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Abstract 

Plug-in electric vehicles can reduce GHG emissions although the low availability of public charging infra-

structure combined with short driving ranges prevents potential users from adoption. The rollout and opera-

tion, especially of public fast charging infrastructure, is very costly. Therefore, policy makers, car manufac-

turers and charging infrastructure providers are interested in determining a number of charging stations that 

is sufficient. Since most studies focus on the placement and not on the determination of the number of 

charging stations, this paper proposes a model for the quantification of public fast charging points. 

We first analyze a large database of German driving profiles to obtain the viable share of plug-in electric 

vehicles in 2030 and determine the corresponding demand for fast charging events. Special focus lies on a 

general formalism of a queuing system for charging points. This approach allows us to quantify the capac-

ity provided per charging point and the required quantity. Furthermore, we take a closer look on the sto-

chastic occupancy rate of charging points for a certain service level and the distribution of the time users 

have to wait in the queue. When applying this model to Germany, we find about 15,000 fast charging 

points with 50 kW necessary in 2030 or ten fast charging point per 1,000 BEVs. When compared with 

existing charging data from Sweden, this is lower than the currently existing 36 fast charging points per 

1,000 BEVs. Furthermore, we compare the models output of charging event distribution over the day with 

that of the real data and find a qualitatively similar load of the charging network, though with a small shift 

towards later in the day for the model. 

Keywords: Charging infrastructure, queuing model, stochastic occupancy rate of charging points, electric vehicle 

1 Introduction 

Plug-in electric vehicles (PEV) can reduce GHG 

emissions if powered with renewable energy. A 

barrier to the market diffusion is the low range 

given by current batteries. Though it is possible to 

find user groups who fulfill their driving needs 

while remaining economical without public charg-

ing (see e.g. [1]), a broader introduction of battery 

electric vehicles would require an improvement of 
battery technology or a more extensive charging 
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infrastructure. This is also postulated by potential 

vehicle buyers [2]. Yet, existing models for pub-

lic charging infrastructure focus on their place-

ment and not on the quantification of public 

charging points [3-5]. With more PEVs on the 

roads, consideration of queuing and charger ca-

pacity is an important issue that needs to be ad-

dressed [6]. 

Hence, the aim of this paper is to propose a 

model that is able to quantify the need for public 

charging infrastructure and apply it to Germany 

and its need until 2030. Here, we focus on public 

fast charging points (with at least 50 kW power), 

since first calculations on slow charging points 

showed no effect on PEV market diffusion [6, 7]. 

We compare some of the model outputs with real 

world data from charging infrastructure in Swe-

den. Using the model, we answer the following 

research question: How many charging points are 

needed in Germany in 2030? In the following 

sections, the methods and data are described, 

followed by initial results, a discussion and con-

clusions. 

2 Methods and Data 

2.1 Methods  

First, we determine the number of PEVs and 

their charging behaviour by using the simulation 

model ALADIN (Alternative Automobiles Diffu-

sion and Infrastructure, described in detail in 

[7]). The model works as follows: Every driving 

profile is simulated individually with four types 

of drive trains: BEVs, plug-in hybrid electric 

vehicles (PHEVs), gasoline and diesel vehicles. 

Based on the simulation, the best drive train op-

tion is determined in a utility function which 

includes the total cost of ownership for the vehi-

cle, but also the cost for individual charging in-

frastructure as obstructing factor and a willing-

ness-to-pay-more as favouring factor (see [7] for 

details). 

The vehicle TCO are slightly adapted compared 

to [7], so that the operating expenditure (     ) 

for each vehicle is calculated as: 

  
    

                       

                      
       

It comprises driving dependent and driving inde-

pendent costs. The cost for driving consists of the 

specific consumption for electric or conventional 

driving (    ) in kWh/km or l/km and the specific 

cost for electricity or fuel (    ) in EUR/kWh or 

EUR/l. By adding the cost for operations and 

maintenance (   ) we obtain the specific costs per 

kilometer which are multiplied by the annual vehi-

cle kilometres travelled (    ) for the driving 

dependent cost.  

