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Abstract: As global awareness for preserving natural energy sustainability rises, electric vehicles
(EVs) are increasingly becoming a preferred choice for transportation because of their ability to emit
zero emissions, conserve energy, and reduce pollution, especially in smart cities with sustainable
development. Nonetheless, the lack of adequate EV charging infrastructure remains a significant
problem that has resulted in varying charging demands at different locations and times, particularly
in developing countries. As a consequence, this inadequacy has posed a challenge for EV drivers,
particularly those in smart cities, as they face difficulty in locating suitable charging stations. Never-
theless, the recent development of deep reinforcement learning is a promising technology that has
the potential to improve the charging experience in several ways over the long term. This paper
proposes a novel approach for recommending EV charging stations using multi-agent reinforcement
learning (MARL) algorithms by comparing several popular algorithms, including the deep deter-
ministic policy gradient, deep Q-network, multi-agent DDPG (MADDPG), Real, and Random, in
optimizing the placement and allocation of the EV charging stations. The results demonstrated that
MADDPG outperformed other algorithms in terms of the Mean Charge Waiting Time, CFT, and
Total Saving Fee, thus indicating its superiority in addressing the EV charging station problem in a
multi-agent setting. The collaborative and communicative nature of the MADDPG algorithm played
a key role in achieving these results. Hence, this approach could provide a better user experience,
increase the adoption of EVs, and be extended to other transportation-related problems. Overall, this
study highlighted the potential of MARL as a powerful approach for solving complex optimization
problems in transportation and beyond. This would also contribute to the development of more
efficient and sustainable transportation systems in smart cities for sustainable development.

Keywords: electric vehicle; charge station; multi-agent reinforcement learning; optimizing; recommendation
systems; smart cities

1. Introduction

During the era of digital transformation, technological advancements, especially in the
field of artificial intelligence (AI), have caused disruptions in various industries worldwide.
AI has been widely adopted and has had a significant impact in all areas due to the use
of advanced information technology. Recently, electric vehicles (EVs) have also gained
significant attention and are being encouraged by many countries as an eco-friendly mode
of transportation [1,2]. EVs are environmentally friendly due to their lack of emissions. In
addition, they offer cost savings compared to traditional gasoline engines and have smooth
and easy-to-use controls [1,3,4]. The lack of emissions from EVs makes them a suitable
choice for those who prioritize environmental sustainability. Furthermore, operating EVs is
more cost-effective than using a conventional gasoline engine. EVs are also easy to operate
and provide a smooth driving experience [1,3–5].

According to the International Energy Agency (IEA), the global electric vehicle (EV)
market has been growing rapidly, and as of 2020, there were over 7.2 million EVs on the road.
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Moreover, the IEA predicts that the EV market will continue to grow, and by 2030, there
could be over 250 million EVs in use worldwide [6]. The market size of EVs is also expected
to increase significantly. According to Statista, the global EV market size was valued at
approximately USD 140 billion in 2020 and is projected to reach over USD 800 billion by
2026 [7]. A study by Deloitte has suggested that the EV market is likely to continue growing
due to government incentives, stricter regulations on emissions, and advancements in
technology [8,9]. With the increasing availability of EV models, charging infrastructure,
and government support, the adoption of EVs will likely continue to accelerate [10]. As
such, the utilization of EVs is rapidly growing worldwide due to their various advantages,
such as cost efficiency, environmental conservation, smart city traffic improvement, and
enhanced user satisfaction [1].

This introduction has brought about numerous advantages for the transportation
industry. The increasing demand for EVs has also brought attention to the need for es-
tablishing a robust charging infrastructure to meet the changing needs of EVs [11–13].
The charging infrastructure is an essential component of the EV ecosystem, and its opti-
mal placement and allocation would be crucial for the adoption and widespread use of
EVs [11,12]. However, the inadequate charging infrastructure and uneven spatial and tem-
poral demands for charging have been identified as significant problems that would need
to be addressed [13,14]. To resolve these problems, several studies have proposed various
solutions to introduce EV station recommendation systems providing the most appropriate
charging stations for an EV driver to use based on their current location, destination, and
other factors [1,2,11–13]. The goal of this system would be to improve the convenience and
efficiency of EV charging by helping drivers find the nearest, most available, and fastest
charging stations [1,12,13].

A wide range of factors would be needed to consider the introduction of EV station
recommendation systems, such as the battery capacity of the EV, charging time needed,
availability of the charging stations, and estimated time to reach the destination. These
systems could also incorporate real-time information, such as traffic congestion, weather
conditions, and charging station availability [14,15]. In addition to improving the conve-
nience and efficiency of EV charging, the station recommendation systems could help to
reduce range anxiety, which would be a common concern among EV drivers who fear
they would run out of charge before reaching their destination. By providing accurate and
timely information about the location and availability of the charging stations, EV station
recommendation systems could help to increase the confidence of EV drivers and promote
the adoption of EVs [1,16].

Overall, an EV station recommendation system is an important application of tech-
nology in the field of sustainable transportation, and it has the potential to improve the
accessibility and adoption of EVs in the future. Furthermore, the increasing adoption of
EVs has highlighted the need for an efficient charging infrastructure to support the growth
of this industry. However, the current charging infrastructure is inadequate to meet the
spatial and temporal demands of EV users, consequently leading to issues such as long
waiting times, insufficient charging stations, and unbalanced distribution of charging sta-
tions [16–18]. To address this challenge, EV station recommendation systems have emerged
as a solution to improve the convenience and accessibility of EV charging, reduce range
anxiety, promote the adoption of EVs, and optimize the charging infrastructure [1,18].

There are several types of optimization techniques that could be applied in a recom-
mendation system, such as reinforcement learning (RL), which would have the potential
to optimize the energy management of EVs by making decisions in real time to maximize
efficiency and reduce energy consumption [19]. Moreover, RL has demonstrated significant
benefits in addressing sequential decision problems in dynamic environments, such as
optimizing order dispatching for ride-hailing and shared bike rebalancing. In RL, an agent
would learn a policy by interacting with the environment with the goal of achieving the
optimal long-term reward. Given the success of RL in these contexts, it would seem like
a natural choice to apply it to improve EV charging recommendations with long-term
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objectives, such as reducing the overall charging waiting time (CWT), the average Charging
rice (CP), and the Charging Failure Rate (CFR) [20–22].

However, there are several technical challenges that would need to be addressed in
order to accomplish this goal:

(1) One of the main challenges in optimizing EV charging in a smart city is the vast
number of EVs and charging stations [1]. Trying to directly train a single central-
ized system to manage all the EVs and charging stations would be difficult due to
the massive state and action space, as well as the high-dimensional environment.
This could lead to scalability and efficiency issues, as well as the risk of the entire
system failing due to a single point of failure. As an alternative, previous work
modeled a small set of vehicles as multiple agents, but this approach was not effec-
tive for charging recommendations since most charging requests were ad hoc and
came from non-repetitive drivers [1,2]. To address this issue, the authors proposed
treating each charging station as an individual agent and formulating EV charging
recommendations as a multi-agent reinforcement learning (MARL) task. By doing
this, the authors created a multi-agent actor-critic framework where each individual
agent had a quantity-independent state and action space, which could be scaled
to more complicated environments and was more robust to other agents’ potential
failure. This approach was more effective and efficient for optimizing EV charging in
a large metropolis.

(2) Another challenge in optimizing EV charging recommendations was coordinating and
cooperating in a large-scale agent system. When there was a charging request, only
one station could provide the service, so different agents would need to work together
to achieve better recommendations [1,4,5]. Additionally, cooperation between agents
would be essential for the long-term optimization of the charging recommendations. If
a charging station were heavily occupied with many incoming charging requests, other
stations with available charging spots could help to balance the charging demand
through cross-agent cooperation [10,11]. To address this challenge, the authors used a
bidding game analogy to describe the process of the agent taking actions and proposed
a centralized attentive critic module that was tailored to encourage multiple agents
to learn globally coordinated and cooperative policies. This approach would help to
overcome the challenge of coordination and cooperation in a large-scale agent system,
hence leading to better EV charging recommendations.

(3) The third challenge in optimizing EV charging recommendations would be the po-
tential competition of future charging requests. In the real world, this potential
competition could occur at any charging station and could result in problems, such
as extra CWT and charging failure. However, it would be difficult to predict the
impact of future charging requests beforehand [17,18]. To overcome this challenge, the
authors incorporated information about future charging competition into their cen-
tralized attentive critic module using a delayed access strategy. They also transformed
their framework into centralized training with decentralized execution architecture
to enable online recommendations. This approach allowed the agents to make use
of future knowledge during the training phase and take immediate action without
needing future information during execution, which helped to mitigate the potential
competition of future charging requests.

The EV charging recommendation problem is challenging due to multiple technical dif-
ficulties. The first challenge is the large state and action space. To resolve this challenge, the
authors proposed a MARL framework that regarded each charging station as an individual
agent. The second challenge is the coordination and cooperation in a large-scale agent sys-
tem. To address this challenge, the authors proposed a tailor-designed centralized attentive
critic module that stimulated multiple agents to learn globally coordinated and cooperative
policies. The third challenge is the potential competition of future charging requests.

This paper had the aim of developing EV station recommendation systems that could
help improve the accessibility and convenience of EV charging in Rayong smart city, Thai-
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land, a country with a growing EV market but still relatively limited charging infrastructure.
Moreover, this paper explored and contributed to the importance of EV station recom-
mendations and provided a step-by-step guide on how to apply this technology in Thai-
land. This paper proposed a five-step process for applying EV station recommendations
in Thailand:

(1) Collect data on the location, type, and availability of existing EV charging stations
across the country.

(2) Integrate the collected data into a centralized database that could be accessed by EV
station recommendation systems.

(3) Develop a recommendation system that would take into account various factors,
such as the location of the driver, the type of EV, and the availability of the charging
stations.

(4) Deploy the recommendation system through various channels, including mobile apps,
websites, and in-car navigation systems.

(5) Promote the EV station recommendation system to increase its adoption among
EV drivers.

By following this five-step process, Thailand could improve the accessibility and
convenience of EV charging, reduce range anxiety, and promote the adoption of EVs.

The authors integrated the future charging competition information into the cen-
tralized attentive critic module through a delayed access strategy and transformed the
framework to centralized training with decentralized execution architecture to enable on-
line recommendations. Finally, it was challenging to jointly optimize multiple optimization
objectives. To overcome this challenge, the authors extended the centralized attentive
critic module to multi-critics for multiple objectives and developed a dynamic gradient
reweighting strategy to adaptively guide the optimization direction.

1.1. Problem Statement

In this section, the researchers define the important terms and describe the EV charging
recommendation problem. A set of N charging stations was considered and denoted as
C =

{
c1, c2, . . . , cn}. For each day, a charging request was defined as follows:

Definition 1. Charging request: A charging request is defined as the t-th request (i.e., step t) of
a day.

qt = ⟨lt, Tt, Tc
t⟩ ∈ Q (1)

Here, it is the location of qt. Tt is the time at which the request is made, and Tc
t

is the time when the charging request is completed. A charging request is considered
completed when it is successfully charged or when it finally gives up due to charging
failure. The cardinality of the charging requests is denoted as |Q|. In the following, qt is
used to denote the corresponding EV of qt interchangeably. The following terms are defined
to help formalize the EV charging recommendation problem:

Definition 2. CWT: This is defined as the sum of the travel time from the location of the charging
request qt to the target charging station ci, and the queuing time at ci, until qt finishes charging.

Definition 3. CP: This is defined as the cost per unit of electricity, which is typically a combination
of the electricity cost and service fee.

Definition 4. Charging Failure Ratio (CFR): CFR is defined as the ratio of charging requests that
accepted the authors’ recommendation but failed to charge, divided by the total number of charging
requests that accepted the recommendation. The authors aimed to recommend the most suitable
charging station

rct = ci ∈ Q (2)
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for each charging request qt ∈ Q with the simultaneous objective of minimizing the overall
Charging Wait Time (CWT), average Charging Price (CP), and Charging Failure Ratio (CFR)
for the charging requests that accepted the recommendation. C =

{
c1, c2, . . . , cn} Here, each ci

represents an individual charging station within the set. The set C encompasses all the available
charging stations under consideration for recommending charging stations to electric vehicles (EVs).

1.2. Research Objectives and Contribution

This paper introduces the spatio-temporal multi-agent reinforcement learning
(STMARL) framework for optimizing electric vehicle (EV) charging recommendations
in smart cities. The framework represents a pioneering effort in the application of MARL
techniques to address multi-objective challenges in recommending charging stations. With
a primary focus on MARL, the framework leverages the power of coordinated learning
among multiple agents to enhance the performance of intelligent charging stations. De-
signed with centralized training and decentralized execution, the STMARL framework
achieves global coordination and cooperation, laying the foundation for efficient and
intelligent EV charging infrastructure in smart cities.

1.2.1. Research Objectives

1. To explore the feasibility and effectiveness of treating EV charging stations (EVCSs) as
agents in a MARL framework for optimizing the placement and allocation of charging
stations in a network of charging infrastructure.

2. To investigate the impact of different factors, such as the number of EVs and charg-
ing stations, their geographic distribution, and charging demand patterns on the
performance of the MARL algorithm.

3. To compare the performance of different MARL algorithms, including multi-agent
DDPG (MADDPG), deep deterministic policy gradient (DDPG), and others for the
problem of EVCS placement and allocation and to identify the algorithm that would
perform the best in terms of key metrics, such as charging efficiency and
user satisfaction.

1.2.2. Research Contributions

The proposed framework treated EVCSs as agents, which could facilitate better col-
laboration and communication among charging stations and with EVs, thus leading to
more efficient charging and improved user experience. The investigation of the impact of
different factors on the performance of the algorithm could inform the design of the EV
charging infrastructure and policy interventions that could maximize the benefits of electric
mobility for users and society. The comparison of different MARL algorithms for the EVCS
placement and allocation problem could help identify the best approach or address this
complex optimization problem, which is critical for the widespread adoption of EVs and
the development of sustainable development in smart cities.

2. Literature Review
2.1. