurologic rehabilitation included the neural repair,
regeneration, and dynamic reorganization of functional neural systems, manifested by
increased awareness and by return to function and freedom [11].

2.2. Eligibility

We aimed to search titles, abstracts, and keywords for “rehabilitation”, “neurological
disorders”, and “electroencephalography” in any form and combination (Table 1). The
search was limited to studies written in English in any form and without further limitations
on the publication date. We intended to gather studies with significant impact, and there-
fore, we decided to include any publication type, such as reviews, editorials, letters to the
editor, and conference abstracts [12]. Our limitation in the manuscript language was not
expected to change our results, because English written articles have the largest penetration
in health sciences [13]. We included all records resulting from the electronic search.

2.3. Data Collection

All citation data, bibliographical information, abstracts, and keywords of the eligible
records were downloaded using the BibTeX format. We retrieved the article title, names
and number of authors, year and journal of publication, Scopus citation count, and the cor-
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responding author’s country for our bibliometric analysis. Data were loaded on biblioshiny
and analyzed without any further filtering [6].

Table 1. Main bibliometric characteristics of documents retrieved from Scopus.

Description Results

Main Information about Data

Timespan 1964:2021
Sources (journals, books, etc.) 420
Documents 874
Average years from publication 5.03
Average citations per documents 21.63
Average citations per year per doc 3.13
References 41104

Document Types

article 546
book 1
book chapter 17
conference paper 145
conference review 4
editorial 18
erratum 1
letter 11
note 5
retracted 1
review 119
short survey 6

Document Contents

Keywords Plus 6146
Author’s Keywords 1946
AUTHORS
Authors 3589
Author appearances 4623
Authors of single-authored documents 40
Authors of multi-authored documents 3549

Authors Collaboration

Single-authored documents 45
Documents per author 0.244
Authors per document 4.11
Coauthors per documents 5.29
Collaboration index 4.28

Search in Scopus: (TITLE-ABS-KEY (neurorehabilitation) OR TITLE-ABS KEY (rehabilitation AND neurological
AND disorders OR TITLE-ABS-KEY (neurorehabilitation)) AND (TITLE-ABS-KEY (EEG) OR TITLE-ABS KEY
(electroencephalography) OR TITLE-ABS KEY (electroencephalogram) AND (LIMIT TO (LANGUAGE, “En-
glish”)).

2.4. Data Analysis

The current study’s data analysis occurred in two steps, using descriptive analysis and
a network extraction process. We performed a descriptive analysis using standard competi-
tion ranking to retrieve evidence on the most productive authors and countries, the most
cited papers, the most frequent journals, and the most common author’s keywords [6]. In
the network extraction process, we performed three subanalyses, including a collaboration
analysis according to universities and countries, a cocitation analysis based on authors,
and a word co-occurrence analysis according to the author’s keywords [6]. To assess the
extent of international collaborations, we used the indices of single country publications
(SCP), multiple-country publications (MCPs), and the ratio of SCP to MCP [6,14]. In SCP, all
authors belonged to the same country, representing intracountry collaboration [14]. On the
contrary, authors belonged to different countries in MCP, and such publications represented
an international collaboration [6,14].
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2.5. Data Synthesis and Quality Assessment

The results were presented in tables. Trends and temporal data were visualized in
burst detection and simple time series plots. Word proximity maps were used to present
the word co-occurrence analysis, the university collaboration analysis, and the author
cocitation analysis. Geospatial data and conceptual structures were shown in geographic
maps and cluster strings. Finally, after gathering and reading the full text of the top-20
most cited studies, we performed a narrative literature review.

