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Abstract: In order to improve the efficiency of the “last-mile” distribution in urban logistics and
solve the problem of the difficult charging of electric logistics vehicles (ELVs), this paper proposes a
charging station location optimization scheme for ELVs that takes into account time-window and
load constraints (TW-LCs). Taking the optimal transportation path as the objective function and
considering the time-window and vehicle load constraints, a charging station siting model was
established. For the TW-LC problem, an improved genetic algorithm combining the farthest-insertion
heuristic idea and local search operation was designed. Three different types of standardized
arithmetic examples, C type, R type, and RC type, were used to test the proposed algorithm and
compare it with the traditional genetic algorithm. The results indicate that, under the same conditions,
compared to the traditional genetic algorithm, the improved genetic algorithm reduced the optimal
path length by an average of 11.12%. It also decreased the number of charging stations selected, the
number of vehicles in use, and the algorithm complexity by 22.97%, 13.71%, and 46.81%. Building on
this, a case study was conducted on the TW-LC problem in a specific area of Chongqing, China. It
resulted in a 50% reduction in the number of charging stations and a 25% reduction in the number of
vehicles selected. In terms of economic indicators, the proposed algorithm improves unit electricity
sales by 73.88% and reduces the total annualized cost of the logistics company by 18.81%, providing
a theoretical basis for the subsequent promotion of ELVs.

Keywords: time window; load constraints; electric logistics vehicles; charging station site; selection
optimization

1. Introduction

Excessive carbon emissions cause environmental pollution and accelerate global warm-
ing. In recent years, decision makers in logistics companies have been paying more atten-
tion to the concept of green transportation [1]. In 2023, global electric vehicle ownership
reached 117 million units, up 44.36% from 81.05 million units in 2022. Global sales of
electric vehicles are expected to exceed 70 million units in 2030, when ownership will reach
380 million units and penetration will reach 60%. Advance planning for the locations of
charging stations for ELVs is an important process for the future development of ELVs. A
charging station consists of solid-state transformers and other equipment, and a reasonable
charging facility layout can reduce power electronic requirements and facilitate grid power
dispatch [2,3]. In addition to this, it can also reduce the construction and operating costs of
charging stations for operators, ease the charging anxiety of delivery workers, reduce the
time spent looking for charging stations, improve delivery efficiency, and increase customer
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satisfaction [4]. Therefore, it is of great significance to optimize the site selection of charging
stations for ELVs.

Charging station siting optimization for ELVs involves vehicle path planning and
charging station siting, i.e., the Location-Routing Problem (LRP) [5,6]. In response to
this problem, Dan Wang et al. [7] proposed a site selection scheme based on an adaptive
large neighborhood search for ELVs under uncertain power consumption. The total cost
was used as the objective function, and local search operations were incorporated while
using the new operator. A case analysis showed that the scheme improves the search
capability of the model, enhances the stability of site selection, reduces the construction
cost of charging piles, and optimizes the site selection problem in the case of the fluctuating
power consumption of ELVs. Yang Senyan et al. [8] developed a charging station siting
model for ELVs with a hybrid recycling strategy and a charging strategy. The charging
station construction cost was minimized as an objective function and solved using hybrid
Lagrangian relaxation and alternating-direction multiplier methods. The results show that
the scheme balances the complexity of the model with the solution time. Zhao Jiao et al. [9],
based on a genetic algorithm, added a greedy search strategy and an elite retention strategy
to minimize the total cost as an objective function to solve the siting model considering the
charging queuing time of ELVs. The solution results show that the scheme reduces the cost
of siting the charging station and shortens the waiting time when charging ELVs. Selin
Hulagu et al. [10] proposed a site selection–path planning scheme based on the energy
consumption and recovery of ELVs in different scenarios, with cost minimization as the
objective function. The results of an arithmetic example showed that this siting scheme is
more reliable in areas with significant elevation changes. B Praveen Kumar et al. [11] used
Dijkstra’s algorithm combined with an LSTM deep learning model to plan vehicle paths
using the shortest vehicle path as the objective function. An example analysis showed
that the algorithm effectively reduces the distance traveled by the vehicle. Vidhya Kannan
et al. [12] proposed a Bellman–Ford algorithm with a score function to solve the vehicle
shortest path planning problem in road networks. Updating the weights based on the score
of the evaluation function effectively reduces the vehicle travel distance.

