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Abstract: Epigenetics is defined as the study of inheritable changes in the gene expressions and
phenotypes that occurs without altering the normal DNA sequence. These changes are mainly due to
an alteration in chromatin or its packaging, which changes the DNA accessibility. DNA methylation,
histone modification, and noncoding or microRNAs can best explain the mechanism of epigenetics.
There are various DNA methylated enzymes, histone-modifying enzymes, and microRNAs involved
in the cause of various CVDs (cardiovascular diseases) such as cardiac hypertrophy, heart failure,
and hypertension. Moreover, various CVD risk factors such as diabetes mellitus, hypoxia, aging, dys-
lipidemia, and their epigenetics are also discussed together with CVDs such as CHD (coronary heart
disease) and PAH (pulmonary arterial hypertension). Furthermore, different techniques involved
in epigenetic chromatin mapping are explained. Among these techniques, the ChIP-on-chip guide
is explained with regard to its role in cardiac hypertrophy, a final form of heart failure. This review
focuses on different epigenetic factors that are involved in causing cardiovascular diseases.

Keywords: cardiovascular diseases; epigenetics; DNA methylation; histone modifications; microRNAs;
ChIP-on-chip guide

1. Introduction

Epigenetics is defined as the study of inheritable changes in the gene expressions
and phenotypes that occurs without altering the normal DNA sequence. These changes
are mainly due to an alteration in chromatin or its packaging, which changes the DNA
accessibility [1]. These epigenetic changes are often due to the interactions of the genes with
their surrounding conditions or the environment, causing either an increase or a decrease
in gene expression or potentially leading to gene silencing as in the case of obesity, diabetes,
and hypertension [2].

Cardiovascular disease (CVD) epigenetics is considered to be a relatively new field.
One of the leading causes of death worldwide, i.e., heart failure (HF), occurs when the
myocardium undergoes functional and structural modifications. These processes result in
the transcriptional and genomic reprogramming of cardiomyocytes and other neighboring
cells [3]. Due to a lack of knowledge in comprehending complex CVD pathophysiology,
scientists are searching for other pathways. Epigenetic modifications of the genome repre-
sent one such pathway. The mechanisms of epigenetics can be best explained via (Figure 1)
DNA methylation, histone modification, and noncoding or microRNAs. They regulate gene
expressions and affect the related risk factors, i.e., diabetes, hypertension, inflammation,
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and atherosclerosis. Unlike other genetic aberrations and mutations, epigenetic modifica-
tions are dynamic and can be altered either by therapeutic approaches or by lifestyle [4].
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1.1. DNA Methylation

DNA methylation basically occurs at cystine residues in CpG sequences at the fifth
position. These CpG sequences, instead of localizing in the coding region, localize in the
promoter region [5]. This results in suppression of gene transcription either indirectly
by recognizing the methylated sites using chromatin-modifying enzymes or directly by
impeding the attachment of transcriptional factors to the promoter region in DNA [6]. DNA
methylation is mediated by DNA methyltransferases such as DNMT3b, DNMT3a, and
DNMT1. Methylation status during replication is maintained by DNMT1, which recognizes
the hypermethylated DNA. On the other hand, DNMT3a and DNMT3b are involved in de
novo methylation [7].

1.2. Histone Modification

Post-translational histone modification consists of phosphorylation, ubiquitination,
acetylation, and methylation. These modifications occur in different patterns, regulat-
ing the shifting of the open chromatin structure (euchromatin) to a compact chromatin
structure (heterochromatin) and vice versa [8]. Histone acetyltransferase (HAT), histone
deacetylase (HDAC), histone methyltransferase (HMT), and histone demethylase (HDM)
enzymes interact specifically at methylated DNA regions, thus causing gene transcription
or repression [9,10].