Driving independent costs consist of annual vehi-

cle tax (    ) and the cost for the occasional use of 

fast charging infrastructure (               
) multi-

plied by the number of days that exceed the elec-

trical range of a BEV (     ). Note that PHEVs 

are not assumed to use fast charging since they can 

refuel their vehicle with conventional fuel.  

To include this calculation in ALADIN, the num-

ber of days on which the BEV range is exceeded 

has to be determined. Therefore, a method pro-

posed in [9] is used that allows us to calculate the 

number of days that exceed the BEV range. As a 

result of using ALADIN, we obtain driving pro-

files from a large data set, for which the best drive 

train option is a BEV. Furthermore, we can 

determine the BEV stock until 2030 (see [7] for a 

discussion).  

An understanding of the distribution of daily vehi-

cle kilometers traveled allows us to estimate the 

probability of rare long-distance travel and in order 

to that the need for fast charging events [9]. Based 

on the assumption that fast charging infrastructure 

is needed when the driving distance exceeds the 

electric range, we need to quantify the number of 

trips longer than the given electric range of 

200 km. Therefore, we calculate the number of 

days      per year for which the driving distance 

  is larger than the electrical range   to determine 

the need for fast charging events. In other words, 

     are the number of days per year that would 

require fast charging infrastructure to cover the full 

driving distance with a BEV. 

We obtain the number of days   per year with a 

daily driving of more than   kilometres as 

            
 

 
     

      

   
   

     

   
 

          
. 

Based on the finite number of driving and observa-

tion days, we can estimate the number of days 

     with vehicle kilometers travelled larger than 

the electrical range   which represents the need for 

fast charging events per year (see [9] for a 

discussion).  

Secondly, we determine the number of fast 

charging points based on the fast charging events 

in 2030 in a queuing model. Naturally, users want 
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to find a vacant charging point when they arrive 

at a charging station. On the other hand, charging 

infrastructure operators are dependent on an 

economic operation of their charging stations and 

aim a high occupancy rate. Hence, we developed 

a queueing model to quantify the need for fast 

charging events as a stochastic process of arriv-

ing users at fast charging points. This allows us 

to investigate the possible capacity of fast charg-

ing points for a given service level. Furthermore, 

we examine the possible occupancy rates of 

charging points fulfilling these restrictions with 

different charging power. 

The inter-arrival times between two users need-

ing fast charging events are assumed to follow an 

exponential distribution. Furthermore, we assume 

that the service time is exponentially distributed. 

With these assumptions, we obtain 

                      
 

 
  

 

            
 

and  

                 
 

 
  

 

            
  

The queuing model comprises one charging 

point. Moreover, the waiting room is limited to a 

maximum of two users in the system – one charg-

ing and one waiting. If the charging point is occu-

pied and another user is already waiting in the 

queue, further arriving users are rejected. The op-

erating sequence is based on the "first come, first 

serve" principle. According to the notation of 

Kendall, the queuing model can be denoted as 

        [17]. Figure 1 shows the transition 

graph with the possible states for the system. 

 

 

Figure 1: Transition graph of the queuing model. 

The circles show the number of users in the sys-

tem, which arrive with arrival rate   and recharge 

the battery of their BEV with the service rate  . 

Formulas for the calculation of the characterising 

operating numbers for the queueing model are 

summarized in Table 1. 

Table 1: Overview of the operating numbers for the queuing model following [17]. 

Parameter Formula 

Occupancy rate     
 

 
 

Probability for   users in the system     
       

                

Average number of users in the system        

 

   

  
 

   
  

         

                   

Average number of waiting users                 

 

   

      

Average time spent by a user in the system         

Average user waiting time           

 

For a comprehensive evaluation of the waiting 

times and the resulting service quality for the 
users, the distribution of waiting times and the 

expected waiting times    are of interest. Accord-

ing to [17], the time user spend in the queue is 
Erlang distributed with  
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       . 

