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Abstract

The energy consumption of battery electric vehicles (BEVs) depends on a number of factors, such as
vehicle characteristics, driving behavior, route information, traffic states and weather conditions. The
variance of these factors and the correlation among each other make the energy consumption prediction
of BEVs difficult. This paper presents an online algorithm to adjust the energy consumption prediction
during driving. It includes a vehicle parameter estimation algorithm and a driving behavior correction
algorithm. The vehicle parameter estimation algorithm can assess the vehicle mass and rolling resistance
during driving. The driving behavior correction algorithm can adjust the energy consumption prediction
based on the current driving behavior, and considers the influence of wind and road slope. The online
energy consumption prediction algorithm is verified by 21 driving tests, including highway, city, rural
and hilly area tests. The comparison shows that the mean absolute percentage error between the actual
energy consumption value and online prediction result is within 5% for every test.
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1 Introduction

The limited driving range and long charging time of battery electric vehicles (BEVs) make drivers more
concerned on whether they can reach the destination based on the current battery state of charge, this
phenomenon is called ”range anxiety”. Range anxiety is considered as one of the major factors that
affects the acceptance of BEVs. Besides a bigger battery and more charging facilities, an accurate and
reliable energy consumption prediction along a chosen route is also important to reduce the driver’s range
anxiety. However, the energy consumption of BEVs is dependent on a number of external factors, such
as vehicle characteristics, road topography, driving behavior, traffic state and weather conditions.
The high number of impact factors and the correlation among each other make the energy consumption
prediction of BEVs is difficult and complex. Several studies have been performed on predicting the en-
ergy consumption of BEVs. They can be mainly divided into two categories: offline energy consumption
prediction and online prediction. The offline energy consumption prediction is either by using a physical
model or a statistical model obtained from real-world recording data to calculate the energy consumption
based on the predicted speed profile before a trip begins [1, 2]. The online prediction is using a regression
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model to adjust the energy prediction result based on historical recordings and current driving behavior
and route [3, 4].
A regression model can be used to adjust the energy consumption prediction based on current measure-
ments and future route. However, a driving route may contain several road types. When the road type is
changing, more than one parameters may change, e.g. the average driving speed and rolling resistance
coefficient. The regression model cannot distinguish the influence of different parameters, so the adjust-
ment may not represent the future driving accurately. However, it is easy for a detailed physical model
to calculate the energy consumption difference caused by the changing parameters.
This paper presents an online algorithm to adjust the energy consumption prediction using a detailed
physical vehicle energy consumption model based on route information. The online energy consumption
prediction algorithm takes the influence of the driving behavior, vehicle usage condition and future route
information into consideration to improve the prediction accuracy.
The vehicle usage condition may change some vehicle parameters which can influence the energy con-
sumption, e.g. auxiliary system usage, vehicle mass and rolling resistance coefficient. The auxiliary
system usage can be measured directed during driving, but the vehicle mass and rolling resistance co-
efficient cannot be measured directly, and need to be estimated. In this research, the vehicle mass and
rolling resistance coefficient is estimated by a recursive least-square (RLS) algorithm using the measured
driving speed and motor output power.
The driving behavior can be defined by acceleration, speed and idling time, which is mainly determined
by the driver, traffic flow and road type. Although the driving behavior cannot easily be measured and
predicted, it can be assumed to be ”constant” on the same road type during one trip [5], thus the future
energy consumption can be adjusted based on the current recordings on the same type of road. The route
information, including the road type, speed limit signs, traffic lights and elevation data, is obtained from
OpenStreetMap (OSM) and Shuttle Radar Topography Mission (SRTM) in this paper.
The structure of the online energy consumption prediction algorithm is shown in Figure 1. During
driving, vehicle speed and high voltage battery output power are measured and this measured data is
used to estimate two parameters: vehicle mass and rolling resistance. The details on the parameter
estimation algorithm and driving behavior correction algorithm are discussed in following sections. The
online algorithm is designed to improve an offline energy consumption prediction algorithm, which is
presented in reference [2].