1.3. Noncoding or MicroRNAs

Recently, it was discovered that noncoding RNAs are involved in gene regulation and
genetic programming in both a healthy state and a CVD state [11]. It was found that 98% of
the human genome, which undergoes transcription without encoding for proteins, produces
noncoding RNAs that are involved in important structural and regulatory functions. On the
basis of size, these noncoding RNAs are classified into two types, i.e., long noncoding RNAs
with a size of 0.2 kb to 2 kb and small noncoding RNAs, which consist of endogenous short
interfering RNAs, PIWI-interacting RNAs, and microRNAs. Studies have also shown that
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these noncoding RNAs act as biomarkers of cardiovascular diseases (CVDs) and contribute
to the pathogenesis of CVD [12].

2. Cardiovascular Epigenetics

Epigenetics or epigenomics shows a critical association between phenotypic expression
and genomic coding that is affected by both environmental and genetic factors (Figure 2).
Studies have shown that cardiovascular risk factors may affect and rearrange epigenetic
patterns, and these cardiovascular biomarkers are said to be affiliated with epigenetic
modifications. These epigenetic modifications are associated with clinical and subclinical
cardiovascular diseases. Epigenetics is considered to be interconnected with genetics
because these modifications (DNA methylation and histone modification) can change the
expression of these genetic variations [13].
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3. Epigenetic Modifications in CVD
3.1. Role of DNA Methylation in CVD

Scientists have thoroughly studied the pathogenesis of cardiovascular diseases; how-
ever, there is still a need to explore the role of epigenetics. Table 1 summarizes the epige-
netic modifications in cardiomyopathy. Using animal models for studies, scientists have
demonstrated that DNA methylation plays an essential role in cardiovascular diseases and
atherosclerosis [14]. Two important genes that are involved in DNA methylation are DNA
methyltransferases (DNMTs) and methylene tetrahydrofolate reductase (MTHFR). A mouse
model deficient of these two genes showed DNA hypomethylation [14,15]. The formation
of aortic fatty-acid streaks was also shown by Chen et al. in an MTHFR mouse model. Fur-
thermore, an enhanced expression of inflammatory mediators indicating hypomethylation
was also detected in leucocytes of DNMT [16].
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Table 1. Role of epigenetic modifications: DNA methylation and histone modification.

Epigenetic
Modification Binding Domains Targets Phenotypes Altered Gene

Expressions References

DNA methylation None CpG islands

Change in gene
expression of

angiogenic factors
and heart failure

Up- or
downregulation [17,18]

Histone modification

Ribosylation PARP1 HDACs, PARP1,
histones, and brg1

Enhanced fetal
β-MHC

expression,
complex with Brg1
and HDACs, heart
failure, and cardiac

hypertrophy

Upregulation [19]

Phosphorylation
PKD, AMPK,
JAK2, Rsk2,

Aurora

HDACs, H2B, H4Y41,
S28/S10, H3

Transcriptional
activation, cardiac

hypertrophy
regulation, cellular
proliferation, and

mitotic activity

Up- or
downregulation [20–22]

Deacetylation HDAC Class II
(9,5,4) Tails of histones

Cardiac
hypertrophy

negative
regulation and

inhibition of MEF2
activity (myocyte
enhancer factor 2)

[23,24]

Acetylation
P300, CBP

(CREBP-binding
protein)

K19, K16, K12, K8,
H4K5, H3K4

Regulation of
cardiac

hypertrophy
Upregulation [25,26]

Demethylation UTX, JMJD2A H3K27me3,
H3K36me3, H3K4me3

Embryo lethality,
heart

malformation, and
stimulation of

cardiac
hypertrophy

Up- or
downregulation [27,28]

Methylation DOTIL, PTIP
H3K79me, H3K27me3,
H3K9me3 H3K4me3,

H3K4me2

Dilated
cardiomyopathy,
heart failure and

angiogenesis, and
activation of fetal

cardiac gene

Up- or
downregulation [29–31]

Dietary folate and vitamin levels also affect the DNA methylation status, and their
supplementation to female mice before conception resulted in increased CpG methylation
in offspring. This led to characteristic phenotypes in offspring such as lengthened lifespan
and reduced susceptibility to obesity and insulin resistance [14].

A decrease in DNA methylation was represented in the aortas of ApoE knockout mice,
which was detected after 4 weeks; any histological alterations detected were associated
with atherosclerosis [32]. In atherosclerotic tissue, estrogen receptors α and β showed
enhanced methylation in the promoter region. This was due to hypermethylation of the
HSD11B2 gene and reduction in the global genomic methylation of blood leukocytes of
hypertension patients [33]. A prevalence of elevated Alu methylation status in peripheral
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blood leucocytes was found in Chinese people, which was associated with the obesity and
cardiovascular diseases [34].

3.2. Role of Histone Modification in CVD

Histone modifications in association with microRNAs and DNA methylation are
considered a dynamic process involved in the modulation of gene expression and chromatin
remodeling. The main component histones of the nucleosome, i.e., H2A, H2B, H3, and
H4, are modified via post-translational modifications such as biotinylation, sumoylation,
acetylation, phosphorylation, ADP ribosylation, and methylation [8,35] (Table 2).

Histone acetylation and deacetylation is carried out by HATs and HDACs as men-
tioned above. Studies have shown that there are certain types of acetyltransferases for
histone acetylation that are involved in deletion of lethal genes from embryo and heart
development, i.e., CREBP (cAMP responsive element-binding protein) or p300 [36]. If
the HAT domain in CREB or p300 is ablated, it may lead to abnormality in the cardio-
vascular system [37]. Transcriptional factors such as GATA4 when acetylated by p300 or
overexpressed may lead to depressed cardiac dilation in the murine heart [38,39].

There are certain cell-specific histone modifications that control eNOS expression
(nitric oxide synthase) in endothelial cells, which are considered to be essential in vascular
functioning. It was found that there is a high amount of acetylated H4K12 and H3K9 in
the eNOS gene core promoter in endothelial cells. Furthermore, in the case of cardiac
degeneration, there is remarkable decrease in the expression of eNOS [40]. Further studies
revealed that the expression of eNOS gene can also be controlled by methylation in the
promoter region of this gene, i.e., H3K4me3 and H3K27me3. A reduction in angiogenesis,
which is triggered by hypoxia, is promoted by the enhanced expression of JMJD3 (histone
demethylase), due to an increase in the ratio of active H3K27me3 to H3K4me3 [41].

Histone methylation basically occurs at lysine or arginine residues with mono/di/trim
ethylated histones (H3Kme3) at H4K20, H3K36, H3K27, H3K9, and H3K4 [19]. Unlike
acetylation, which activates chromatin, methylation can result in a poised or repressed
state of chromatin. Moreover, histone methylation is involved in not only heart develop-
ment but also cardiac hypertrophy and heart failure [42,43]. It was revealed in a study
that myocardial stress was observed in cardiac failure and hypertrophy due to transcrip-
tional reprogramming and chromatin remodeling. Furthermore, in hypertrophic and
cardiomyopathic mouse models, there was an increase in the expression of the Brg1 gene
(Brahma-related), whereas a decrease in hypertrophy was observed in models with reduced
expression of the Brg1 gene [44].

3.3. Role of microRNA in CVD

Recently it was discovered that microRNAs are involved in epigenetic mechanisms
that can cause cardiovascular degeneration and diseases (Table 3). Elevated levels of miR-
127 found in patients of atherosclerotic plaque can disrupt the endothelium by inhibiting
SIRT1. This results in destruction of the vascular senescence [45]. In myocardial infarction
patients and developed mouse models, miR-499 and miR-133b were upregulated and
found to be potential candidates for cardiovascular disease biomarkers [46]. Moreover,
patients with coronary artery disease exhibit significantly decreased levels of miR-145 and
miR-126 [47,48]. Unstable angina patients display elevated levels of miR-370, miR-198, and
miR-134, which can be life-threatening and lead to cardiovascular diseases [49]. Higher
levels of miR-624 and miR-340 were also reported by Sondermeijer and his colleagues in
cardiovascular disease patients [50].
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Table 2. Epigenetic modifications: role of microRNAs.

Micrornas Methodology Site of
Expression Fold Expression References

Heart failure

miR-212, -129, -21
Array Human heart tissue

>1.5× upregulated
[51]

miR-133b, -92 downregulated

miR-342, -214, -181b, -125 Array Left heart ventricle Upregulation [52]

miR-497, -139, -125b
qRT-PCR PBMCs

>2× downregulation
[53]

miR-29b >2× upregulation

miR-214 Bead-based
hybridization Left heart ventricle 2–2.7× downregulation [54]

miR-24, -214, -125b, -195 Northern blots Left heart ventricle 1.3–3× upregulation [55]

Coronary artery disease

miR-624, miR-340 Array Platelets 1.5× upregulation [50]

miR-147
qRT-PCR PBMCs

4× downregulation
[56]

miR-370, -134 3.1–12× upregulation

miR-499, -126-133a qRT-PCR Plasma 2–20× upregulation [57]

miR-208a, -133
Array Plasma

Upregulation
[48]

miR-17-92 Downregulation

Acute myocardial infarction

miR-328 qRT-PCR Plasma Upregulation [58]

miR-306
Array PBMCs

Upregulation
[59]

miR-1291 Downregulation

miR-423-5p qRT-PCR Plasma 3–10× upregulation [60]

miR-375, miR-122 qRT-PCR Plasma Downregulation [61]

miR-21 qRT-PCR Rat myocytes
Border cells:

upregulation, infarcted
cells: downregulation

[62]

miR-223 qRT-PCR Plasma Downregulation [63]

Table 3. Techniques for epigenetic studies [64].

Technique Abbreviation Description

Whole-genome bisulfite sequencing WGBS

This is an NGS technique used to evaluate the status of DNA
methylation of cytosine residues across the genome and to
directly determine the ratio of methylated molecules. DNA
samples are treated with sodium bisulfite that only converts
unmethylated cytosine into uracil and leaves the methylated
cytosine unchanged.

RNA sequencing RNA seq

This is used for determination of the cellular transcriptome. It
allows the evaluation of differences in gene expression,
mutations or SNPs, gene fusion, post-transcriptional
modification, and alternative gene sliced transcripts using
different treatments or groups. Along with mRNA transcripts,
this technique also determines ribosomal profiling and
different RNA populations, including small RNAs such as
tRNA and miRNA, as well as total RNA.
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Table 3. Cont.

Technique Abbreviation Description

ChIP-on-chip ChIP-on-chip

This is a technology that combines two techniques, i.e., DNA
microarray (chip) and chromatin immune precipitation
(ChIP). It determines the in vivo interaction between DNA
and proteins.

Epigenome-wide association studies EWAS

This is used to determine the connection between specific
identifiable traits or phenotypes in large human cohorts and a
genome-wide set of epigenetic biomarkers. It determines
whether there is an actual correlation between epigenetic
perturbation and given phenotype.

Genotype–Tissue Expression project GTEx

This project is used to provide valuable understanding
regarding the mechanisms of gene regulation using existing
knowledge of human gene regulation and expression in
multiple tissues, not only from healthy subjects but also from
various human diseases.

Assay for transposase-accessible
chromatin sequencing ATAC-seq

This is an HTS technology that provides access to a
genome-wide map of chromatin. It provides specific
information regarding genome-wide positions of the
following:

1. Information on chromatin state annotation
2. Nucleosomes in regulatory regions
3. Transcriptional binding factors
4. Open chromatin

From animal studies, scientists determined the role of miR-21 in the early phase of MI.
It was found that the expression of miR-21 decreased in the infarcted area in comparison
to its surroundings due to a left-ventricular coronary artery ligation created by acute
MI [56]. Olivieri et al., on the other hand, tried to discover the diagnostic potential of
microRNAs and discovered elevated levels of miR-423-5p in patients of congestive heart
failure compared to those with MI. However, there was upregulation of miR-499-5p in both
HF and MI [65]. Additionally, miR-499-5p was found to be a more sensitive marker in
elderly patients compared to troponin T, thus helping to differentiate acute congestive heart
failure from MI [65]. MicroRNAs that were isolated from whole blood were evaluated for
prognostic and diagnostic properties, such that they could be used to predict MI in cases
where ischemic heart disease biomarkers and troponin T were negative [60].