In the LRP, it is path planning that dominates the decision on siting. Using the cost as
an objective function often does not accurately reflect the vehicle paths, resulting in a non-
optimal solution for performing site selection. And in a multi-node, multi-objective, large-
scale optimization problem, using cost as the objective function often makes convergence
difficult, and the solution speed is slow [13].

Due to the existence of logistics and distribution characteristics such as timeliness, a
common treatment scheme involves adding time-window constraints to the model. Wang
Yong et al. [14] designed a combination of a Gaussian hybrid clustering algorithm and an
improved non-dominated sorting genetic algorithm with total cost minimization as the
objective function. Concepts such as time windows for users and resource sharing have
been added to the constraints. An example study of the ELV siting–path problem for a
site in Chongqing, China, showed that the scheme improves the operational efficiency of
the logistics network and the utilization of resources. Li-Ying Song et al. [15] proposed a
hybrid fleet cold chain logistics distribution path optimization problem considering carbon
emissions and the customer time window, which rationally allocates the ratios of fuel
and ELVs in the fleet, optimizes the charging time of the trams and the refueling time of
the oil trucks, and meets the constraints of the time window of the customer points in
different regions.

Logistics transportation, in addition to considering time-window constraints, should
also consider vehicle load constraints in order to rationalize the arrangement of vehicles to
serve customers with different demand points [16].

In summary, when studying the problem of siting charging stations for ELVs, there
are situations such as a non-optimal objective function and the incomplete consideration of
constraints. Therefore, this paper proposes a charging station location optimization scheme
for ELVs that takes into account time-window and load constraints, where the optimal
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path is used as the objective function and time-window and load constraints are added
to the transportation paths. The solution aims to reduce the number of charging stations
selected and reduce the number of vehicles in use while optimizing distribution paths and
improving distribution efficiency.

2. Problem Description and Problem Formulation
2.1. TW-LC Problem Description

TW-LCs mean that there are a certain number of customer points, which have different
time windows and different amounts of cargo demand, and the ELV is responsible for
distributing the cargo from the distribution center. By organizing appropriate routes, it
traverses all customer points and selects the optimal path between them. At the same time,
we also need to satisfy the time-window constraints of the customer points and the load
constraints of the vehicles, and according to the power consumption of the ELV, we can
reasonably set up charging stations on the transportation route.

The charging station siting model for ELVs proposed in this paper can include a
distribution center involving multiple ELVs, multiple locations for constructing charging
stations, and multiple customer locations. The ELV starts at the distribution center, goes
through a number of customer points, and finally returns to the starting point. On the way,
it passes through a charging station to replenish its power, and each time it is replenished,
it is fully charged. The time window for the customer points is a soft time window, and
there are penalties for being earlier or later than the time window. The TW-LC problem is
shown in Figure 1.

3

The unselected charging stationDistribution center Customer point Charging station

[a, b] Time window

[0,24]

[8,10]

[11,20]

[9,15]

[8,18]

[9,16]

[14,20]

[0,24]

[7,18]

1

2

（5.4/6.0)

Battery status Electric Logistics Vehicle (a/b) Vehicle load constraints 

Figure 1. The topology of the TW-LC problem.

The transportation scenario proposed in this paper has the following assumptions:
(1) There is no delivery demand at the charging station, so the demand is 0. (2) The ELV will
not visit the next charging station immediately after visiting one charging station. (3) The
driving speed of the ELV is uniform. (4) Each charging station has a sufficient number of
charging posts. (5) The ELV does not consume power when it stops at a customer point.

2.2. Linear Programming Optimization Model

The definition of sets and variables in the charging station siting model for ELVs
established in this paper is detailed in Table 1.
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Table 1. Notation for the TW-LC problem.