Energy consumption 
model

energy consumption 
prediction result

Parameter estimation 
algorithm

Driving behavior 
correction algorithm

Online 
measurements
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Vehicle mass

Speed
Power 

Figure 1: The structure of the online energy consumption prediction algorithm.

An energy consumption model considering the influence of weather conditions and road surface depen-
dent rolling resistance is adopted to determine the energy consumption in this research. The energy
consumption model is validated on an electric vehicle, the TU/e Lupo EL, and can calculate the energy
consumption within an error of 5% for different circumstances [2]. The TU/e Lupo EL is built from
a donor vehicle, VW Lupo 3L, by the Dynamics and Control group of the Eindhoven University of
Technology in 2009, and ”EL” is the abbreviation of Electric Lightweight [6, 7, 8].
This paper is organized as follows. In Section 2 the parameter estimation algorithm is introduced. In
Section 3 the driving behavior correction algorithm is described. In Section 4 the wind and road slope
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correction is discussed. In Section 5, the online energy consumption prediction algorithm is evaluated by
driving tests on the public road. In Section 6 the conclusions are given and the future work is discussed.

2 Parameter estimation algorithm

The vehicle mass, rolling resistance coefficient, auxiliary usage and road grade are the most important
parameters that will influence the vehicle energy consumption, apart from the driving speed. These
parameters may vary from trip to trip and some can even change during one trip. To improve the energy
consumption prediction accuracy, these parameters need to be determined during driving. The road slope
along a trip can be obtained from SRTM before a trip begins. The auxiliary system usage is determined
by the driver and the energy consumption can be measured directly during driving. The mass is dependent
on the vehicle load and the rolling resistance coefficient can be easily influenced by the tire condition and
weather. These two parameters are difficult to be measured directly. Therefore, a recursive least-squares
(RLS) estimation algorithm [9, 10] is used to estimate the vehicle mass and rolling resistance coefficient
in this research.
The RLS estimation algorithm relies on the vehicle longitudinal dynamics model. The motor output
power Pm during driving is given as

Pm = T · ω = (Fr + Faero + Fg + Fm +
Tfr
r

) · v (1)

where T is the motor output torque; ω is the motor angular speed; Tfr is the wheel bearing and powertrain
friction torque; r is the tyre radius and v is the vehicle speed.
The rolling resistance force Fr is

Fr = fr ·m · g · cos(α) (2)

where fr is the rolling resistance coefficient; m is the vehicle mass; g is the gravitational constant and α
is the road slope. The aerodynamic drag force Faero is given by

Faero =
1

2
· ρ · Cd ·Af · (v −W )2 (3)

where ρ is the air density and W is the wind speed in the driving direction, obtained from a weather
website. The force originating from the road slope Fg is

Fg = m · g · sin(α) (4)

The acceleration force Fm is given by

Fm = (m+
4 · Jw
r2

+
Jm · i2g
r2

) · ax (5)

where Jw is the wheel inertia, Jm is the motor inertia, ig is the gearbox ratio and ax is the acceleration.
At last, Equation (1) can be rewritten as

T · w − (Faero + (
4 · Jw
r2

+
Jm · i2g
r2

) · ax +
Tfr
r

) · v =

(fr ·m · g · cos(α) +m · g · sin(α) +m · ax) · v (6)

Rearranging Equation (6) in a linear estimation format as

y = ϕT θ (7)

EVS29 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium3 3

World Electric Vehicle Journal Vol. 8 - ISSN 2032-6653 - ©2016 WEVA Page WEVJ8-0215



where

y = T · w − (Faero + (
4 · Jw
r2

+
Jm · i2g
r2

) · ax +
Tfr
r

) · v (8)

ϕ =

[
g · cos(α) · v

g · sin(α) · v + ax · v

]
(9)

