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Abstract: Breast cancer (BC) and cardiometabolic diseases share a multifactorial and modifiable
etiology, modulated by complex molecular pathways. Glutathione S-transferase (GST) plays a critical
role, providing protection against xenobiotics and regulating levels of enzymes and proteins in the
cell. GST variants have a significant impact on susceptibility to diseases whose pathogenesis involves
oxidative stress, as is the case in many inflammatory diseases such as BC and cardiometabolic
pathologies. However, the expression of these polymorphic variants has not been studied in BC.
This study aimed to evaluate the presence of GST mRNA isoforms and their association with clinical
and cardiometabolic parameters in women with BC. This was a case-control study, and a total of
57 participants were recruited. Concentrations of glucose and lipids in blood were measured in all the
participants. GST variants (GSTT1, GSTM1 and GSTP1 Ile105Val polymorphism) were evaluated in
all the participants by real-time PCR analysis. There was a significant association (p < 0.05) between
the frequency of GSTP1 and LDL-c in the BC group. However, the control group showed significant
associations between blood pressure with GSTT1 and GSTP1 variants with total cholesterol (TC),
LDL-c, VLDL-c and triacylglycerols (TG). Therefore, GSTT1 and GSTP1 variants could be emerging
biomarkers to discriminate between BC cases related or not to cardiometabolic disease factors.

Keywords: Glutathione S-transferase genotypes; cardiometabolic risk; breast cancer; comorbidities

1. Introduction

Biological mechanisms, such as inflammation and molecular pathways in association
with environmental and lifestyle risk factors, are linked to cancer development and some
comorbidities [1]. Especially in breast cancer (BC) and cardiometabolic diseases, these
interactions cause the incidence and mortality of BC in women worldwide [2,3]. According
to the latest results of the National Survey of Nutrition and Health 2018–2019 (ENSANUT)
of Mexican adult women, 11.4% develop diabetes, 20.9% hypertension and 21.0% present
hypercholesterolemia and hypertriglyceridemia [4]. The Mexican Observatory of Non-
Communicable Diseases (OMENT) in Epidemiological Panorama 2018 reports that, since
2010, the three main causes of death in Mexico are heart diseases, diabetes and malignant
tumors. Since then, they have shown an increase in the mortality rate, sharing among them
a multifactorial and modifiable etiology [5].

Cardiometabolic dysfunction, such as high blood pressure, hyperglycemia, obesity,
high body fat and dyslipidemia, have been observed in postmenopausal women with
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BC [6,7]. These parameters play an important role in prevention and prognosis of BC, and
all of them are modulated by complex molecular pathways involved in stimulating or
slowing the growth of malignant cells [8]. Moreover, cancer and cardiovascular diseases
share the elevation of oxidative stress as a pathological mechanism [9,10].

An important molecular system is Glutathione S-transferase (GST), which comprises a
family of enzymes involved in phase II detoxification. They play a critical role, providing
protection against xenobiotics, oxidative stress and regulating levels of enzymes and
proteins in the cell [6,10]. The GST superfamily includes eight classes of genes, and studies
have suggested that genetic variants, such as GSTT1, GSTM1 and GSTP1, are involved in
susceptibility, progression and response to treatment in BC [7,11,12]. Specifically, in the
GSTP1 gene, the polymorphism that involves the change of adenine to guanine at codon
105 results in the substitution of isoleucine to valine (Ile105Val) [11,12]. Consequently, this
change produces a GSTP1 enzyme with reduced activity, increasing BC chemotherapy
toxicity [11].

Furthermore, GST genotypes have shown to have protective effects against the de-
velopment of metabolic syndrome, indicating that these enzymes are involved in the
pathogenesis of cardiometabolic diseases [13]. GST enzymes with altered activity may have
a significant impact on the susceptibility to diseases whose pathogenesis involves altered
inflammatory processes, such as BC and cardiometabolic pathologies [14]. Aljboori et. al.
studied the association of serum lipid profile with GSTT1 and GSTM1 polymorphisms
in hypertension of post-menopausal women; they found that there is a strong associa-
tion between GSTT1 and hypertension and a weaker association between GSTM1 and
hypertension [15]. Furthermore, the risk of cardiovascular disease is associated with null
genotypes of GSTT1 and GSTM1 [16,17]. Interestingly, the GSTM1 null genotype can also
be related to increased oxidative stress and DNA damage in subjects with hypertension
risk [6]. Nonetheless, a meta-analysis shows that there is no association between GSTT1
and GSTM1 polymorphisms and the risk of cardiovascular disease [18]. Therefore, the role
of these polymorphisms and their expression in this type of disease remain ambiguous and
should be further investigated.

Indeed, specific GSTT1 cDNA is linked to a glutathione-dependent conjugation phe-
notype [19]. The expression of GST protein and enzyme activity can also be a biomarker of
vascular and metabolic alterations [20,21]. GST isoforms have been studied in animals [22],
but they are not well studied in humans and neither in BC. Moreover, it is not clear whether
mRNA expression of GST variants is related to the presence of altered cardiometabolic
variables in women with BC. Therefore, the aims of this investigation were to qualitatively
characterize the mRNA expression of GST family enzymes and study their association with
clinical, body composition and biochemical parameters in women with BC.

2. Materials and Methods

Study general description. A cross-sectional, case-control study was performed. The
study included 57 women over 18 years old who gave their voluntary consent, recruited
from the Specialized Medical Unit for the Detection of Breast Cancer (UNEME-DEDICAM,
in Spanish) of Health Institute of the State of Mexico (ISEM, in Spanish). The cases group
included patients with previous diagnosis by immunohistochemical analysis of BC (n = 23),
and the control group included women without BC (n = 34), considering the inclusion and
exclusion criteria for both groups as depicted in Figure 1.
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Figure 1. Study design and sample collection.

Sociodemographic, clinical and body composition information. We obtained so-
ciodemographic, blood pressure, anthropometric and body composition information and
blood samples for total RNA extraction and to measure glucose and lipids, such as total
cholesterol (TC), triacylglycerols (TG), high-density lipoprotein-cholesterol (HDL-c), low-
density lipoprotein-cholesterol (LDL-c), very-low-density lipoprotein-cholesterol (VLDL-c)
and atherogenic index (AI). All measurements were made by trained personnel, and blood
samples were obtained by nursing staff from UNEME-DEDICAM Toluca, Mexico. Biochem-
ical profile was performed by Quest Diagnostics® (Secaucus, NJ, USA) Clinical Analysis
Laboratories, Toluca, Mexico using a used Beckman Coulter AU680® (Beckman Coulter,
Brea, CA, USA) instrument.

Anthropometry and body composition analysis: all measurements were conducted
using standardized procedures. Body weight and height were measured with a scale
(TANITA® TBF 300 A, TANITA Corporation, Tokyo, Japan) and a stadiometer (SECA®

S700, Hamburg, Germany), respectively. Furthermore, body fat percentage (BFP) was
analyzed by electrical bioimpedance using a Biody XpertZM® apparatus (Aminogram SAS,
La Ciotat, France), and data were stored in the Biody Manager® software version 2.0.3.
(Aminogram SAS, La Ciotat, France).

BMI classification was categorized in accordance with WHO criteria and the fat
percentage according to Bray G. [18]. The classification of blood pressure (BP), glycemia
and dyslipidemias were performed using the criteria from the guidelines of the American
College of Cardiology (ACC) and American Heart Association (AHA).

GSTT1, GSTM1, GSTP1 (Ile105Val) detection by real-time PCR: total RNA was iso-
lated through a phenol isoamyl alcohol extraction protocol. After that, it was quantified
by spectrometry using NanoPhotometer® P-Class (Implen, Inc., Westlake Village, CA,
USA) equipment, and the concentration of each sample was normalized to 100 µg/1 µL.
Subsequently, the detection of GSTT1, GSTM1 and GSTP (Ile105Val) polymorphic variants
was standardized by real-time PCR, using GAPDH as the reference gene. The primers used
for the real-time PCR were published before by Arand [23] and Salimi [24] (Table 1).
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Table 1. Characteristics of the genes under study.

Primer
Designation Sequence Gene ID SNP

Number
Chromosome

Position Nucleotide Amino
Change

GSTM1 forward 5′-GAACTCCC
TGAAAAGCTAAAGC-3′

2944 - 1:109690472 (GRCh38)
1:110233094 (GRCh37)

- -
GSTM1 reverse 5′-GTTGGGCTC

AAATATACGGTGG-3′

GSTT1 forward 5′-TTCCTTACT
GGTCCTCACATCTC-3′

2952 -
NT_187633.1:270497

(GRCh38)
NT_187633.1:24376322

(GRCh37)

- -
GSTT1 reverse 5′-TCACC

GGATCATGGCCAGCA-3′

GSTP1 forward
outer primer

5′-AGGTTACGTAG
TTTGCCCAAGGTC-3′

2950 rs1695 11:67585218 (GRCh38)
11:67352689 (GRCh37) A313G Ile105Val

GSTP1 reverse
outer primer

5′-CGTTACTT
GGCTGGTTGAT- GTCC-3′

GSTP1 forward
inner primer

5′-GAGGACCTC
CGCTGCAAATTCG-3′

GSTP1 reverse
inner primer

5′-CATAGTTGG
TGTAGATGAGGGAGCT-3′

The real-time PCR reaction mix (25 µL) contained: DNA Polymerase AmpliTaq™ Fast
Master Mix 6.25 µL (Applied biosystems, Thermo Fisher Scientific, Vilnius, Lithuania),
EvaGreen™ Dye 1.25 µL of 20X (Biotium, Fremont, CA, USA) and 0.5 µL of each primer
(Integrated DNA Technologies; San Diego, CA, USA). After that, the amplification was
performed according to the real-time PCR protocol, as shown in Table 2, using a CFX 96
(Bio-Rad Inc., Mexico City, Mexico) thermal cycler. The results were reported as positive (+)
or negative (−) according to high resolution melting (HRM) analysis.

Table 2. Real-time polymerase chain reaction protocol.

Step Temperature Duration Cycles

RT 50 ◦C 10 min ×1

Primary denaturation 95 ◦C 3 min ×1

Denaturation 95 ◦C 15 s
×40

Annealing 60 ◦C 30 s

Melt Curve 65–95 ◦C4 0.05 ◦C 0.05 s

Statistical analysis: Normal distribution analyses of biochemicals and body composi-
tion parameters were performed using the Kolmogorov–Smirnov test. Hardy–Weinberg
equilibrium for GSTP1 (Ile105Val) was estimated (p < 0.982); for GSTT1 and GSTM1, this
analysis is not possible. Chi-square (X2) and Student’s t-test were used to find associations
between control and breast cancer groups. Statistical analysis was carried out using the
statistical software SPSS version 21.0 (IBM Corporation, Armonk, NY, USA) considering a
significance level < 0.05.

3. Results

Demographic, clinical and biochemical characteristics of all the participants are sum-
marized in Table 3 by group. SBP in the BC group was significantly lower than the control
one (p = 0.043). DBP, BMI, BFP, glucose, TC, HDL-c, LDL-c, VLDL-c, TG and AI were
similar in both cases and controls.
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Table 3. Descriptive characteristics of the participants by study group (n = 57).

Indicators BC Group (n = 23) Control Group (n = 34) p

Age (years) 50.48 (±8.25) 47.53 (±9.55) 0.233
Menopause status

Premenopause 12 (21.1) 23 (40.4)
0.239Postmenopause 11 (19.3) 11 (19.3)

Presence of comorbidities +

Yes 9 (15.8) 15 (26.3)
0.708No 14 (24.6) 19 (33.3)

SBP (mmHg) 100.00 (±11.67) 107.27 (±13.75) 0.043 *
DBP (mmHg) 66.96 (±7.64) 70.30 (±8.47) 0.136
BMI (kg/m2) 27.96 (±4.72) 28.40 (±5.16) 0.746

BFP (%) (n = 17) ~ 33.86 (±5.54) 34.54 (±5.32) 0.672
Glucose (mg/dL) 117.17 (±66.37) 102.79 (±30.20) 0.273

Total cholesterol (mg/dL) 183.91 (±33.66) 191.35 (±31.82) 0.401
HDL-cholesterol (mg/dL) 40.61 (±11.17) 43.41 (±8.05) 0.283
LDL-cholesterol (mg/dL) 108.61 (±21.94) 114.28 (±25.88) 0.392