3. Results
3.1. Literature Search

The electronic search in Scopus resulted in 874 articles from 420 sources, including
journals, special issues, and books (Table 1). Among the gathered documents, there were
456 original studies, 145 conference papers, and 119 reviews. With a total of 41,104 refer-
ences, there was an average of 21.63 citations per document, and the average years after
publication were as high as five. The numbers of Scopus and authors’ keywords were 6146
and 1946, respectively. We recorded 3589 authors, with 0.24 documents per author and 5.29
coauthors per document. There was rising interest in EEG use in neurorehabilitation, with
an annual growth rate as high as 14.3% during the past 10 years (Figure 1, top).
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3.2. Top-20 Most-Cited Documents

The list of the top-20 most cited articles is depicted in Table 2 [3,4,15–32]. The most
cited document was “Brain-computer interfaces, a review” by Nicolas-Alfonso et al., (997 ci-
tations), followed by “Brain-computer interfaces in neurological rehabilitation” by J. Daly
and J.R. Wolpaw (708 citations) [3,4]. In this list, 13 (65%) documents were reviews, six
(30%) were research articles, and the remaining one (5%) was a symposium summary.
Five studies (25%) involved stroke, whereas one article (5%) was related to sTBI, SCI, and
ALS/LiS. Brain–computer interface (BCI) was the main topic in 11 (55%) studies. Finally,
neurorehabilitation was used to improve motor function in 15 (75%) studies, whereas, in
three (15%) studies and one (5%) study, neurorehabilitation was implemented to control
machines and facilitate communication.

Table 2. Top-20 globally most-cited documents.

Paper Year Journal Total
Citations Study Design Clinical Entity Main Topic Use

Nicolas-Alfonso L and
Gomez-Gill J [3] 2012 Sensors 997 Review Multiple BCI Rehabilitation

Daly J and Wolpaw J [4] 2008 Lancet Neurol 708 Review Multiple BCI Rehabilitation

Ramos-Murguialday A
et al. [15] 2013 Ann Neurol 521 Research Multiple BCI Motion

Naseer N and Hong K
[16] 2015 Front Human

Neurosci 483 Review Multiple BCI Motion

Young A and Ferris D
[17] 2017

IEEE Trans
Neural Syst
Rehabil Eng

305 Review Multiple Exoskeleton Motion

Chaudhary U et al. [18] 2016 Nat Rev
Neurol 293 Review Multiple BCI Communication

Kos D et al. [19] 2008 Neurorehabil
Neural Repair 274 Review MS MS Rehabilitation

Rizzolatti G et al. [20] 2009 Nat. Clin. Pact.
Neurol 268 Review Multiple Mirror neurons Rehabilitation

Donati A et al. [21] 2016 Sci Rep 197 Research SCI BCI Rehabilitation

Kevric J and Subasi A
[22] 2017 Biomed Signal

Process 194 Research Multiple BCI Rehabilitation

Wagner J [23] 2012 Neuroimage 173 Research Multiple Robotics Rehabilitation

Dobkin B [24] 2007 J Physiol 165 Conference ALS, LiS BCI Rehabilitation

Lebedev M and
Nicolelis M [25] 2017 Physiol Rev 162 Review Multiple BCI Rehabilitation

Soekadar S et al. [26] 2015 Neurobiol Dis 156 Review Stroke BCI Rehabilitation

Lew E et al. [27] 2012 Front Neuro-
engineering 153 Research Stroke EEG

decomposition Rehabilitation

Elbert T and Rockstroh
B [28] 2004 Neuroscientist 152 Review TBI Plasticity Rehabilitation

Obrig H [29] 2014 Neuroimage 151 Review Multiple NIRS Clinical

Ang K et al. [30] 2010
Annu Int Conf
IEEE Eng Med
Biol Soc EMBC

148 Review Stroke BCI Rehabilitation

Altenmuller E et al.
[31] 2009 Ann New York

Acad Sci 146 Research Stroke Plasticity Rehabilitation

Ramos-Murguialday A
et al. [32] 2012 PLOS One 138 Research Stroke BCI Rehabilitation

(BCI, brain–computer interface; MS, multiple sclerosis; EEG, electroencephalogram; NIRS, near-infrared spec-
troscopy; SCI, spinal cord injury; TBI, traumatic brain injury; LiS, locked-in syndrome).
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3.3. Top-20 Most-Productive Authors

The top-20 most productive authors are depicted in Figure 2, while most-cited countries,
based on the first author’s affiliation, are shown in Table 3. G. Pfurtscheller, N. Birbaumer, and
J.R. Wolpaw occupy the top three of the most cited authors, with 975, 875, and 501 citations,
respectively.
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Table 3. Top-20 scientific production by country.

Country Articles Frequency SCP MCP MCP Ratio

USA 96 0.14 76 20 0.21

Italy 91 0.136 73 18 0.19

Germany 66 0.098 38 28 0.42

China 49 0.073 41 8 0.16

United Kingdom 40 0.059 24 16 0.4

Japan 34 0.050 32 2 0.06

Korea 33 0.049 28 5 0.15

Spain 28 0.041 11 17 0.60

Switzerland 22 0.033 14 8 0.36

India 20 0.03 15 5 0.25

Canada 17 0.025 9 8 0.47

Denmark 16 0.023 4 12 0.75

France 15 0.022 7 8 0.53

Austria 13 0.019 9 4 0.31

Poland 13 0.019 12 1 0.078

Australia 11 0.016 6 5 0.45

Brazil 10 0.014 4 6 0.6

Belgium 9 0.013 5 4 0.44

Mexico 9 0.013 9 0 0

Singapore 8 0.011 3 5 0.62
SCP, single country publication; MCP, multiple-country publication.
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3.4. Top-20 Journals

The gathered records were reported in 420 sources, and the top-20 journals were listed
in Table 4. We witnessed an active source growth, particularly for the journals of IEEE
Transactions on Neural Systems and Rehabilitation, Frontiers in Human Neuroscience, Frontiers in
Neuroscience, and Journal of Neural Engineering (Figure 1, bottom).

Table 4. Top-20 most-cited authors, sources, and keywords.

Rank
Authors

Citations
Sources

Articles
Keywords

Occurrences
Name Name Words

1 Pfurtscheller G. 975

IEEE Transactions on
Neural Systems and
Rehabilitation
Engineering

27 neurorehabilitation 147

2 Birbaumer N. 875 Frontiers in Human
Neuroscience 23 EEG 115

3 Wolpaw J.R. 501 Frontiers in Neuroscience 22 stroke 105

4 Cohen L.G. 450 Journal of Neural
Engineering 20 rehabilitation 78

5 Neuper C. 438
Journal of
Neuroengineering and
Rehabilitation

19 brain–computer
interface 74

6 Mcfarland D.J. 329

Proceedings of the
Annual International
Conference of the IEEE
Engineering in Medicine
and Biology Society EMBS

18 motor imagery 64

7 Guan C. 326 Frontiers in Neurology 16 electroencephalography 53

8 Farina D. 286 Neuroscience and
Behavioral Physiology 14 BCI 37

9 Hallett M. 284 Neuroimage 11 brain–computer
interface 30

10 Ang K.K. 276 Neurorehabilitation and
Neural Repair 11 virtual reality 28

11 Blankertz B. 275 Clinical Neurophysiology 10 disorders of
consciousness 25

12 Gharabaghi A. 266 IFMBE Proceedings 10 electroencephalography
(EEG) 25

13 Scherer R. 259 Neurorehabilitation 10 electroencephalogram 24

14 Makeig S. 237 Restorative Neurology
and Neuroscience 10 neurofeedback 23

15 Nitsche M.A. 219

Lecture Notes in
Computer Science
(Including Subseries
Lecture Notes in Artificial
Intelligence and Lecture
Notes in Bioinformatics)

9 neuroplasticity 23

16
Ramos-
Murguialday
A.

218 Sensors (Switzerland) 8
transcranial
magnetic
stimulation

22

17 Paulus W. 215 Annals of Physical and
Rehabilitation Medicine 7 brain–computer

interface (BCI) 21

18 Pascual Leone A. 205 Frontiers in Systems
Neuroscience 7 brain–computer

interface 19

19 Schalk G. 191 Neural Plasticity 7 brain–machine
interface 18

20 Laureys S. 189 Biomedical Signal
Processing and Control 6 minimally

conscious state 17
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3.5. Top-20 Most-Common Author’s Keywords and Word Trends

The top-20 most common author’s keywords and the trends regarding word growth
are depicted in Table 4 and Figure 3. Except for the words “rehabilitation” and “electroen-
cephalography” and their derivatives, the term “brain–computer interface” predominated
among the author’s keywords, with 180 occurrences in various forms. We also recorded
a rising trend in all keywords since 2005. However, the trends changed over time, from
the use of “function 9rganization magnetic imaging” to “brain–machine interface”, “motor
imagery”, and “deep learning”.
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3.6. Collaboration Analysis

According to the primary author, the US, Italy, and Germany were the topmost
productive countries. According to the MCP/SCP ratio, many of the leading countries,
such as the US (21%), Italy (19.78%), and China (16%), were limited in local co-operations.
In contrast, countries such as Denmark (75%), Singapore (62%), Spain (61%), France (53%),
Canada (47%), Australia (45%), Belgium (44%), and Germany (42%) were involved in more-
extensive collaborations. Accordingly, the collaboration analysis map among institutions
revealed a major co-operation network centered on the University of Lund (Figure 4, top).
The remaining collaborations were limited to no more than a couple of institutions in
every case.
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3.7. Coword Analyses

On the basis of on the author’s keywords, the coword analysis identified four major
clusters (supplement Table 5). The keyword “motor imagery” characterized the first and
fourth clusters. “Virtual reality” and the “disorders of consciousness” prevailed in the
second and third clusters.

Table 5. Cluster analysis based on author’s keyword co-occurrence.

Node Cluster Betweenness Closeness Page Rank

brain–computer interface (BCI) 1 2.19 0.01 0.01

electroencephalography (EEG) 1 2.74 0.01 0.01

motor imagery (mi) 1 0.00 0.01 0.01

BCI 2 2.98 0.01 0.03

EEG 2 215.55 0.01 0.08
cmidrule1-5 fMRI 2 0.42 0.01 0.01

p300 2 0.00 0.01 0.00

virtual reality 2 5.73 0.01 0.02

brain–computer interface 2 0.84 0.01 0.02
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Table 5. Cont.

Node Cluster Betweenness Closeness Page Rank

EMG 2 0.00 0.01 0.01

neurorehabilitation 2 0.00 0.01 0.01

cerebral palsy 2 0.13 0.01 0.01

disorders of consciousness 3 11.57 0.01 0.02

traumatic brain injury 3 3.13 0.01 0.01

minimally conscious state 3 4.93 0.01 0.02

vegetative state 3 7.70 0.01 0.02

outcome 3 0.63 0.01 0.01

prognosis 3 0.00 0.01 0.01

coma 3 0.38 0.01 0.01

unresponsive wakefulness syndrome 3 0.00 0.01 0.01

neurorehabilitation 4 513.51 0.02 0.13

brain–machine interface 4 0.49 0.01 0.01

brain–computer interface 4 42.45 0.01 0.04

electroencephalography 4 17.28 0.01 0.06

transcranial magnetic stimulation 4 1.38 0.01 0.01

electroencephalogram (EEG) 4 0.13 0.01 0.01

motor imagery 4 27.94 0.01 0.05

neurofeedback 4 2.39 0.01 0.02

event-related desynchronization 4 0.00 0.01 0.01

motor learning 4 0.16 0.01 0.01

functional near-infrared spectroscopy 4 0.02 0.01 0.01

electroencephalogram 4 0.89 0.01 0.01

spinal cord injury 4 0.24 0.01 0.01

brain-robot interface 4 0.00 0.01 0.01

functional connectivity 4 0.08 0.01 0.01

brain–computer interfaces 4 0.00 0.01 0.01

functional electrical stimulation 4 0.91 0.01 0.01

neuromodulation 4 0.00 0.01 0.01

stroke 5 132.77 0.01 0.09

rehabilitation 5 78.27 0.01 0.05

multiple sclerosis 5 0.00 0.01 0.00

neuroplasticity 5 1.04 0.01 0.01

plasticity 5 0.83 0.01 0.01

motor cortex 5 0.04 0.01 0.01

noninvasive brain stimulation 5 0.43 0.01 0.01

TDCS 5 0.64 0.01 0.01

transcranial direct current stimulation 5 1.60 0.01 0.01

motor control 5 0.00 0.01 0.00

exoskeleton 5 0.47 0.01 0.02

brain–computer interface 5 0.12 0.01 0.01
The cluster analysis was based on centrality measures, including betweenness, closeness, and page rank. Be-
tweenness refers to the number of the shortest paths passing through a given node. The higher the betweenness
centrality of the node, the greater the ability to control information passing between the other nodes. The closeness
is used to measure the distance of one node to other nodes in a network. Nodes with high closeness centrality
obtain information better than do other nodes or tend to have a more direct influence on other nodes.
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4. Review Based on the Top-20 Most Cited Articles