θ =

[
fr ·m
m

]
(10)

The classical RLS method is chosen to minimize the following loss function:

V (θ̂, t) =
1

2

t∑
i=1

(y(i) − ϕT (i)θ̂)2 (11)

The recursive solution is [11]:

θ̂(t) = θ̂(t− 1) +K(t)(y(t) − ϕT (t)θ̂(t− 1)) (12)

K(t) = P (t− 1)ϕ(t)(I + ϕT (t)P (t− 1)ϕ(t))−1 (13)

P (t) = (I −K(t)ϕT (t))P (t− 1) (14)

In the RLS estimation, the sample time is chosen as one second, the initial value of P is set to 1. The
starting values of the vehicle mass and rolling resistance coefficient in the energy consumption prediction
algorithm are 1250 kg and 0.012 respectively, this leads to θ̂ = [15 1250]T .
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Figure 2: Recursive estimation of the vehicle mass.
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Figure 3: Recursive estimation of the rolling resis-
tance coefficient.

A rural road driving test has been done in Eindhoven area on November 20th 2014. The parameter
estimation algorithm is used to estimate the vehicle mass and rolling resistance coefficient. The results
are shown in Figure 2 and Figure 3. It can be seen that both estimations of vehicle mass and rolling
resistance coefficient are fairly constant after the first three kilometers driving. The vehicle mass has
some variation most likely caused by measurement errors, but the variation is smaller than 4%; the rolling
resistance coefficient is almost constant. Therefore, these two estimations are considered accurate enough
for the energy consumption prediction algorithm. The unstable estimation in the first three kilometers
may be caused by tyres needing to warm up at the beginning of the trip and also the algorithm needs
enough data to converge to an accurate value.
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3 Driving behavior correction algorithm

The driving behavior is considered to be ”constant” on the same type of road during one trip, however it
may also change for future driving. Although this change cannot be predicted in advance, the algorithm
should be able to adjust the prediction result based on recent changes. Therefore, the driving behavior
correction algorithm has to fulfill two requirements:

• Providing a stable prediction result if the driving behavior is constant.

• Adjust the prediction result based on the recent changes in driving behavior.

The driving behavior correction algorithm is designed based on the road information to fulfill these two
requirements. The driving route is divided into several sections based on road type information. There
will be one steady driving section for each road type, and also one transitional driving section between
two different types of road. A demonstration on how to divide the road sections is shown in Figure 4. As
can be seen, sections 2, 4 and 6 are the steady sections, while section 1, 3, 5 and 7 are the transitional
sections when going from one road type to another.

Driving distance

Sp
ee

d

Limited Maximum Speed

Actual Driving Speed

Limited Minimum Speed

Road type 1 Road type 2 Road type 3

Figure 4: Route sections based on road type.

The driving speed would change very aggressively at the transitional area on a primary road, trunk road
and highway road, but it will be stable after the transitional area on these types of road. Therefore, the
driving speed in the transitional section cannot represent the future driving speed, a transitional section
recording cannot be used to predict the future energy consumption. As a result, the energy consumption
recording within steady sections are used to predict the future energy consumption on a primary road,
trunk road and highway road. However, the steady road segment is quite short for a city road and the
vehicle has to decelerate to a low speed or stop in a intersection and traffic light. Thereby, there is no
obvious difference between the transitional section and steady section for city driving. As a result, it is
not necessary to distinguish the difference between the transitional section and steady section for a city
road.
The length of transitional section is determined by the driver and traffic flow. The transitional length in
this research is defined as the distance from the beginning of an acceleration until the vehicle speed stops
increasing if the vehicle is accelerating at the beginning of the road type, and vice versa. According to the
measurement, the transitional length of the primary road and trunk road ranges from 0.2 km to 0.9 km. To
guarantee the accuracy of the algorithm, the transitional length is chosen the maximum value. Therefore,
the length of the transitional section is set as 2 km on highway road, 1 km on a primary and trunk road.
The main idea of the driving behavior correction algorithm can be described by

Ef ≈ Ep (15)
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where Ef is the energy consumption per kilometer for the future driving, Ep is energy consumption per
kilometer for the past driving, which is calculated based on the past recording. The past recording can
take several forms according to the literature review [3]:

• short recording (Ep:short): the specific energy consumption is calculated based on a short past
distance recording of the current trip. The recording distance can be e.g. 1 km or 2 km.