Since we require a service level, which ensures 

that the waiting time for users remains limited, the 

occupancy rate has to be     at any time. 

Whereby     is always fulfilled. Consequently, 

the       is considered as always valid in the 

following. 

The service rate   is the reciprocal value of the 

average charging time   . Therefore    is deter-

mined by the expected value for the demanded 

energy, the nominal load to the power grid and the 

efficiency of the power electronics and the battery 

which is assumed with             [20,21]. In 

order to analyze the influence of the charging 

power to the required number of fast charging 

points and characterising parameters, a charging 

power of 50, 100 and 150 kW is considered. 

For limiting the waiting time until the charging 

process can be started, a certain number of charg-

ing points is required. In other words, the arrival 

rate for a given charging point must be suffi-

ciently small so that a required service level can 

be achieved. Thus, we determine an arrival rate 

which ensures that the tolerable waiting time    

in the queue of a charging point is not exceeded 

with a certain probability. According to [17], the 

probability that arriving users have to wait not 

more than    minutes is given by 

           
       

          . 

This equation can be solved algebraically to  . As 

a result, we obtain the minimum arrival rate   per 

charging point, depending on the service rate  , 

the tolerated waiting time    and probability, that 

a user do not have to wait longer than   . We 

assume that 80% of the arriving users are willing 

to wait no longer than 5 minutes. With this as-

sumption, we may determine a solution for   

which will be referred as     in the following.  

The reciprocal value of     represents the mean 

inter-arrival time which can be processed by a 

charging point for a certain service level. For 

single-server systems with limited waiting room 

(       ), the entry rate      into the system is 

different from the arrival rate    . This distinc-

tion is required since arriving users can be re-

jected due to the limited capacity of the queue. 

Formally, the entry rate      for a certain charging 

point is given by                 [18] and 

represents the capacity of a charging point. 

This relates to the average arrival rate of the user 

source, which is given by the need for fast charg-

ing events over a certain time period. However, 

the intensity of the demand varies in during the 

day. Furthermore, the number of long distance 

trips fluctuates during the week and thus the need 

for fast charging events. To determine the re-

quired number of charging points, a compromise 

between short waiting times for users and a high 

occupancy rate of charging points is obtained. 

This ensures that the battery can be recharged 

within a reasonable waiting time, even during a 

peak demand. For this purpose, we analyse the 

BEV profiles to determine the driving day with 

the highest amount of driving distances exceeding 

the electric range   as the bottleneck day for 

which the system has to be designed. To consider 

the intensity of the need for fast charging events, 

we assume that it depends on the arrival rates in 

the course of the day. This is taken into account 

with the relative distribution of arrival times of 

trips on the bottleneck day from [18]. Thereby, we 

receive the required number of fast charging 

points by the ratio of the arrival rate from the user 

source on the bottleneck day     
  and the enter 

rate into the system     . Formally this results in 

      
    
 

    
 

measured in charging points per 1,000 BEV. 

An overview of all model steps is provided in 

Figure 2. 

2.2 Data and further assumptions 

For this paper, we use driving profile data from 

Germany: the German Mobility Panel for private 

users and the REM2030 profiles for commercial 

users [10, 11]. Both have been described in detail 

in [12, 7]. These data sets contain information 

about all trips performed with vehicles for at least 

one week and can be considered representative for 

the vehicle size and driving distances in the Ger-

man vehicle registrations [7]. 

All cost assumptions are taken from [7]. Further-

more, we use data from [13] to validate results. 

The following additional assumptions have been 

made: The usage of fast charging infrastructure is 

only possible for private battery electric vehicles. 