VLDL-cholesterol (mg/dL) 34.69 (±27.38) 33.65 (±10.36) 0.841
Triacylglycerols (mg/dL) 214.96 (±192.19) 215.74 (±93.59) 0.984

Atherogenic Index 4.82 (±1.51) 4.53 (±1.02) 0.417

Data: mean (standard deviation), Student’s t-test: * p < 0.05; n (%), X2 test: * p < 0.05; ~ BC group n = 17.
+ Comorbidities include type II diabetes mellitus and hypertension; BC: breast cancer, SBP: systolic blood pressure,
DPB: diastolic blood pressure, BMI: body mass index, BFP: body fat percentage.

3.1. Detection of GST Polymorphic Variants Expression

Table 4 shows the frequency of the presence (+) or absence (−) of GSTT1, GSTM1
and GSTP1 (Ile105Val) polymorphism variants expression: isoleucine (Ile), valine (Val) and
isoleucine/valine (Ile/Val) in BC and control groups. First, women with BC presented
60.9% GSTT1+ and 39.1% GSTT1−; GSTM1+ and GSTM1− showed similar frequencies to
GSTT1 (60.9% vs. 39.1%, respectively). The percentages of GSTP1 (Ile105Val) polymorphism
variants were: absent (4.3%), Ile/Ile (17.4%), Val/Val (21.7%) and Ile/Val (56.5%). Compared
to the BC group, the control group presented 58.8% GSTT1+ and 41.2% GSTT1−; 52.9%
GSTM1+ and 47.1% GSTM1-; and GSTP1 (Ile105Val) polymorphism variants were: Ile/Ile
(38.2%), Val/Val (14.7%) and the highest frequency was observed in Ile/Val presence (47.1%).
The chi-squared analysis revealed that the frequencies of GSTP1 (Ile105Val) variants were
significantly different between groups (p < 0.001); the Ile/Ile variant showed the lowest
frequency in the BC group (17.4%) and the Ile/Val was the highest (56.5%).

Table 4. GST variants among participants according to study group.

GST Variants BC Group
(n = 23) Control Group (n = 34) p

GSTT1+ 14 (60.9) 20 (58.8)
0.145GSTT1− 9 (39.1) 14 (41.2)

GSTM1+ 14 (60.9) 18 (52.9)
0.354GSTM1− 9 (39.1) 16 (47.1)

GSTP1 (Ile105Val)
Negative 1 (4.3) -

0.001 *
Ile/Ile 4 (17.4) 13 (38.8)

Val/Val 5 (21.7) 5 (14.7)
Ile/Val 13 (56.5) 16 (47.1)

n (%), X2 test: * p < 0.05; GSTP1 (Ile105Val) HWE p > 0.05; BC: breast cancer.

3.2. Cardiometabolic Risk Factors and GST Variants Expression

Analysis in Table 5 depicts clinical, body composition and biochemical variables
according to GST variants. There were no significant differences in women of the BC
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group regarding the GSTT1 +/− and the categories of BMI, BFP, HDL-c and TG. Only the
frequency of high LDL-c was significantly different among the GSTP1 Ile105Val variants
(p = 0.042), presenting the highest frequency in normal LDL-c in heterozygous genotypes
(Ile/Val, 52.2%).

Table 5. Categorized clinical, biochemical and body composition parameters according to GST
expression among participants by study group.

Breast Cancer Group (n = 23)
GSTT1 Expression p GSTM1 Expression p GSTP1 (Ile105Val) p

Parameters Negative Positive Negative Positive Negative Ile Val Ile/Val

BP (mmHg)
Normal (No) 8 (34.8) 10 (43.5) 0.322 6 (26.1) 12 (52.2) 0.280 1 (4.3) 3 (13.0) 2 (8.7) 12 (52.2) 0.106High (Yes) 1 (4.3) 4 (17.4) 3 (13.0) 2 (8.7) - 1 (4.3) 3 (13.0) 1 (4.3)
BMI (kg/m2)