• running recording (Ep:running): the specific energy consumption is calculated based on the record-
ing from the beginning of the trip to the current location.

• long recording (Ep:long): the specific energy consumption is calculated based on a long historical
recording, e.g. 300 km.

However, none of these three items can fulfill the requirements of the driving behavior correction algo-
rithm. Ep:short is always changing during driving, which can lead to an unstable prediction. Ep:long

cannot reflect a change of the ambient temperature, driver’s mood and auxiliary usage, while these fac-
tors play an important role in the vehicle energy consumption [12]. Ep:running can reflect the power
usage of the current trip, but it cannot adjust the prediction result timely if the power usage is changing
in the middle of a trip.
To solve these problems, the recording distance should be chosen as a suitable value, which is longer
than the recording of Ep:short and shorter than the recording of Ep:running. A moving average method
(MA) Ep:ma to calculate the specific energy consumption of past driving is described, see Equation 16
and 17. A demonstration is shown in Figure 5. In this method, the recording within a distance of ∆l is
assumed to be able to represent the current driving behavior and used to calculate the past specific energy
consumption.

Ep:ma(i) =
E(s(i) + ∆l) − E(s(i))

∆l
(16)

where s(i) represents the travelled distance at instance i.
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Figure 5: A demonstration of the methodology to chose the recording distance.

The energy consumption prediction result is updated after a distance ∆s, given as

s(i+ 1) = s(i) + ∆s (17)

The reason why the energy consumption is updated every distance ∆s instead of every meter is because
the energy recuperation of BEVs will cause the energy measurement to have some swings along the
driving distance, as shown in Figure 6. It can be seen that the measured energy has some fluctuation
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during driving, which may confuse the driver when providing the prediction. Therefore, a more linear
outcome is preferred for the prediction as the solid line, the energy consumption is determined every
500 m. In this algorithm, the update distance ∆s is set as the same value as the length of a transitional
section, which is 2 km for a highway road, 1 km for a primary and trunk road and 0.5 km for other types
of road. The recording distance ∆l is three times the update distance. These two values are chosen based
on a comparison between simulations and measurements.
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Figure 6: The relationship between the energy consumption and driving distance in a city driving.

A highway driving test is used to show the effect of these different past recording methods. The
speed data is shown in Figure 7. The comparison between energy consumption prediction results of
three recording methods, namely short recording, running recording and MA recording are presented in
Figure 8. At the beginning of the trip, the energy consumption prediction is increasing rapidly, this is
because the driving speed at the beginning of this trip is higher than the average highway driving speed
of this trip. It can be seen that the MA recording method is more stable than the short distance recording
and reacts faster than the running recording.
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Figure 7: The driving speed for a highway driving
route.

0 10 20 30 40 50 60 70 80 90
10.5

11

11.5

12

12.5

13

13.5

Driving distance [km]

E
ne

rg
y 

co
ns

um
pt

io
n 

[k
W

h]

 

 

Actual enery consumption
Short recording
Running recording
MA recording

Figure 8: The energy consumption prediction along
a highway driving route.