The term “brain–computer interface” (BCI) refers to a hardware and software sys-
tem that has been designed to control external computers or devices using cerebral sig-
nals [3,4,18,25]. In neurorehabilitation, BCI was used to assist severely disabled patients
with sTBI, SCI, stroke, and ALS/LiS to interact with the environment [3,4,18,25,26], and
it works in five stages: (1) signal acquisition, (2) preprocessing or signal enhancement,
(3) feature extraction, (4) classification, and the (5) control interface [3].

In signal acquisition, several brain signals, either electrophysiological or hemody-
namic, are invasively gathered or noninvasively detected before further amplification,
filtering, and decoding using online classification algorithms [3,4,18]. The slow cortical
potentials (SCP), sensorimotor rhythms, P300 event-related potentials, steady-state visual
evoked potentials, and cerebral oxygenation levels are frequently registered for this pur-
pose [3,4,18]. Noninvasive modalities such as EEG, functional magnetic resonance (fMRI),
and NIRS were the most extensively studied tools in recording brain activity because
their invasive counterparts (ECoG and intracortical neuron recording) have been associ-
ated with significant health risks, including microelectrode rejection, infection, and tissue
damage [3,16,18,29]. The primary motor and the prefrontal cortices were the preferred
brain targets for EEC-based BCIs and could be used in conjunction with NIRS in a hybrid
technology [16,29]. In an experimental study, Lew et al. focused on the noninvasively
recorded readiness potential, a SCP detected over the central medial areas [27]. The authors
documented a high SCPs detection rate of 500 ms before movement onset. The absence of
SCPs during the nonmovement intention period allowed the authors to conclude that it
could be a valuable tool in neurorehabilitation [27].

Signal preprocessing or enhancement involves signal amplification and noise re-
moval [3,4,25]. EEG signals generated by motor task imagery could be translated into
external actions [22]. However, the processing of EEG signals, which directly affects classi-
fication accuracy, still represents a crucial challenge. They are susceptible to several factors,
including the physical state, mood, posture, and external noise [22]. Kevric et al. com-
pared three EEG signal processing techniques, the empirical mode decomposition, discrete
wavelet transform, and wavelet packet decomposition, to decompose EEG signals in a
BCI system and task classification [22]. The authors reported that the highest classification
(92.8%) was achieved by combining multiscale principal component analysis denoising and
higher-order statistics features extracted from wavelet packet decomposition sub-bands.
The latter could be used to control external devices, including a wheelchair [22].

On the other hand, brain activity signals come in specific patterns, which need to be
recognized, selected, extracted, and matched to the patient’s intention, using classification
or regression algorithms [3,4,25]. Regression algorithms employ EEG features as indepen-
dent variables to predict user intentions [3]. In contrast, classification algorithms use the
features extracted as independent variables to define boundaries between the different
targets in feature space [3].

The ultimate goal is to use EEG-based BCI and help patients with paralysis disabilities
to communicate and control their environment, including external robotic devices and
prosthetics, as in patients with ALS/LiS [3,4,17,18,26]. In addition, the recovery of neural
function and motor function restoration in patients after stroke or SCI could be facilitated
on the basis of rehabilitative BCIs in conjunction with virtual reality–assisted training and
behavioral physiotherapy by inducing neural plasticity [3,4,18,20,23,26,28]. Indeed, the
addition of BCI training to behaviorally oriented physiotherapy could induce functional
improvements in motor function in patients with chronic stroke symptoms, without resid-
ual finger movements, and may open a new door in stroke neurorehabilitation [15]. Motor
imagery represents a challenging method in rehabilitating patients with stroke symptoms
by promoting the recruitment of the motor system for functional recovery [30]. It involves
attempts to execute imagined movements using the plegic hand [30]. Ang et al. tried to
investigate the ability of 54 patients who had a hemiparetic stroke to operate an EEG-based
motor imagery BCI [30]. In addition, they compared EEG-based MI-BCI in conjunction
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with robotic feedback neurorehabilitation to robotic rehabilitation that delivers movement
therapy in terms of motor improvement on the stroke-affected upper limb [30]. The authors
reported significant gains in the functional scores in postrehabilitation and the two-month
follow-up [30]. Of note, there were no significant differences between groups [30]. Motor
outcomes could be potentiated using proprioceptive BCI in patients with residual proprio-
ception and sessions of music-supported therapy [31,32]. However, there were cases where
neuroplastic alterations were driven into maladaptive domains with significant adverse
symptoms, such as phantom limb pain [28].