For the calculations in 2030, we assume a BEV 
with a gross battery capacity of 40 kWh and 90% 
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usable net capacity. An energy consumption of 

0.18 kWh/km enables a electrical range of 

200 km. Moreover, it is assumed that fast 

charging infrastrutrue is only used when the 

eletrical range is exceeded on long distance trips. 

Then, BEVs are assumed to be able to recharge at 

a fast charging station. We assume that vehicles 

recharge from an average state of charge (SOC) of 

about 20% and until a SOC of 80%. This leads to 

an expected value for the energy need of 

21,6 kWh at fast charging stations. 

For every day on which the electric range of a 

BEV is exceeded, a potential BEV buyer has to 

pay 10 EUR (for 21,6 kWh of public fast charg-

ing, i. e. a public charging price of about  

0.50 EUR/kWh) to cover his mobility need. An 

additional range from recharging of about 100 km 

is sufficient for most profiles [7]. 

 

 

Figure 2: Overview of modelling steps. 

3 Results 

3.1 Simulation results 

The simulation results contain two parts: the mar-

ket diffusion results of ALADIN and those of the 

queuing model. Results for market diffusion are 

only briefly described, since their detailed de-

scription can be found in [7] and we will put more 

emphasis on results of the queuing model.  

In 2030, for 765 out of 6,339 vehicle driving pro-

files, a BEV is the utility maximizing drive train. 

In the following these will be referenced as “BEV 

profiles”. Table 2 contains a brief summary of all 

vehicle driving profiles and the BEV profiles.  

For BEVs, we observe a slightly higher average 

of days with driving within the observation period 

and a much higher amount of average daily vehi-

cle kilometres travelled (VKT) than for the full 

sample. This results from the high amount of 

VKT necessary to amortize the higher investment 

for an alternative fuel vehicle compared to a con-

ventional one. 

Following [9], we further receive an average an-

nual need of 30 fast charging events per year per 

BEV. The stock of plug-in electric vehicles sums 

up to 4.8 million PEVs in 2030 without public fast 

charging and to 5.6 million PEVs if it is possible 

to fast charge for private and company cars. The 

number of BEVs increases with 1.2 million in-

stead of 500,000 private BEVs and 300,000 in-

stead of 100,000 BEVs as company cars. For 

these vehicles fast charging with the abovemen-

tioned price of 10 EUR per charging event is con-

sidered. If these BEVs recharge 30 times per year 

at public fast charging stations on average, about 

45 million fast charging events would take place 

throughout the year or about 120,000 per day on 

average.  
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Table 2: Summary statistics of driving behaviour based on [10]. 

 

 

Let us now turn to results from the queuing 

model. According to [18], about 96.7% of all 

arrivals occur in the time period from 5 am to 10 

pm. Thus, we assume that the system has to han-

dle the average arrival rate from the user source in 

the time period from 5 am to 22 pm on the bottle-

neck day, referred to as     
 .  

The analysis of the BEV profiles shows that on 

Fridays, the bottleneck day, about 36% more long 

distance trips occur than on the weekly average. 

According to the assumption, that the temporal 

distribution of long distance trips relies on the 

arrival rate during the day, about 96.7% of all fast 

charging events will be conducted between 5 am 

and 10 pm. This time period will be referred as 

“main time” in the following. As a result, we can 

determine an average     
  = 6.3 fast charging 

events/(hour*1,000 BEV) during the main time.  

For determining the capacity of fast charging 

points the following requirements have to be ful-

filled: To ensure a swift charging process and 

provide planning certainty for the users, 80% of 

the arriving users shall not have to wait longer 

than 5 minutes until they can start their charging 

procedure. Thus we obtain the minimum arrival 

rate, which can be processed from a fast charging 

point for the described requirements on the ser-

vice level. For 50 kW chargers the minimal arri-

val rate amounts to     
      = 0.011, 100 kW 

chargers to     
       = 0.027 and for 150 kW 

chargers to     
       = 0.059.  