4. CVD Risk Factors

Over the last few decades, studies have started to link epigenetic factors such as
atmospheric pollutants, diet, urban noise, smoking, and economic, social, and cultural cir-
cumstances to cardiovascular disease risk factors such as diabetes, aging, and hypertension
in humans. Examples of such associations are given below.

4.1. Diabetes Mellitus

One of the major risk factors for cardiovascular disorders is diabetes mellitus, which
is caused by both genetic and environmental factors. When considering external influences
and integrating the DNA code, epigenetic modifications were identified as the cause [66]. It
was found that insulin production is inversely related to DNA methylation of the promoter
region of the insulin gene. Insulin secretion is affected by demethylation of the mature
insulin-producing cells. Moreover, with respect to environmental influences, pathological
diabetic factors may result in the development of diabetes [67]. It was also found that,
in the 11p15 genomic region, a differentially methylated CCCTC-binding factor (CTCF)
binding site is associated with type 2 diabetes at the population level [68].
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T2D epigenetics helps in determining the destructive effects of hyperglycemia, i.e.,
hyperglycemic or metabolic memory, despite optimum control. Epigenetic signatures in
inflammatory and pro-oxidant gene promoters are involved in atherosclerotic features,
endothelial dysfunction, retinopathy, and diabetic nephropathy, despite normoglycemia
being restored [69]. In peripheral blood mononuclear cells (PBMCs) from T2D patients after
glycemic control, there was reduced methylation of adaptor p66Shc promoter (mitochondrial
oxidative stress), which was found to be related to oxidative stress levels and endothelial
dysfunction [70]. Recently, several specific epigenetic factors present on the histone 3 of
type 2 diabetic patients, i.e., H3K4me, were discovered [71]. This epigenetic pattern is
involved in the activation of NF-κB after its activation by methyltransferase Set7, which
results in overexpression of pro-atherosclerotic genes such as VCAM-1, MCP-1, ICAM-1,
COX-1, and iNOS [72]. Peripheral blood monocytes of patients with coronary artery disease
and insulin resistance showed a decreased expression of histone 3 deacetylase SIRT1, thus
showing the link among atherosclerosis, metabolism, and longevity [73].

4.2. Hypoxia: A Pathophysiological Factor

Another CVD risk factor is hypoxia (unavailability of required oxygen amount to
maintain normal homeostasis), which is marked by a decline in transcriptional activity,
resulting in upregulation of ubiquitous repressive histone methylation [74]. In order to
maintain constitutive transcriptional activity of the gene encoding eNOS, histone modifica-
tion is considered essential. During hypoxia, proximal promoter histones are acetylated,
which results in a decrease in transcription with deadly effects on vascular homeostasis [75].
Additionally, histone deacetylase 3 was found to be essential for the survival of endothelial
cells and development of atherosclerosis as a result of distributed blood flow at vessel
bifurcation [76].

4.3. Aging

In aging, changes in epigenetic patterns called epigenetic drift result in a reduction
in global DNA methylation. In the average blood, global DNA methylation showed a
longitudinal decline in repetitive sequences, i.e., LINE-1 and Alu, in a normative aging
study [77]. Aged stem-cell GWASs (genome-wide association studies) showed hyperme-
thylation of genes involved in differentiation and hypomethylation of self-renewal gene
promoters [78]. An increase in age marks a decrease in trimethylation of histone3 at lysine
27 and 9 (H3K9me27 and H3K9me3) and acetylation at lysine 9 (H3K9Ac). This leads to
defective vascular repair and hematopoietic stem-cell dysfunction [79]. In aging, enhanced
miRNA expression leads to suppression of PTMs (post-transcriptional modifications) of
target genes and changes in endothelial functions. Cardiac and vascular function decline
in elders is associated with derailed expression of miR-146, miR-217, miR-34a, and miR-
29 [80]. Angiogenic potential may be decreased by an age-dependent decline in many long
noncoding RNAs, i.e., Meg3, MIAT, MALAT-1, and ANRIL [12].