Normal 1 (4.3) 4 (17.4) 0.322 2 (8.7) 3 (13.0) 0.964 - 1 (4.3) - 4 (17.4) 0.510>25 8 (34.8) 10 (43.5) 7 (30.4) 11 (47.8) 1 (4.3) 3 (13.0) 5 (21.7) 9 (39.1)
BFP (%) a n = 17
Normal - 3 (17.6) 0.110 1 (5.9) 2 (11.8) 0.761 - - - 3 (17.6) 0.466High 7 (41.2) 7 (41.2) 6 (35.3) 8 (47.1) 1 (5.9) 1 (5.9) 5 (29.4) 7 (41.2)

Glucose (mg/dL)
Normal 7 (30.4) 8 (34.8) 0.311 6 (26.1) 9 (39.1) 0.907 1 (4.3) 2 (8.7) 2 (8.7) 10 (43.5) 0.372High 2 (8.7) 6 (26.1) 3 (13.0) 5 (21.7) - 2 (8.7) 3 (13.0) 3 (13.0)

TC (mg/dL)
Normal 8 (34.8) 10 (43.5) 0.322 6 (26.1) 12 (52.2) 0.280 1 (4.3) 3 (13.0) 3 (13.0) 11 (47.8) 0.661High 1 (4.3) 4 (17.4) 3 (13.0) 2 (8.7) - 1 (4.3) 2 (8.7) 2 (8.7)

HDL-c (mg/dL)
Low CVR - 1 (4.3) 0.412 - 1 (4.3) 0.412 - 1 (4.3) - - 0.174High CVR 9 (39.1) 13 (56.5) 9 (39.1) 13 (56.5) 1 (4.3) 3 (13.0) 5 (21.7) 13 (56.5)

LDL-c (mg/dL)
Normal 8 (34.8) 11 (47.8) 0.524 7 (30.4) 12 (52.2) 0.624 1 (4.3) 4 (17.4) 2 (8.7) 12 (52.2) 0.042 *High 1 (4.3) 3 (13.0) 2 (8.7) 2 (8.7) - - 3 (13.0) 1 (4.3)

VLDL-c (mg/dL)
Normal 9 (39.1) 10 (43.5) 0.078 6 (26.1) 13 (56.5) 0.106 1 (4.3) 3 (13.0) 5 (21.7) 10 (43.5) 0.633High - 4 (17.4) 3 (13.0) 1 (4.3) - 1 (4.3) - 3 (13.0)

TG (mg/dL)
Normal 5 (21.7) 4 (17.4) 0.196 4 (17.4) 5 (21.7) 0.675 - 1 (4.3) 3 (13.0) 5 (21.7) 0.595High 4 (17.4) 10 (43.5) 5 (21.7) 9 (39.1) 1 (4.3) 3 (13.0) 2 (8.7) 8 (34.8)

IA
Normal 5 (21.7) 8 (34.8) 0.940 3 (13.0) 10 (43.5) 0.072 1 (4.3) 3 (13.0) 2 (8.7) 7 (30.4) 0.590High 4 (17.4) 6 (26.1) 6 (26.1) 4 (17.4) - 1 (4.3) 3 (13.0) 6 (26.1)

Control Group (n = 34)
GSTT1 Expression p GSTM1 Expression p GSTP1 (Ile105Val) p

Parameters Negative Positive Negative Positive Negative Ile Val Ile/Val

BP (mmHg)
Normal (No) 4 (11.8) 15 (44.1) 0.007 * 8 (23.5) 11 (32.4) 0.515 - 6 (17.6) 2 (5.9) 11 (32.4) 0.353High (Yes) 10 (29.4) 5 (14.7) 8 (23.5) 7 (20.6) - 7 (20.6) 3 (8.8) 5 (14.7)
BMI (kg/m2)

Normal 3 (8.8) 6 (17.6) 0.577 3 (8.8) 6 (17.6) 0.336 - 4 (11.8) 2 (5.9) 3 (8.8) 0.582
>25 11 (32.4) 14 (41.2) 13

(38.2) 12 (35.3) - 9 (26.5) 3 (8.8) 13 (38.2)
BFP (%)
Normal 3 (8.8) 3 (8.8) 0.628 1 (2.9) 5 (14.7) 0.100 - 3 (8.8) 2 (5.9) 1 (2.9) 0.182

High 11 (32.4) 17 (50.0) 15
(44.1) 13 (38.2) - 10

(29.4) 3 (8.8) 15 (44.1)
Glucose (mg/dL)