The determination of the required number of fast 

charging points is based on the assumption that 

fast charging events are equally distributed over 

the year and between all charging stations. Hence, 

for a 50 kW infrastructure 10.0 fast charging 

points are needed per 1,000 BEV, respectively 3.9 

100 kW charging points or 1.8 charging points 
with 150 kW per 1,000 BEV. 

Table 3 shows different operating numbers for the 

determined fast charging infrastructure need on 

the bottleneck day for the period of time from 5 

am to 10 pm. It is noteworthy that the ratio of the 

number of required charging points per 1,000 

BEV decreases unproportionately with increasing 

charging power for the same service level. For 

example, by doubling of charging power from 50 

to 100 kW, the required number of charging 

points is reduced more than half. In consequence, 

the average occupancy rate of the charging points 

increases with increasing charging power. Thus, 

higher charging power enables to serve more 

vehicles per day for a given service level and 

average waiting time. For a comprehensive 

evaluation of the described fast charging infra-

structure need from a user and operator perspec-

tive, we take a closer look at the distribution of 

the average waiting times in Figure 3 and the 

stochastic occupancy rate in Figure 4 during the 

main time on the bottleneck day. 

Figure 3 shows the cumulative distribution func-

tion of the average waiting time at a public fast 

charging station. We show the different power 

rated with different colours (50 kW in blue, 

100 kW in yellow and 150 kW in red. We observe 

short waiting times for a high number of users for 

all three power levels, yet waiting times below 

five minutes are more common for lower power 

rates as here their numbers are higher (cf. Table 

3). The intersection of all three curves is at the 

service level of 80 % with a tolerated waiting time 

of five minutes which was the presumption. How-

ever, a waiting time far above five minutes is 

more rare with higher power rates, since users can 

recharge more quickly. 

 

BEV driving profiles (N = 765) 0.25 Median Mean 0.75 

Share of driving days 0.86 1 0.94 1 

Average daily VKT [km] 42.6 71.7 86.0 112.1 

All driving profiles (n=6,339) 0.25 Median Mean 0.75 

Share of driving days 0.86 1 0.93 1 

Average daily VKT 22.0 38.3 50.6 65.0 
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Table 3: Operating numbers of the queuing model for the bottleneck day  

(for the period of time from 5 am to 10 pm) 

Operating numbers 
 

Charging power [kW] 

 
 

   
50 100 150 

Fast charging points per 1.000 BEV     [#/1.000 BEV]  10.0 3.9 1.8 

Tolerated waiting time     [min] 
 

5 5 5 

Mean charging time     [min] 
 

30.3 15.2 10.1 

Mean inter-arrival time     [min] 
 

95.5 37.1 17.1 

Average waiting time     [min]  7.78 4.85 4.50 

Average occupancy rate    [%] 
 

32 41 59 

Average served vehicles/charging point/day    [#] 
 

8 21 46 

 

 

 

 

Figure 3: Distribution of the average waiting times in the queue of a fast charging point for the period of time 

from 5 am to 10 pm on the bottleneck day for 50, 100 and 150 kW charging points. 
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Figure 4: Stochastic occupancy rate of 50, 100 and 150 kW charging points on the bottleneck day. 

 

Turning to Figure 4, we see the average occu-

pancy rate of charging points during the day 

using the same colors for power levels as in 

Figure 3. For charging points with 50 kW 

charging power, it is much more likely to start 

a charging process without waiting than for 

charging points with higher charging power. 

This results from the coherence, that the 

lower the charging power, the more charging 

points are required to fulfill a certain service 

level. However, the regime of the distribution 

of waiting times shows that higher charging 

power reduces the time users have to wait in 

the queue, since ongoing charging procedures 

can be completed faster. Thus, it can be con-

cluded that higher charging power can pro-

vide higher service quality with respect to 

waiting times in the queue and planning cer-

tainty for the overall time which should be 

calculated for fast charging.  