Equally important, EEG-controlled exoskeletons were designed as assistive devices
for individuals with disabilities but could also be used in rehabilitation to assist or resist
passive and active movement [17,26]. Assistive technologies provided support and balance
during walking and whole-body navigation using a wheelchair [17,25,26]. Therapeutic de-
vices target the improvement of physiological health by increasing physical activity and
weight-bearing capabilities [17,26]. According to evidence that active contributions to the
movement could be critical for encoding motor memory, Wagner et al. proposed brain-
monitoring techniques during gait training to encourage active participation [23]. Thus, the
authors compared the spectral patterns in the EEG during active walking and passive robot-
assisted walking [23]. Independent EEG components were clustered across participants
on the basis of their anatomical position and frequency spectra [23]. The authors provided
evidence for significant cortical activation differences between active and passive robot-
assisted gaits [23]. They noted the significant suppression of the mu, beta, and gamma
rhythms during active walking, particularly compared with passive walking [23]. These
differences depended on the phase of the gait cycle [23]. Similar differences were recorded
in the right-hand area [23].

It seems that the use of EEG and BCI in neurorehabilitation was associated with
significant limitations. Initially, there was a substantial lack in the literature of large
randomized controlled clinical trials using invasive and noninvasive BCIs with long-term
follow-ups in patients rather than healthy populations [3,18]. In addition, BCI systems must
become safer, more reliable, cosmetically acceptable, user-friendly, and highly accurate [24].
The high cost of BCI technologies may raise ethical concerns, particularly in patients with
ALS/LiS on ventilatory support [24].

5. Discussion
5.1. Overview of Our Findings

Our current manuscript presents a detailed analysis of the top cited articles on the
use of EEG in neurorehabilitation. It can help clinicians and researchers understand the
existing knowledge base, comprehend the current research front, and become acquainted
with the underlying social/scientific networks. [*]We specifically identified the articles that
served as landmarks in the field and the most influential authors. We preferred the number
of citations as a criterion in ranking our articles among several other, including the date of
publication and the h-index, because we believe that it is the most appropriate indicator of
the scientific impact of an article in the field. Thus, we reviewed the pertinent literature
on the basis of the most influential contributions. Likewise, we showed that the available
research front originates from a limited number of institutions with an even smaller number
of co-operations among them. Finally, it became evident that most research originates
from affluent countries from Europe and from the US, with little to minimal contribution
from Asia and the South America. BCIs constitute the connecting link between EEG and
rehabilitation. This study seems to be the first study focusing on a specific topic. Therefore,
there are no relevant studies that can be used for further comparison. Nevertheless, a series
of thoughts have been elicited by the current findings and are presented thereunder.

5.2. Bibliometrics

Bibliometrics is a viable means to qualitatively and quantitatively review the litera-
ture [6,7,14,33]. It is an analysis of “big data” originating from literature databases, using
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artificial intelligence (AI) [34]. It is based on the concept that highly cited articles have a
significant impact on the development of science [35]. Accordingly, we could identify the re-
search background of the most active authors, countries and institutions, and journals [36].
The research trends and hotspots could be identified on the basis of the most frequent
author’s keywords and their changes over time. Finally, various networks between authors,
countries, and institutions could be recognized by using a word co-occurrence analysis.