4 Wind and road slope influence

There are two other predictable factors that can affect the energy consumption prediction result: wind and
road slope. These two factors are changing along the driving route, therefore, the energy consumption
caused by these two factors in past driving cannot represent the contribution in the future. To improve the
prediction accuracy, the influence of wind and road slope in the past has to be excluded when calculating
the past specific energy consumption Ep, and the influence of wind and road slope in the future should
be included when calculating the future specific energy consumption Ef .
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The algorithm to take the influence of wind and road slope influence into consideration is discussed
next. The vehicle is assumed to be driving on one road type. The length of the trip is L, the driving
distance from the start point to the current position is lc, the past recording distance is ∆l. Within the
past recording distance ∆l, the measured energy consumption is E, driving speed is v and head wind
speed is W . The energy consumption ∆Ew,p caused by the wind and the energy consumption ∆Es,p

caused by the road slope in the recording distance ∆l are calculated first. The energy consumptionE∗
p for

the same distance without the influence of wind and slope is obtained then. Finally, the specific energy
consumption Ep without the influence of wind and road slope is calculated.

∆Ew,p =

lc∑
i=lc−∆l

1

2
· ρ · Cd ·A · (vi −Wi)

2 · ds−
lc∑

i=lc−∆l

1

2
· ρ · Cd ·A · v2

i · ds (18)

∆Es,p =

lc∑
i=lc−∆l

m · g · sin(αi) · ds (19)

E∗
p = E − ∆Ew,p − ∆Es,p (20)

Ep = E∗
p/∆l (21)

where i is the travelled distance; ds is the interval distance to calculate the energy, the value is 1 meter.
The driving behavior is assumed to be unchange during the trip, therefore, the past specific energy con-
sumption Ep and the average driving speed vp are assumed to be the same as the respective values Ef

and vf of the future driving. The future specific energy consumption Ef is then used to predict the en-
ergy consumption for the rest of the drive on this road section, and the influence of wind and road slope
are included to calculate the future energy consumption Ef .
The future energy consumption results can be calculated as,

Ef = Ep (22)

vf = vp (23)

E∗
f = Ef · (L− lc) (24)

∆Ewind =

L∑
i=lc

1

2
· ρ · Cd ·A · (vf −Wi)

2 · ds−
L∑

i=lc

1

2
· ρ · Cd ·A · v2

f · ds (25)

∆Eslope =
L∑

i=lc

m · g · sin(αi) · ds (26)

Ef = E∗
f + ∆Ewind + ∆Eslope (27)

where vf is the average speed of future driving; E∗
f is the future energy consumption without the influ-

ence of wind and road slope and Ef is the energy consumption for future driving.
Because the same approach is used to deal with the road slope and wind, the road slope is used as a
demonstration to illustrate the algorithm. A hilly area driving test is used to show the influence of the
road slope on the energy consumption prediction. In this particular case, the influence of wind is very
small. If the wind speed is big and the driving direction has a major change, then the influence of wind
will also be significant.
The road height information along the hilly route is shown in Figure 9. It can be seen that the vehicle
drives downhill first, and then uphill. The energy consumption of the first half of the trip is smaller than
the second half. If the recording of the first half trip is used for predicting the future energy consumption
without considering the influence of road slope, the prediction value will be smaller than the actual value.
This is illustrated by the dashed line in Figure 11. Taking the road slope correction into consideration
can improve the prediction accuracy, as indicated by the solid line in Figure 11. The predicted energy
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Figure 9: The height information along a hilly
route.
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Figure 10: The driving speed along a hilly route.

consumption result is lower than the measured one at the beginning of the trip, this is because the pre-
dicted driving speed before the trip begins is lower than the actual driving speed, as shown in Figure 10.
The online algorithm starts to update the energy prediction result after gathering the measurement on the
first two kilometers.
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Figure 11: The influence of road slope and wind in a hilly route. (Test 17 in Table 1).

5 Measurement verification

5.1 Driving tests

The online energy prediction algorithm has been verified by driving tests on the public road using the
Lupo EL. The driving tests are done from June 2014 to June 2015, and includes highway, city, rural
and hilly area tests. A total of 21 tests and more than 600 km have been driven by four drivers. The
highway tests, city tests and rural tests are done in the Eindhoven area, while the hilly tests are done in
the Nijmegen area in the Netherlands. The energy consumption is measured at the high voltage battery
terminals during the driving. Details on the driving tests are shown in Table 1. It should be noticed that
for highway test other types of road are also included, so the average driving speed is lower than 80 km/h.