4.4. Dyslipidemia

The blood lipid profile (BPL) is affected by both environmental and genetic factors [81].
Epigenetic modifications of gene promoters involved in lipid and glucose metabolism
contribute to atherogenesis. A study showed that participants that were exposed to the
1944–1945 famine with insulin resistance and obesity in adulthood showed alterations in
blood methylation of leptin (lep) and insulin-like growth factor 2 (IGF-2) [82]. A study
revealed that CPT1A methylation was associated with the triglycerides and very low LDL
(low-density lipoprotein) cholesterol [83]. Furthermore, it was revealed that miR-33a/b is
involved in the post-transcriptional regulation of insulin signaling and lipid metabolism,
and inhibition of miR-33a/b may result in a decline in atherosclerosis via an increase in
blood HDL (high-density lipoprotein) levels [84].
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5. Cardiovascular Diseases and the Epigenome
5.1. Coronary Heart Disease (CHD)

Alterations in the DNA methylation levels of target genes and systemic and endothe-
lial inflammation were found to be involved in CHD pathophysiology. This leads to
rupture and destabilization of the atherosclerotic plaques, causing acute cardiovascular
events [85,86]. Recent studies have shown the role of DNA methylation in equilibrizing the
conventional predictors of cardiovascular risks [87]. A correlation was determined between
cardiac computed tomography angiography (CCTA) features and blood-based methylation
levels involved in the specific CGI-regulating HLA-G gene that encodes anti-inflammatory
substances with immunomodulatory properties in obstructive CHD patients as compared
to nonobstructive CHD patients [88]. The positive correlation between coronary calcium
score and hypomethylation of the specific CGI-related HLA-G gene fragment disclosed
that methylation was involved not only in predicting the severity of the disease but also
as a noninvasive biomarker, thus leading to an improved CCTA prognostic value [88]. To
identify the disease modules and blood-based differentially methylated regions (DMRs)
associated with CHD incident events, the Comb-p and WGCNA algorithms were applied in
two independent cohorts (replication sets: 2726 subjects; discovery sets: 2129 women) [89].
This study led to the identification of two modules highly enriched for immune-related
processes and development processes. A positive correlation was determined with TG,
highly sensitive C-reactive protein (hsCRP), and body mass index (BMI) after multivariate
analysis [89].

5.2. Pulmonary Arterial Hypertension or PAH

Pulmonary arterial hypertension is defined as an incurable and rare disease which
is characterized by consequent elevated pulmonary artery pressure and vasoconstriction
due to three major endophenotypes, i.e., inflammation, cell migration/proliferation, and
endothelial dysfunction. PAH is triggered by the association between epigenetic and ge-
netic risk factors when exposed to detrimental environmental factors [90,91]. Interaction
and transcriptomic profiling of pulmonary arterial endothelial cells (PAECs) obtained from
late-stage PAH patients and normal controls during the time of lung transplant helped
in the construction of an integrated regulatory network by integrating chromatin [92].
This resulted in thorough remodeling of agile enhancers regulated by specified transcrip-
tional factors and marked by H3K27ac, which provoked perturbation of endothelial-to-
mesenchymal transition and angiogenesis processes in response to specific growth factors
signals in PAECs for targeted genes such as eNOS3 [92].

6. Epigenetic Dysfunctional Responses in CVD

During early adaptive responses to cell injury, sensitive epigenetic molecular networks
become abnormal after establishing chronic stress in the heart. Our focus is on the main
phenotypes, i.e., mitochondrial dysfunction and fibrosis.

6.1. Mitochondrial Dysfunction

Higher circulating mtDNA can lead to a poor prognosis of HF patients and left-
ventricle (LV) remodeling [93]. mtDNA gene methylation upregulates protease expression
and silencing of survival pathways, which triggers cardiomyocyte death [94]. A study
revealed hypermethylation in four mitochondrial genes of CVD patients, i.e., mitochondri-
ally encoded tRNA leucine 1 (UUA/G) (MT-TL1) and cytochrome-c oxidases I, II, and III
(MT-CO1, MT-CO2, MT-CO3) [94].