Sets and Variables Meaning

A Set of nodes
K Set of vehicles
N Set of client points to be served
D Set of distribution centers
E Set of charging stations
xiθk 0–1 variable: 1 when the program serves client point i and 0 otherwise
xijk 0–1 variable: 1 when the vehicle goes from i to j and 0 otherwise

xiDk
0–1 variable: 1 when the vehicle departs from the distribution center and
finally returns to the distribution center and 0 otherwise

xDηk
0–1 variable: 0 when the vehicle is charged immediately after departure
from the distribution center and 1 otherwise

2.2.1. Optimal Path Objective Function Design

Equation (1) represents the optimal path, which consists of the total distance traveled
by the ELV, the sum of the capacity constraints violated by each path, the sum of the
load constraints violated by all the customer points, the sum of the power consumption
constraints violated by all the vehicles, and four variables. α, β, and γ are coefficients. Since
load constraints are relatively difficult to violate, α is set to 10. The time-window and power
consumption constraints are easier to violate, so β and γ are set to 100. dij denotes the
distance from client point i to client point j; and q represents the synthesis of load constraint
violations; tik represents the time when vehicle k arrives at customer point j; li represents
the right time window of client point i, i.e., the latest expected arrival time of client point i;
g represents the synthesis of the power consumption constraint violation.

OP = ∑
i∈A

∑
j∈A,i ̸=j

∑
k∈K

dijxijk + αq + β
n

∑
i=1

max{(tik − li), 0}+ γg (1)

2.2.2. Restrictive Conditions

Load constraints: Equation (2) indicates that the total weight of the goods carried by
the vehicle does not exceed the maximum load capacity. Qθ represents the demand for
goods at customer point θ to be served; and C indicates the rated load capacity of the ELV.

∑
i∈A,i ̸=θ

∑
θ∈N

Qθ xiθk ≤ C, ∀k ∈ K (2)

Path constraints: Equation (3) represents the conservation of traffic flow at each node,
i.e., vehicles entering are equal to vehicles exiting; Equation (4) indicates that each client
point should be visited and only once; Equation (5) indicates that all ELVs depart from
the distribution center only once; Equation (6) represents the elimination of sub-loop
constraints; and Equations (7) and (8) indicate that the ELV departs from the distribution
center and finally returns to the distribution center.

∑
i∈A,i ̸=j

xijk = ∑
j∈A,j ̸=i

xjik (3)

∑
i∈A,i ̸=θ

∑
k∈K

xiθk = ∑
i∈A,i ̸=θ

∑
k∈K

xθik = 1, ∀θ ∈ N (4)

∑
j∈A

xDjk = ∑
j∈A

xjDk ≤ 1, ∀k ∈ K (5)

∑
i∈A

∑
j/∈A

xij ≥ 1, A ⊂ N, A ̸= ∅ (6)
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∑
j∈A

xDjk = 1, ∀k ∈ K (7)

∑
i∈A

xiD′k = 1, ∀k ∈ K (8)

Power consumption constraints: Equation (9) indicates that charging is required when
the remaining power of the vehicle is less than e, which is set to 0.2; λ is the percentage of
power consumption per 1 mile traveled by the ELV, which is set to 0.32%; S denotes the
percentage of remaining power; and L denotes the distance traveled by the vehicle since
the last charging. Equation (10) indicates that the vehicle will not be charged immediately
after departure from the distribution center. Equations (11) and (12) represent the state
of the vehicle when it departs from the distribution center and the charging station. PBDk
indicates that the vehicle was fully charged when it departed from the distribution center;
PBηk indicates that the vehicle was fully charged when it departed from the charging station;
and F indicates that the vehicle’s battery status was fully charged. Equation (13) indicates
that the remaining power of the vehicle remains unchanged before and after visiting the
customer point.

S = 1 − λL ≥ e (9)

xDηk = 0, ∀η ∈ E, ∀k ∈ K (10)

PBDk = F, ∀k ∈ K (11)

PBηk = F, ∀η ∈ E, ∀k ∈ K (12)

PBθk = PAθk, ∀θ ∈ N, ∀k ∈ K (13)

Time-window constraints: Equation (14) represents the time-window constraints of
the client point, and ei represents the left time window of client point i. Equation (15)
represents the time from customer point i to customer point j. dij represents the distance
from customer point i to customer point j; v represents the average speed of the ELV
while traveling.

ei ∑
k∈K

∑
i∈A,j∈A,i ̸=j

xijk ≤ tik ≤ li ∑
k∈K

∑
i∈A,j∈A,i ̸=j

xijk, ∀k ∈ K (14)

tij =
dijxijk

v
, i ∈ A, j ∈ A, k ∈ K (15)

3. Improved Genetic Algorithm Design

The TW-LC problem presented in this paper is classified as an NP-hard problem.
The traditional algorithm heuristic algorithms are characterized by flexibility, efficiency,
scalability, robustness, and intelligence in solving NP-hard problems [17]. Therefore,
in this paper, an improved genetic algorithm based on the large neighborhood search
algorithm (LNS) is designed by combining the characteristics of the NP-hard problem and
the properties of heuristic algorithms, and the idea of the farthest-insertion heuristic and
the local search operation are added to the algorithm.