5.3. Temporal Trends

Neurorehabilitation and control of external devices using EEG-based BCI were charac-
terized by a recent rise of scientific interest and a high annual scientific production. Even
though motor and communication disabilities have been around for as long as humanity
has existed, this rise occurred in the past decade. Several scientific advances preceded,
including the development of AI and several signal-filtering algorithms [37,38]. Thus, we
recorded an exponential rise in scientific production since the early 2010s. There are proba-
bly two additional reasons why EEG in neurorehabilitation showed this late bloom. There
was a shift in the rehabilitation approach from teaching patients to cope with disability
toward improving the functional outcome by neurorehabilitation [3,4,25]. Indeed, over
the past decades, rehabilitation intended to teach the patients tips and tricks on how to
eat, dress, and independently move about. Nowadays, rehabilitation aims to improve the
function of the paralyzed extremity by activating dormant or hibernating cerebral circuits
to assist in walking and the execution of the activities of daily living. Furthermore, the
use of EEG in neurorehabilitation demands a deep understanding of brain function and
thorough computer science knowledge [39]. It seems that these disciplines only recently
reached fruitful crossroads.

5.4. Journal Preferences

An analysis of the sources showed that studies on the use of EEG in neurorehabilitation
are published in journals focusing on engineering and biomedical signals, rehabilitation,
and neurosciences. These journals pioneer in hosting articles at the crossroads of neuro-
sciences with other disciplines, particularly bioengineering. Indeed, the exponential rise in
BCI research and the use of exoskeletons shifted authors and editors to journals merging
neurosciences and engineering. Classical medicine and neurology journals are absent from
the top-20 most cited journals.

5.5. Geographical Distribution

The current study demonstrated two significant controversies. To start with, the majority
of the studies come from the affluent countries of the US and Europe. Asia and South
America are represented to a lesser extent, with a minimal contribution from Africa. This
map follows the rehabilitation requirements after stroke in affluent countries with older
populations and less by craniospinal trauma in developing countries [40,41]. It remains
to be shown whether a similar distribution exists in lower-income subgroups within the
affluent countries. The second controversy is that the leading countries prefer a more
self-sufficient approach instead of participating in extensive international collaborations.
Indeed, it seems that “elite players” such as the US, Italy, and China prefer lonely paths. At
the same time, smaller partners, such as Denmark, Singapore, Spain, and others, are more
interested in international collaborations.

5.6. Document Type

In the present review, we focused on studies with the highest impact in the field. We
decided to include all document types, in addition to original studies, as we noted that
reviews and conference papers were among the highly ranked documents in our initial
pilot searches. The presence of reviews in our study highlights the need to spare time
and resources from exhaustive searches in a rapidly evolving field. In addition, the large
number of conference papers among the highly cited documents shows that a significant
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part of the evidence has not been published in peer-reviewed journals, raising several
questions on the reproducibility of the findings and the role of funding in research.

5.7. Limitations

Significant limitations characterized the current study. First, it was based on bibli-
ographic data from Scopus because of the inherent limitations of the adopted software
and to avoid duplicates, as explained earlier. As a matter of fact, the utilized software,
Bibliometrix, is capable of analyzing the metadata from a single database. However, we
selected Scopus because it is the single largest extractable medical database with the most
useful scientometric data. Second, a bibliometric analysis lacks an in-depth analysis of the
gathered articles. For this reason, we added a content review of the 20 most cited articles.
Third, a higher citation index is not necessarily synonymous with better methodological
quality and improved reporting clarity. In other words, a bibliometric analysis could in-
clude low-quality studies, but with a significant impact in the field. Likewise, our study
could omit high-quality studies that are still immature to reach a high citation number.
Therefore, the reader is cautioned to note that our results are expected to change, and
regular literature updates are mandatory in the future. Finally, a bibliometric analysis may
result in a limited number of irrelevant articles after reading the document’s full text. One
(5%) irrelevant study was found among the top-20 results in our sample [19].

6. Conclusions

EEG constitutes the most significant input in brain–computer interfaces (BCIs) and
can be successfully used in the neurorehabilitation of patients with stroke, ALS/LiS, sTBI,
and SCI. EEG-based BCI facilitates training, communication, and control of wheelchairs
and exoskeletons. However, research is limited to specific scientific groups from developed
countries. In addition, there seems to be unpublished evidence with significant impact.
Evidence is expected to change with the broader availability of BCI and improvement in
EEG-filtering algorithms.
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