6.2. Fibrosis

During remodeling of the left ventricle (LV), there is an increase in collagen, which
occupies the area between vessels and myocytes. This results in progression of reparative
fibrosis by effecting diastolic ventricular function and tissue stiffness [95]. Some studies
reported that global DNA hypermethylation was induced by increasing the level of hypoxia
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via upregulation of DNMT3B and DNMT1. This may result in overexpression of alpha-
smooth muscle actin (α-SMA) and collagen 1 genes. Reduced α-SMA and collagen 1
expression was observed in human primary cardiac fibroblasts by siRNA administration to
inhibit DNMT3B expression, which suggests a crucial putative drug target [96].

7. Techniques for Individual Epigenetic Mapping of Cardiovascular Disorders

In contrast with the belief that every individual has a somewhat similar genome, scien-
tists proposed that all the epigenomes are not born same. Instead of an exception, diversity
is considered to be a norm when it comes to the epigenetic modifications. When scientists
completed the Human Genome Project, it became the cornerstone of genomic research [97].
NGS, advances in bioinformatics, and GWAS helped in analyzing the increasing number of
genomic datasets [98]. However, despite these advances, the field of precision medicine
in epigenomic cardiology remains uncharted. Although there are some barriers left to
overcome, efforts have begun to complete the cardiovascular epigenome [99].

In order to enable clinical applications, various technological advancements have
been introduced in the field of epigenomics. However, there still remains a key challenge
for cheap performance of whole-genome bisulfite sequencing (WGBS) studies for EWAS
(epigenome-wide association studies) (Table 4, Figure 3).

Table 4. Comparison of different scChIP seq methods [100].

Methods Strategy Mapping Rate Cell State Device for Cell Sorting

CUT and Tag ChIP-free, Tn5-barcoding
(1 round) 97% Native Costly Takara ICELL8

Co-BATCH ChIP-free, Tn5-barcoding
(for 2 rounds) 94% Fixed and native FACS

sc-itChIP-seq ChIP and Tn5-barcoding (1 round) 94% Fixed and native FACS

scDrop-ChIP Microfluidic system and ChIP for
droplet formation 70% Native Costly microfluidic device
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8. ChIP-on-Chip Guide

Chromatin immunoprecipitation (ChIP) followed by DNA microarray (chip), collec-
tively called ChIP-on-chip, was the earliest technology used for large-scale epigenetic
mapping, allowing the scientists to identify the protein–DNA interactions on a genome-
wide level [101]. It is based on the principle of DNA microchip hybridization, where a large
number of probes covering a specific region or whole genome are seeded on a high-density
chip. However, this technique suffered disadvantages such as signal bias, low resolution,
inapplicability to a broad range of species, and ambiguous factors introduced by probe
design [102].

Chromatin immunoprecipitation sequencing (ChIP-seq) techniques, in comparison
to ChIP-on-chip techniques, provides greater coverage, less noise, and higher resolu-
tion [103,104]. Due to the fast decrease in the price of second-generation sequencing (SGS),
ChIP seq has now become an essential technology in determining the epigenetics and
gene regulation. This technology can also be used to determine enhancers, transcriptional
factors, and various other regulatory elements [105].

8.1. Traditional ChIP Seq

For protein–DNA complexed, ChIP seq procedures are performed to enrich the DNAs
that are attached to specific proteins. It is a multistep experiment. At first, DNA is
crosslinked with proteins via formaldehyde. Then, this crosslinked complex is subjected
to sonication, which breaks it down into 200–600 bp small fragments. Then, the protein–
DNA complex of interest is immunoprecipitated using an antibody against the respective
protein. This releases the DNA, which is then subjected to DNA end repair, ligation of the
adapter molecule, and construction of the library. Next, the required DNA is sequenced
(Figure 4) [106].
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8.2. Single-Cell ChIP Seq

Traditional ChIP seq technology is unable to identify the chromatin signature of indi-
vidual cells. For this purpose, a new technique was introduced that was able to determine
genetic diversity in heterogenous cell populations and obtain knowledge regarding the evo-
lution of tumor population; this technique is called single-cell ChIP (scChIP). Droplet-based
scChIP (Drop ChIP) combines scDNA barcoding with a microfluidic device, allowing scien-
tists to gain a comparatively low map coverage per cell [107,108]. scChIP seq technology
allows the clustering of cell populations on the basis of chromatin landscape diversity and
determination of unique chromatin features of the population; for example, the decline in
H3K27me3 biomarkers in some cells may lead to chemoresistance or can cause CVD [100].
Table 4 shows the comparison of different ChIP seq methods and the mapping percentage.