The time period from 4 pm to 7 pm on the 

bottleneck day represents the overall demand 

peak. For this reason, it is interesting to inves-

tigate which occupancy rate can be achieved 

as a maximum for a given service level. Fig-

ure 4 shows that 50 kW charging points just 

achieve a maximum occupancy rate of 43% if 

the service level has to be fulfilled on the 

bottleneck day. The average occupancy rate 

during the mean time on the bottleneck day is 

about 32%. In contrast, charging points with 

150 kW are able to reach up to 80% during 

the peak time and about 59% during the main 

time. 

3.2 Comparison to real 

charging infrastruc-

ture usage 

Some of the results obtained can be compared 

to the usage of currently existing charging 

infrastructure. Here, we utilise charging data 

from Sweden [13] which consists of 43 fast 

chargers with a power of 50 kW (Chademo 

and CCS). The data has been gathered over 

14 months from 2014-12-30 to 2016-03-09 

and consists of 136,878 charging events (both 

fast and slow chargers). 

The total number of fast chargers in Sweden 

amounts to 121 Chademo chargers and 117 

CCS chargers (some at the same charging 

site) [23] for a BEV fleet of 6600 cars [22], 

yielding 36 chargers per 1000 BEV, though 

less charging sites per BEV. This is much 

higher than the calculated values in the previ-

ous section. However, charging infrastructure 

in Sweden is either provided by the munici-

palities and is free of charge, or by one of the 

big power utilities where a user have to pay a 

fixed per-minute price for charging. 
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In this analysis, we only include charging 

events from the 50 kW chargers. The data has 

been cleaned by removing registered charging 

events that are shorter than 3 minutes or 

longer than 3 hours, yielding ca 

34,934 remaining charging events. Probability 

densities have been calculated by kernel den-

sity estimates and cumulative densities via the 

Meier-Kaplan estimator. 

In Figure 5 we show the distribution of charg-

ing events over the hours of the day, these 

specifically refer to the start of a charging 

event. Compared to Figure 4 above we obtain 

the same plateau-like behaviour, though the 

plateau is shifted approximately two hours 

earlier in the day. Yet, note that since we refer 

to the start time of the charging event, some 

of these events could be extended up to an 

hour later. 

 

Figure 5 Distribution of charging events during the 

day. Note that the times displayed refer to the start 

times of charging events. 

As a proxy comparison to the waiting time 

displayed in Figure 3 above, we have calcu-

lated both the duration of charging events in 

Figure 6 and the vacancy time of the chargers 

in Figure 7, that is, the length of time the 

chargers are not used in-between charging 

events. Figure 6 alone would be identical to 

the waiting time in Figure 3 if a car arrives 

just at the start of a charging event for one 

previous car. This may not often be the case 

(see Figure 7), the interpretation of Figure 6 is 

then that it shows the maximum waiting time 

for a user. But a better understanding of the 

real waiting time requires consideration of 

Figure 6 and 7 in tandem. Here, it should be 

noted that the vacancy times in Figure 7 are 

much longer than the charging times in Figure 

6, thus the availability of the charging infra-

structure is high, and the occupancy rate low. 

However, we have to keep in mind that the 

ratio of charging points per 1,000 BEVs with 

36 in this data is much higher compared to 

10 charging points per 1,000 BEVs in the 

simulations. 

 

Figure 6 CDF of the duration of charging events. 

Furthermore, Figure 7 can be interpreted as 

the utilization of the charging infrastructure in 

Sweden, which is low at the moment. This 

could stem from the high number of charging 

stations per BEV. 

 

Figure 7 CDF of vacancy times of charging points. 