3.1. Algorithmic Coding

In solving the TW-LC problem using a genetic algorithm, chromosomes are coded in
the form of integer coding. For example, if the number of customer points is 5, allowing
for up to 3 logistics vehicles for service and 1 alternative charging station, then a feasible
chromosome will be expressed as 12638475. The numbers 6 and 7 represent distribution
centers, and 8 represents charging stations, dividing the customer points into 3 segments,
i.e., into 3 paths. Path 1 is 0-1-2-0, path 2 is 0-3-8-4-0, and path 3 is 0-5-0. Let the number
of customer points be N, the number of vehicles in use be K, and the number of charging
stations be M. The length of the chromosome is N + K + M − 1, and the chromosome
expression is (1, 2, 3, . . . . . ., N, N + 1, N + 2, . . . . . ., N + K + M − 1).
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3.2. Path Construction Rules

In the TW-LC problem, there are three cases of node locations, which are the distribu-
tion center, customer point, and charging station. The rules for path construction when the
ELV passes through different nodes are as follows, and the flowchart is shown in Figure 2.

Step 1: Start the path construction: the starting point is the distribution center, the
number of vehicles in use is initially set to 1, and the loading at the distribution center
on the initial path is 0. According to the mileage-saving algorithm, search for the nearest
customer point.

Step 2: If the current path is empty, add the customer point to the path directly. If there
is only 1 customer point on the current path, check whether the customer point satisfies the
load constraint; if so, add the customer point to the current path according to the left time
window of the customer.

Step 3: Optimize the current path according to the farthest-insertion heuristic idea.
If there are already n customer points on the path and n > 1, traverse the intermediate
insertion position of n − 1 pairs of consecutive customer points and check whether the left
time window of the newly inserted customer point can be between the left time windows
of the customer points before and after the intermediate insertion position. If such an
intermediate insertion position exists, then insert that client point into that position. If it
does not, then that client point is added to the end of the current path. If the last client
point is traversed, the path is updated, and the algorithm is skipped.

Step 4: In the path construction process, once the load constraint of the current vehicle
is exceeded, first store the path driven by the previous vehicle; then, clear the original path
and add a vehicle, with the starting point of the new vehicle being the distribution center.

Step 5: Site charging stations based on power constraints and construct charging
stations at alternative locations until the penalty term of power in the path evaluation
function is 0.

Start

 Coding the parameter set

 Initialize the population

Check if the constraints are met?

N

 Calculation of the objective 

function value

Time window, power consumption and load constraints:

Start

Store customers on each path

Initial path on the warehouse is loaded at 0 

and the power is fully charged

Check if the vehicle power consumption and load 

constraints are both met?

Update vehicle information

是

Add clients to the current path according to the 

size of the left time window

N

Check if customer sites that satisfy load constraints but 

not power consumption

Charging 

station

End

Set the value of the objective function as the 

optimal solution

Check if the maximum number of iterations are 

reached?

Output the current optimal 

individual and optimal solution

End

Y

N

Update the current optimal individual and 

optimal solution

Y

N

Selection of operation

 Genetic operations

OX crossover operation

Variant operation

 Local search operation

Check if the value of the fitness function of the optimal 

individual of the new population is optimal or not

Y

Y

Y

N

Figure 2. Outline of the IGA for the TW-LC problem.
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3.3. Introduction to Genetic Operators
3.3.1. Selection, Crossover, and Mutation Operations

The selection operation uses roulette selection to select a number of individuals
with large fitness values for subsequent crossover, mutation, and localized scavenging
operations [18]. The crossover operation of this algorithm uses an OX crossover to obtain
two new sets of offspring by exchanging a portion of the gene positions of two sets
of parents and removing duplicate genes. The mutation operation of this algorithm is
performed by exchanging genes for two random positions of a set of parents to obtain a
new set of offspring.