9. Role of ChIP Seq in Determining Epigenetic Signature Underlying
Cardiac Hypertrophy

One of the leading causes of mortality worldwide is heart failure (HF), which is
frequently followed by a condition called cardiac hypertrophy, a condition in which there is
an expression of genes that are only activated during the fetal stage and a repression of genes
that need to be activated in adults [109]. Although epigenetics is considered to be essential
in regulating transcription, its role remains unknown in cardiac hypertrophy. Genome-wide
association studies (GWASs) of histone 3 lysine-36 trimethylation (H3K36me3) and DNA
methylation in normal hearts and cardiomyopathic hearts of humans divulged a wide
range of epigenetic patterns [110]. When idiopathic dilated cardiomyopathic patients were
interrogated with cardiac methylome, differences in methylation were detected not only in
heart disease-related pathways but also in genes of heart failure with yet unknown functions
such as adenosine receptor A2A (ADORA2A) and lymphocyte antigen 75 (LY75) [111].
High levels of miRNA-508-5p and miR-499 and low levels of circulating miRNA-342-3p,
miRNA-30b, miRNA-142-3p, and miRNA-103 were detected in patients with advanced
heart failure [112,113]. Moreover, if low levels of miRNA-423-5p remain in these patients
for a long time, it may result in bad outcomes [114].

A study was conducted in adult mouse cardiomyocytes to describe epigenetic changes
that occurred when they were subjected to a pro-hypertrophy stimulus in vivo. Genome-
wide chromatin maps were generated and compared for the gene expression of normal and
hypertrophic cardiomyocytes. These cardiomyocytes were isolated from the left ventricle
of mouse hearts, which were subjected to transverse aortic constriction, and ChIP seq was
performed using these cells with antibodies against active regulatory regions associated
with three markers, i.e., H3K4me3, H3K27ac, and H3K9ac, as well as repressed regions
represented by H3K27me3, H3K9me3, and H3K9me2 [115,116], and transcribed genes
represented by H3K4me3 [117].

Overall, 9.1% of the genome of cardiac hypertrophic cells showed an alteration in the
distribution of at least one histone mark was rearranged to transcriptional start sites (TSSs).
Promoters of hypertrophic cardiomyocytes showed distinguished epigenetic patterns, and
9207 active enhancers were discovered with modulated activity. A role for myocyte en-
hancer factor (MEF)2C and MEF2A in regulating enhancers was identified by analyzing the
transcriptional network within which the genetic elements tried to orchestrate hypertrophy
gene expression [118].

10. Conclusions

During the past few decades, thorough studies were conducted to uncover the molecu-
lar mechanisms involved in chromatin regulation and conditions of diseases that arise from
the epigenetic misregulation. The regulatory mechanisms that control the establishment of
chromatin domains and their conserved nature suggest that dramatic changes that occur in
gene expression arise from an alteration in the chromatin landscape. This is the case for
most overlapping modification layers that regulate transcription processes in the epige-
netic context. In the case of disease conditions in adults, due to the large variation in the
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phenotypes between patients, a more complex role is displayed by the epigenetic changes.
Changes in the epigenetic factors related to the respective disease suggest that these ab-
normal proteins undergo alterations in subunit performance and lack biological repetition.
Surprisingly, it was discovered cardiomyopathy genomics in human patients were very
sensitive to these epigenetic aberrations. This suggests that the type of epigenomic factor
expressed during heart formation is tissue-specific. Thus, this represents a new avenue to
study these changes in molecular factors. Even today, scientists have failed to fully explore
tissue heterogeneity in the setting of CVD. It needs to be determined whether methylation
alterations n circulating leukocytes may disclose myocardial processes, thus providing
accurate and reliable biomarkers.
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