Furthermore, the charging times are exponen-

tially distributed after ca 25 min of charging in 

the data of actual charging, which is approxi-

mately the time needed to reach 80% SoC if you 

arrive with 10-20% SoC. This is in line with the 

assumptions in section 2.2. However, it is not 

exponentially distributed if the charging times 

are lower than 25 minutes which might influ-

ence results. This subject needs attention in 

further research. 
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Thus, although the data of the previous sec-

tion was on German driving and the charging 

behaviour stems from Sweden, we could con-

firm several assumptions and simulation re-

sults with measured data. 

4 Discussion and Conclusion 

This analysis proposes a model to estimate 

the number of fast charging points. It can be 

applied to other countries if driving profile 

data with an observation period of at least one 

week is available. This model does not reflect 

geographical correlation of PEVs and charg-

ing points nor differentiate between urban or 

rural areas. Furthermore, the driving and refu-

elling behaviour of conventional vehicles is 

considered for PEVs which might differ as 

well. We calculated a need of 82 fast charging 

events per day and 1,000 BEV. Based on the 

results of the ALADIN model, the selected 

driving profiles for which the best drive train 

option is a pure BEV comprise a higher mile-

age in comparison to the overall data set. In 

reality the daily VKT of BEVs may be lower 

and thus also the need for fast charging 

events. For simplification, the model assumes 

that fast charging events are equally distrib-

uted over the year and between all charging 

points. It might be useful to set up charging 

points in areas with a low occupancy, e.g. to 

fulfil a public supply mandate, while other 

charging stations may be frequented much 

more. This could have an impact on results 

for the lower number of fast charging points 

with a higher power, since they might not be 

sufficient from a user’s point of view. This 

geographical distribution could be an en-

hancement for further research. 

It is also necessary to mention the effect of 

fast charging on batteries. Due to high powers 

a lot of heat is produced inside the battery 

which could increase battery degradation. 

However, until 2030, we assume that this 

current technical restraint should be solved. 

Another frequently discussed issue is the high 

risk of grid overload due to parallel fast 

charging events during the demand peak. The 

highest load profile can be found on the bot-

tleneck day between 4 pm and 7 pm. Accord-

ing to the determined charging infrastructure 

and stochastic occupancy rate a power supply 

of 2.58 MW would be required. Alternatively, 

about 2.57 MW for 100 kW charging points 

or 2.59 MW for 150 kW of power supply are 

necessary. Compared to the installed power of 

185 GW, this seems to be a minor issue on a 

national level, while it might affect electricity 

grids locally. 

We find some robust results which should be 

retained:  

(1) The model shows that there is a nonlinear 

coherence between charging power and the 

needed number of charging stations for a 

certain service level. For higher charging 

power there are unproportionately less charg-

ing points required. For example, there are 

10.0 50 kW charging points needed per 1.000 

BEV and just 3.9 100 kW charging points 

needed per 1.000 BEV.  

(2) For the 1.5 million private and company 

car BEVs in sock in 2030, about 15,000 

50 kW charging points are necessary to cover 

the demand for fast charging events. Alterna-

tively, about 5,850 100 kW charging points or 

2,700 150 kW charging points are required. 

Consequently, the same need for fast charging 

events can be served with less charging points 

which leads to a higher occupancy rate. 

(3) The Swedish charging data shows 36 

50 kW chargers per 1,000 BEVs, which is 

much higher than the model output, yet veri-

fies the distribution of charging times over the 

day given by the model and the assumption of 

exponentially distributed inter-arrival times 

for users. 

(4) Yet, there is no conclusion possible if 

higher charging power is beneficial from an 

economical perspective as the additional costs 

for higher charging power are not part of this 

research. Moreover, with higher charging 

power occupied charging stations become 

faster available which reduces the waiting 

time for the customer, although the same 

demand has to be covered with disproportion-

ately less charging points.  

(5) The cost of an extended charging infra-

structure should also be compared to the cost 

of larger batteries in the vehicles. The inter-

relation between charging infrastructure, bat-

tery size, and driving patterns is complex and 

requires further research. 
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