Normal 11 (32.4) 11 (32.4) 0.157 9 (26.5) 13 (38.2) 0.331 - 9 (26.5) 3 (8.8) 10 (29.4) 0.905High 3 (8.8) 9 (26.5) 7 (20.6) 5 (14.7) - 4 (11.8) 2 (5.9) 6 (17.6)
TC (mg/dL)

Normal 11 (32.4) 11 (32.4) 0.157 8 (23.5) 14 (41.2) 0.091 - 12
(35.3) 3 (8.8) 7 (20.6) 0.024 *

High 9 (25.7) 9 (26.5) 8 (23.5) 4 (11.8) - 1 (8.3) 2 (5.9) 9 (26.5)
HDL-c (mg/dL)

Low CVR - 1 (2.9) 0.396 - 1 (2.9) 0.339 - - - 1 (2.9) 0.560
High CVR 14 (41.2) 19 (55.9) 16

(47.1) 17 (50.0) - 13
(38.2) 5 (14.7) 15 (44.1)

LDL-c (mg/dL)
Normal 13 (38.2) 13 (38.2) 0.059

12
(35.3) 14 (41.2) 0.849 - 13

(38.2) 3 (8.8) 10 (29.4) 0.039 *
High 1 (2.9) 7 (20.6) 4 (11.8) 4 (11.8) - - 2 (5.9) 6 (17.6)

VLDL-c (mg/dL)
Normal 12 (35.3) 14 (41.2) 0.288

10
(29.4) 16 (41.7) 0.070 - 13

(38.2) 3 (8.8) 10 (29.4) 0.039 *
High 2 (5.9) 6 (17.6) 6 (17.6) 2 (5.9) - - 2 (5.9) 6 (17.6)

TG (mg/dL)
Normal 6 (17.6) 4 (11.8) 0.150 3 (8.8) 7 (20.6) 0.198 - 7 (20.6) - 3 (8.8) 0.035 *

High 8 (23.5) 16 (47.1) 13
(38.2) 11 (32.4) - 6 (17.6) 5 (14.7) 13 (38.2)

IA
Normal 9 (26.5) 9 (26.5) 0.268 6 (17.6) 12 (35.3) 0.089 - 10

(24.9) 2 (5.9) 6 (17.6) 0.088
High 5 (14.7) 11 (32.4) 10

(29.4) 6 (17.6) - 3 (8.8) 3 (8.8) 10 (29.4)

a n = 17; n (%), X2 test: * p < 0.05; BP: blood pressure, BMI: body mass index, BFP: body fat percentage, TC: total
cholesterol, CVR: cardiovascular risk, TG: triacylglycerols, IA: atherogenic index. Cut points: BP: high > 110/70;
glucose: normal≤ 99 mg/dL, high≥ 100 mg/dL; TC: normal≤ 199 mg/dL, high≥ 200 mg/dL; HDL-c risk: high
≤ 59 mg/dL, low ≥ 60 mg/dL; LDL-c: normal ≤ 129 mg/dL, high ≥ 130 mg/dL; VLDL-c: normal ≤ 39 mg/dL,
high ≥ 40 mg/dL; TG: normal ≤ 149 mg/dL, high ≥ 150 mg/dL; IA: normal ≤ 4.49, high ≥ 4.5.
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In contrast to the BC group, in the control group, the frequency of women with GSTT1+
and GSTT1− variants as well as normal and high BP was significantly different (p < 0.05).
The frequency of women with high BP and GSTT1+ (14.7%) was lower than women with
GSTT1− (29.4%). We did not find significant differences in BMI, BFP, HDL-c, LDL-c or
VLDL-c in control women with GSTT1. Interestingly, GSTP1 expression in association with
TC (20.6%), LDL-c (29.6%) and VLDL-c (29.4%) presented statistically significant differences
(p < 0.05), with higher percentages in normal levels of homozygous variant (Ile/Ile). The
frequency of women with high TC was the highest in the Ile/Val variant (26.5%).