3.3.2. Local Search Operation

Local search is a heuristic algorithm for solving optimization problems and a type of
greedy algorithm, which selects the best solution from the solution space of the domain of
the current solution as the current solution for the next iteration each time until a locally
optimal solution is reached. Starting from the local optimal solution, the domain of the
current local optimal solution is searched; if there is a better solution, then the algorithm
moves to it and continues to perform the search, and if not, then it stops and obtains the
local optimal solution. The specific process is shown in Figure 3.

0 2 4 6 8 10
0

2

4

6

8

10

T
a
rg

e
t 

v
a
lu

e

Search space

Initial solution

Local search operation

Local optimum solution

Field search operation

New solution

Local search operation

 Final solution

Figure 3. Flowchart of local search operation.

Since it is not easy to arrive at the optimal solution in a short time when solving com-
plex problems, the addition of the local search operation can be the second-best solution to
find a sub-optimal or near-optimal solution to the problem, which shortens the solution
time of the algorithm, and adding the local search operation to the genetic algorithm can
prevent it from falling into a local optimal situation [19]. Utilizing the idea of destruc-
tion and repair, a number of similar customer points on the current path are removed
based on a similarity formula. The removed customer points are inserted back into the
locations that minimize the increase in the total distance traveled by the vehicle as much
as possible while satisfying the load constraints, time-window constraints, and power
consumption constraints.

4. Arithmetic Testing and Example Applications
4.1. Simulation Environment

In this study, Solomon’s standard test algorithms were used for simulation. Six series
were included to reflect the diversity of test cases. These were the C1, C2, R1, R2, RC1, and
RC2 series. The C-series client point distribution is characterized by a cluster distribution,
the R-series distribution is characterized by a uniform distribution, and the RC-series
distribution is characterized by a mixture of the two distributions. The hardware CPU of
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the simulation computer was i7-10875, the memory was 32 GB, and the simulation software
was Matlab2021a.

4.2. Small-Scale Simulation

The population size, iteration number, crossover probability, and mutation probability
are the core parameters in the genetic algorithm, and the setting of these parameters will
affect the performance of the algorithm. The above parameters should be set to the optimal
value in order to obtain the optimal performance of the algorithm [20]. Therefore, before
the start of the simulation, a small-scale simulation was carried out for the example of the
R101 algorithm; the optimization of the relevant parameters was sought, and the following
results were obtained.

From Tables 2 and 3, it can be seen that the objective function value is better when
the population size is 500, the number of iterations is 500, the crossover probability is 0.9,
and the mutation probability is 0.05. Therefore, in the subsequent simulation, the genetic
algorithm parameters were set to the optimal values mentioned above.

Table 2. Simulation results for different population sizes and different iteration numbers.

Iteration Number = 200 Population Size = 200

Population
Size

Optimal
Path Length

Solution
Time

Iteration
Number

Optimal
Path Length

Solution
Time

100 1750.67 3.68 s 100 1871.55 4.79 s
150 1733.19 5.19 s 200 1733.85 8.29 s
200 1644.79 6.80 s 300 1624.32 12.84 s
250 1634.59 8.66 s 400 1619.27 16.98 s
300 1515.12 11.91 s 500 1533.60 21.36 s
350 1578.01 13.35 s 600 1590.88 26.05 s
400 1657.91 15.73 s 700 1658.84 30.53 s

Table 3. Simulation results for different crossover probabilities and different mutation probabilities.

Mutation Probability = 0.03 Crossover Probability = 0.7

Crossover
Probability

Optimal
Path Length

Solution
Time

Mutation
Probability

Optimal
Path Length

Solution
Time

0.4 1791.04 7.31 s 0.02 1810.15 7.93 s
0.5 1680.03 7.89 s 0.03 1752.73 8.50 s
0.6 1659.45 7.80 s 0.04 1627.77 8.37 s
0.7 1600.69 8.75 s 0.05 1541.54 8.39 s
0.8 1597.66 7.34 s 0.06 1579.11 8.18 s
0.9 1537.76 8.06 s 0.07 1564.11 7.88 s
1.0 1609.59 8.77 s 0.08 1564.32 7.90 s

4.3. Algorithm Stability Verification Analysis

The genetic algorithm designed in Section 3 was utilized to solve the model proposed
in Section 2. In each set of algorithms, 50 points were randomly sampled as customer points.
In addition to that, the node set contained one distribution center and four alternative
charging stations, and up to five ELVs were available to provide distribution services. Each
series of algorithms was run ten times to collect data such as the optimal path length, the
number of constraint-violating paths, the number of charging stations selected, and the
solution time. The results are shown in Table 4.
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Table 4. Statistics of test case results.