5.2 Online algorithm verification

There is no acknowledged standard to evaluate the online energy consumption prediction algorithm at
this moment. Actually, it is impossible to evaluate the online prediction result if the driving behavior
shows a major change during a trip, because this change cannot be predicted. But for normal driving,
the driving behavior will not change significantly and the accuracy of the online energy consumption
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Table 1: Details on driving tests in the Netherlands

Type Date
Trip

number

Ambient
temperature

[◦C]

Average
speed
[km/h]

Distance
[km]

Energy
[kWh]

Highway
road

20140606 1 22 75.2 60.6 6.66
20140619 2 17 63.6 43.7 5.85
20140902 3 20 95.2 101.7 14.89
20150416 4 12 100.2 71.6 10.94
20150706 5 23 92.9 114.7 15.00

City
road

20141120 6 8 21.0 5.7 0.69
20141125 7 7 22.4 5.2 0.66
20141203 8 0 23.9 5.7 0.72
20150416 9 14 42.5 10.7 2.21

Rural
road

20141120 10 8 45.9 18.0 1.92
20141125 11 7 43.3 18.0 1.87
20141202 12 2 45.4 18.0 2.13
20141203 13 0 39.3 18.0 2.06
20150413 14 12 56.4 26.2 3.45
20150416 15 21 59.2 20.4 2.42

Hilly
road 20150630

16

26.0

52.1 11.0 1.15
17 54.3 11.0 1.18
18 49.1 11.0 1.10
19 48.7 11.0 1.07
20 56.0 11.0 1.12
21 51.8 11.0 1.04

prediction can be evaluated. Instead of the mean absolute error (MAE), the mean absolute percentage
error (MAPE) and standard deviation percentage error (SDPE) between prediction result and the actual
energy consumption value are used as the criterion to evaluate the online energy consumption prediction
algorithm in this research. The reason to chose these two criterions is because the relative error is of
importance, not the absolute difference. The online prediction of the hilly test described in Section 4 and
shown in Figure 11 is evaluated as a demo, and the result is listed in Table 2. Comparisons also prove
the advantage of considering the influence of road slope.

Table 2: Online prediction result of the test in Figure 11

MAPE SDPE
With road slope correction 3.35 4.50

Without road slope correction 6.37 4.90

The values of MAPE and SDPE of 21 tests are shown in Figure 12. It can be seen that the MAPE
and SDPE between the prediction result and the actual energy consumption value are within 5% for
most tests. Not all the research on this area use the same standards to evaluate the prediction accuracy
[13, 14, 15], but after recalculating the prediction results the MAPE of other papers is around 10%.
Therefore, we can draw the conclusion that the online algorithm presented in this research can provide a
more accurate prediction result.

6 Conclusions

Battery electric vehicles have a limited driving range compared to ICE vehicles, and it takes a longer
time to recharge the battery than to refill the fuel tank. Therefore, an accurate energy consumption pre-
diction along a chosen route is important for an electric vehicle driver. In this paper, an online energy
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Figure 12: The online algorithm prediction results.

consumption prediction algorithm is described. The online algorithm includes a vehicle parameter es-
timation algorithm and a driving behavior correction algorithm. The online algorithm can estimate the
vehicle mass and rolling resistance coefficient and adjust the energy consumption prediction result based
on the current driving behavior.
The online energy consumption prediction algorithm is verified by 21 driving tests on the public road,
including highway driving, rural driving, city driving and hilly area driving. The comparison between the
actual energy consumption value and online prediction result shows that the MAPE and SDPE of most
tests are within 5% during driving. It is therefore believed that the online energy consumption prediction
algorithm can be used as a driver assistance system for BEVs. Future work is to design an onboard driver
information system based on this research.
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