4. Discussion

The aim of this study was to identify the association between GSTT1, GSTM1 and
GSTP1 (Ile105Val) polymorphism mRNA expression with BP, BMI, BF and blood lipids
in Mexican women with and without BC. In fact, this is the first qualitative study that
evaluates the mRNA expression of GST superfamily variants in BC. Our results suggest that
the expression of GSTP1 variants and GSTT1 can have an association with cardiometabolic
disease factors in patients with BC.

The function of GST in cancer is controversial; the deletion of their genotypes is con-
sidered as a biomarker in cancer development and in treatment success [25]. There are
studies that have investigated the association of GST genotypes in BC development [26].
Specifically, deletions of GSTT1, GSTM1 and GSTP1 are related to a higher susceptibil-
ity, resulting in impaired enzymatic functions, causing a lower response to exogenous
carcinogenic agents in different populations and ethnic groups [27,28].

We did not observe significant differences regarding the expression of GSTT1 and
GSTM1 between the BC and control group (Table 4), but we found a significant difference
within the GSTP1 variants. Interestingly, the GSTP1 (Ile105Val) variant is the most frequent
in the BC (56.5%) and control (47.1%) groups, suggesting this could be the most abundant
in this Mexican population, but it may not necessarily be related to a higher incidence of
BC. Further investigations with a larger population are required to clarify that.

In this study, according to GST variants expression in the BC group, the frequen-
cies of GSTT1 and GSTM1 present similar percentages (60.9% and 39.1%, respectively),
which suggests that 39.1% of the women in this group might have a better response to
chemotherapy treatment [29]. Other studies in Mexican women have reported a similar
distribution in GSTT1 and GSTM1; they show a similar percentage in the absence of GSTT1
(31.3%) and GSTM1 (38% and 43.3%) but in larger study samples (n = 342–558) [12,29].
On the other hand, the frequency of the GSTP1 variants is similar to that in northeastern
Mexican women (Ile/Val: 43.4%; Val/Val: 32.6%; Ile/Ile: 24%); in women from Mexico City,
the higher frequency is reported in the homozygous type (Val/Val:38%; Ile/Val: 34.6%; Ile/Ile:
27.3%) [30]. In this case, the sample size could be a factor in the distribution differences.

Regarding the ethnic background of this sample in relation to GST family, it is impor-
tant to indicate that they are part of three generations of Mexican Mestizo parents. We did
not investigate the Indigenous or Latin background in this sample. However, it is worth
mentioning that the study sample meets the equilibrium conditions of Hardy–Weinberg.
In addition, the combined GSTT1+ and GSTM1− genotypes was not found in a previous
study performed in a Mexican Mestizo population in the State of Mexico, which included
women with BC [31]. Moreover, GSTP1 A313G is linked to the risk of preeclampsia in
Mayan Mestizo women [32]. This could suggest that there is a genetic susceptibility derived
from environmental intervening variables, such as diet and carcinogenic agents as well as
the presence of comorbidities [33].

The association between GST genotypes and metabolic markers has been raised as an
important factor in the development of BC. Results reported by Aljboori, M of serum lipids
and GST genotypes show that the deletion of GSTM1 is related to the reduction in TG, HDL-
c and VLDL-c but not in TC and LDL-c concentrations; GSTT1 deletion may be associated
with a reduction in HDL-c and an increase in TC, TG, LDL-c and VLDL-c; TG and HDL-c
are positively affected by GSTT1 and GSTM1 deletion [15]. Our findings show that, in the
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BC group, the expression of GSTP1 Ile/Val is linked to normal levels of LDL-c. Therefore,
the reduction in GSTP1 enzyme activity may not affect LDL-c concentrations. This was
similar for LDL-c and VLDL-c in the control group. However, high TG concentrations were
observed in the GSTP1 Ile/Val carriers from this group as well. These findings may indicate
that, in women from the central region of Mexico, mRNA expression of GSTP1 variants
may have a closer association with LDL-c blood concentrations. A study in a young adult
population that investigated the association between GSTP1 Ile/Val polymorphism with
obesity and markers of cardiometabolic risk shows that subjects carrying the (Val/Val)
genotype present a higher percentage of weight, BMI, neck, waist and hip circumference,
body fat mass, SBP and higher levels of glycated hemoglobin (HbA1C) [34]. In contrast, we
did not find such associations with GSTP1 Val/Val.