Arithmetic Series Times Optimal Path
Length

Constraint Path
Violations

Charging
Stations Selected Vehicles Utilized Solution Time

C1 type 1 1660.32 0 2 5 30.85 s
2 1590.12 0 2 5 30.37 s
3 1641.78 0 2 5 31.52 s
4 1760.42 0 1 5 29.23 s
5 1690.63 0 2 5 30.88 s
6 1783.19 0 3 4 29.97 s
7 1702.62 0 2 5 29.82 s
8 1502.03 0 4 4 29.17 s
9 1658.25 0 2 5 29.96 s

10 1533.93 0 2 5 28.91 s

Average 1652.33 0 2.2 4.8 30.04 s

C2 type 1 1601.52 0 2 5 30.53s
2 1724.72 0 3 4 30.79 s
3 1558.58 0 2 4 30.54 s
4 1696.32 0 2 4 30.02 s
5 1639.53 0 2 4 30.66 s
6 1538.76 0 2 4 29.95 s
7 1586.47 0 2 4 29.53 s
8 1592.23 0 2 4 30.50 s
9 1696.29 0 3 5 30.33 s

10 1453.21 0 3 5 29.28 s

Average 1608.76 0 2.3 4.3 30.21 s

R1 type 1 1529.50 0 4 4 29.37 s
2 1616.22 0 4 4 29.34 s
3 1492.11 0 4 4 29.31 s
4 1507.22 0 4 4 29.71 s
5 1606.66 0 3 4 30.00 s
6 1632.58 0 4 4 29.96 s
7 1787.98 0 4 4 31.11 s
8 1421.06 0 3 4 29.65 s
9 1455.73 0 4 4 29.67 s

10 1564.56 0 4 4 29.51 s

Average 1561.36 0 3.8 4.0 29.76 s

R2 type 1 1707.90 0 3 4 30.94 s
2 1634.59 0 4 4 29.91 s
3 1609.99 0 4 5 29.69 s
4 1603.56 0 4 4 30.56 s
5 1755.26 0 4 4 30.82 s
6 1716.51 0 3 4 31.00 s
7 1615.94 0 4 4 31.23 s
8 1552.40 0 2 5 29.96 s
9 1618.24 0 3 4 30.65 s

10 1590.71 0 3 5 30.83 s

Average 1640.51 0 3.4 4.3 30.56 s
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Table 4. Cont.

Arithmetic Series Times Optimal Path
Length

Constraint Path
Violations

Charging
Stations Selected Vehicles Utilized Solution Time

RC1 type 1 1953.73 0 4 5 32.53 s
2 1921.72 0 4 4 33.64 s
3 1981.98 0 4 4 32.71 s
4 1843.53 0 3 4 34.09 s
5 1814.36 0 4 4 32.51 s
6 1998.31 0 4 4 33.33 s
7 1983.63 0 3 4 33.39 s
8 1846.56 0 3 4 32.28 s
9 2066.77 0 3 4 34.51 s

10 1905.16 0 2 5 32.73 s

Average 1931.58 0 3.4 4.2 33.17 s

RC2 type 1 1827.98 0 2 5 32.70 s
2 1976.47 0 3 4 34.12 s
3 1848.35 0 4 4 33.93 s
4 1868.56 0 3 4 34.21 s
5 1776.20 0 3 5 32.87 s
6 1970.33 0 2 4 34.53 s
7 1895.94 0 2 4 34.21 s
8 1864.99 0 1 4 32.85 s
9 1838.80 0 3 4 31.99 s

10 1726.23 0 3 4 31.42 s

Average 1859.39 0 2.6 4.2 33.28 s

From Table 4, it can be seen that the number of constraint path violations is 0 after
solving and iterating 500 times using the improved genetic algorithm for C-type, R-type,
and RC-type algorithms, and it does not reach the maximum value with the number of
charging stations selected and the number of vehicles used, so the present algorithm is
effective in solving and optimizing the TW-LC problem.