The prevalence of dyslipidemia is common in the Latino population [35]. It is clear that
overweight, obesity and dyslipidemia represent risk factors for BC and its mortality [36].
An observational study in Italy for four years in patients with early BC shows that weight,
waist circumference, BP, fasting glucose, TC, HDL-c and TG have fundamental functions in
BC biology and increase, up to 16 times, the risk of BC mortality in women with more than
three metabolic components [37]. However, we do not observe significant differences in
our study groups in the levels of LDL-c, VLDL-c, HDL-c and TC. These results agree with
another study we performed in women survivors of BC [38]. This suggests that, in this
particular Mexican population, comorbidities, including BC and dyslipidemia, may not
be completely derived from GST variants traits, as shown before [39]. Instead, they may
involve other xenobiotic metabolizing genes or non-genetic factors, such as exposure to
pollutants and unhealthy lifestyles [40–42]. This association may also include the immune
system and inflammation. For instance, GSTP1 is present in dendritic cells (DCs) that
contain the estrogen receptor (ER), which is highly involved in the development of BC;
indeed, it is a tumor marker [43]. The absence of GSTP1 can increase the rate of proliferation
of DCs and the binding affinity of estradiol to the ER [44]. Furthermore, DCs modulate the
induction of pro-inflammatory cytokines and chemokines, such as IL6, IL8 and monocyte
chemoattractant protein 1 (MCP-1) [45]. The role of GSTP1 variants and their link to this
type of immune response should be further investigated to identify potential biomarkers of
these comorbidities.

The elevation of LDL-c is a common feature in dyslipidemias observed in the urban
children population of central Mexico (including the states of Puebla, Estado de Mexico
and Mexico City) [46,47]. In the northern Indigenous, dyslipidemia is characterized by
decreased HDL-c [47]. Furthermore, dyslipidemias involving high LDL-c and TG as
well as altered HDL-c have a strong link to Native American ancestry in Mexicans [48].
Genes with SNPs associated with dyslipidemias are implicated in lipid metabolism and
homeostasis, lipoprotein particle composition and organic hydroxy compound transport;
in the Mexican population, some of them include LDLR, FADS 1-2-3, APOB, APOC3, GCKR
and HMGCR [48].

Dyslipidemias are linked to cardiovascular risk due to the development of atheroscle-
rosis and vascular damage, including alterations in angiogenesis, vasculogenesis and
vessels repair [49]. Similarly, BC also shows alterations in angiogenic factors, such as IL-8
and VEGF [50]. Therefore, vascular alterations may be a common feature in the pathology
of comorbidities between BC and cardiovascular diseases. Interestingly, in our study, there
is a significant association between BP and GSTT1 (p = 0.007) in the control group, and
the frequency of women with normal BP was higher in the GSTT1+ variant, indicating
that women with GSTT1− may be more susceptible to present higher BP. Nonetheless, this
result is not seen in women with BC, indicating that the GSTT1− and BP association may
not be relevant in BC.

Finally, the liver is a common reservoir for GST activity and lipids metabolism [51].
GST expression might influence lipids’ hepatic metabolism. For example, the effect of
dietary fat intake on antioxidant enzymes could depend on phase I and II metabolizing
enzymes [52], but the mechanisms behind that are not clearly known. Therefore, future
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investigations could be performed to comprehend their signaling pathways of interaction.
These should involve novel non-lipid biomarkers of cardiovascular function, such as uric
acid [53] and the enzymes related to its synthesis. Uric acid is tightly correlated to high
blood pressure and certainly could be a more precise predictor of cardiovascular alterations
in women with BC.

5. Conclusions

Our results suggest that mainly GSTP1 variants mRNA expression is associated with
BC and cardiometabolic parameters in Mexican women. Firstly, the mRNA expression of
the GSTP1 Ile105Val variant has an association with normal LDL-c levels in women with or
without BC. Secondly, women without GSTT1 expression may be more prone to develop
high blood pressure, but this is not related to BC. It is likely that the limitations of the study,
such as sample size and study design, could have an effect on our results. This is the reason
why it is necessary to perform future investigations with larger samples and longitudinal
follow-ups. Those should include the evaluation of inflammatory and angiogenic factors as
well as other genes involved in the signaling pathways of vascular damage and xenobiotic
metabolism.
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