4.4. Comparison between GA and IGA

In order to further verify the superiority of the proposed algorithm in this paper, this
algorithm is compared with the traditional genetic algorithm with the same arithmetic
cases. As can be seen from Table 5, the improved genetic algorithm shortens the optimal
path by 11.12% on average; the number of charging stations selected and the number of
vehicles used are reduced by 22.97% and 13.71%, respectively; and the complexity of the
algorithm is reduced by 46.81% on average.

Table 5. GA and IGA performance comparison.

Average
GA and IGA Performance Comparison

GA IGA |(IGA − GA)/GA|%

Optimal path length 1931.15 1708.93 11.12%
Number of charging stations selected 3.85 2.95 22.97%

Number of vehicles in use 5.0 4.3 13.71%
Algorithmic complexity 58.60 31.17 46.81%

Figure 4 compares the objective function of the algorithms, i.e., the optimal path length.
It can be seen that the improved genetic algorithm performs better in all kinds of arithmetic
cases. In particular, the improvement is more obvious when dealing with the C-series
arithmetic cases, whose distribution is characterized by clustering.
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Figure 4. Comparison of optimal path lengths.

Figures 5 and 6 compare the number of charging stations selected and the number of
vehicles in use for the two algorithms. Selecting fewer charging stations and using fewer
distribution vehicles under the same conditions will reduce the total cost of transportation.
The improved genetic algorithm significantly improves the number of charging stations
selected, even in more complex distribution examples such as the RC series, and it can
significantly reduce the number of charging stations selected and increase the utilization
rate of charging stations. In terms of the number of vehicles in use, the traditional genetic
algorithm selects the maximum number of vehicles in all three series of examples, while the
improved genetic algorithm, which incorporates the idea of the farthest-insertion heuristic
into the algorithm, tries to rationally arrange and insert customer points into the path to
maximize the reduction in the use of vehicles.
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Figure 5. Comparison of the number of charging stations selected.
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Figure 7 compares the algorithm complexity of the two algorithms. The traditional
genetic algorithm easily falls into local optimal situations after iterating a certain number
of times, which means that the objective function is not the global optimal value; at the
same time, it also improves the complexity of the algorithm. As the improved genetic
algorithm adds the idea of the local search, the method of destruction and repair is utilized
in the solution, and the chromosome sequence of the optimal value is split and reorganized,
which effectively prevents the algorithm from falling into the local optimal situation and
shortens the solution time while improving the accuracy of the results.
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4.5. Analysis of Application Examples

In order to verify the reliability and practicality of the algorithm, a place in Chongqing,
China, was selected for path planning and charging station location for the TW-LC problem
in this area, with the optimal path as the objective function. A rectangular area with a
range of 8 miles × 7 miles was selected, and 50 customer points, 4 locations of buildable
charging stations, and 1 distribution center were used. The location information of each
point was enlarged and transformed into a 2D Cartesian coordinate system at a ratio of
1:10. The schematic diagram of the nodes is shown in Figure 8, which was solved using the
traditional genetic algorithm and the improved genetic algorithm; the solution results are
shown in Figure 9, and the distribution scheme is shown in Tables 6 and 7.

In this statistically optimal path, the traditional genetic algorithm selected a total of
four charging stations and carried out four charging stops, and the optimal path length was
177.33 miles; the improved genetic algorithm selected two charging stations and carried
out two charging stops in the middle of transportation, and the optimal path length was
154.17 miles. The number of charging stations selected decreased by 50%. In terms of
vehicle use, the traditional genetic algorithm selected five paths and five vehicles to provide
delivery service; the improved genetic algorithm selected four paths and four vehicles to
provide service, and the number of vehicles selected decreased by 20%. And the improved
genetic algorithm violated the time-window, load, and power consumption constraints 0
times, so this algorithm is reliable and advantageous in solving the TW-LC problem.
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Figure 8. The distribution of TW-LC problem nodes in a place in Chongqing.
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Figure 9. Vehicle path planning and charging station siting schematic.
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Table 6. GA distribution program.

Path Sequence

Path one 0 → 13 → 0
Path two 0 → 7 → 14 → 9 → 8 → 28 → 11 → 10 → 16 → 15 → 0

Path three 0 → 21 → 25 → 22 → 23 → 24 → 18 → 43 → 53 (recharge) → 17 → 2 → 27 → 20 →
29 → 51 (recharge) → 26 → 30 → 0

Path four 0 → 19 → 37 → 32 → 42 → 41 → 39 → 54 (recharge) → 35 → 46 → 36 → 34 → 38
→ 40 → 33 → 31 → 44 → 45 → 0

Path five 0 → 47 → 4 → 1 → 5 → 12 → 3 → 48 → 49 → 52 (recharge) → 50 → 6 → 0

Table 7. IGA distribution program.

Path Sequence

Path one 0 → 47 → 29 → 23 → 18 → 5 → 12 → 13 → 11 → 10 → 14 → 0
Path two 0 → 25 → 8 → 9 → 35 → 48 → 3 → 50 → 49 → 6 → 1 → 37 → 0

Path three 0 → 32 → 46 → 44 → 41 → 33 → 43 → 52 (recharge) → 42 → 36 → 2 → 31 → 39 →
34 → 40 → 4 → 45 → 38 → 0

Path four 0 → 21 → 17 → 7 → 26 → 19 → 51 (recharge) → 16 → 15 → 24 → 30 → 27 → 28 →
22 → 20 → 0

4.6. Analysis of Economic Indicators

In order to further analyze and compare the economic indicators of the model, the
results of the example application above are used as an example. The unit electricity sales
of the charging station operator and the annualized cost of the logistics company were
calculated in terms of years, assuming that the logistics company carries out a delivery
service once a day.

The unit electricity sales of the charging station operator is the amount of electricity
sold per charging station q0:

q0 = 365
OP · l0

n
(16)

l0 represents the power consumption per unit length of the ELV, which is set to
0.8 KWH/MILE; n represents the number of charging stations selected.

The logistics company’s one-year balance cost C0 is the absolute value of the logistics
company’s annualized total cost C1 using the IGA minus the logistics company’s annualized
total cost C2 using the GA algorithm:

C0 = |C1 − C2| (17)

In the case of C1, for example, the logistics company’s annualized total cost is

C1 = OP · l0 · ep · 365 + n′ · U (18)

ep denotes the unit price of electricity, which is set to 0.2 USD/KWH; n′ denotes the
number of vehicles utilized; and U denotes the unit vehicle purchase cost, which is set to
USD 10,000.

The calculation results of specific economic indicators are shown in Table 8.

Table 8. Analysis of economic indicators.

Unit Electricity Sales/KWH Total Annualized Cost/USD
GA 12,945.09 60,356.07
IGA 22,508.82 49,003.53

As shown in Table 8, the IGA improves the unit electricity sales by 73.88% and reduces
the total annualized cost of the logistics company by 18.81% compared to the GA.
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5. Conclusions

In this paper, we propose the TW-LC problem and design an improved genetic al-
gorithm to solve the problem. Simulations were conducted using six different types of
arithmetic examples and validated for a site in Chongqing, China, and the main conclusions
are as follows.

The improved genetic algorithm optimizes the objective function compared with the
traditional genetic algorithm, and the idea of the farthest-insertion heuristic reasonably
arranges the sequence of all customer points, which shortens the optimal path by 11.12%
on average; the improved genetic algorithm optimizes the transportation cost compared
with the traditional genetic algorithm, which reduces the number of charging station
selection and the number of vehicles used by 22.97% and 13.71% on average. In terms
of economic metrics, compared to the GA, the IGA improved charging station unit sales
by 73.88% and reduced the total annualized cost by 18.81%. It provides the decision
makers of logistics companies with a lower-cost transportation solution for site selection;
the improved genetic algorithm reduces the complexity by 46.81% compared with the
traditional genetic algorithm, and the local search operation prevents the algorithm from
falling into a local optimum and improves the algorithm’s computational efficiency.

The TW-LC problem is solved, but in order to reduce the complexity of the model,
it does not take into account whether the vehicle supports the V2G mode, the amount
of the load on the grid, and the co-existence of charging/exchange stations. In a future
study of the TW-LC problem, we will continue to optimize the vehicle path, the number
of charging stations selected, and the number of vehicles in use and further extend the
model by accounting for whether or not the vehicle participates in grid interactions while
charging and the co-existence of charging/exchange stations as constraints.
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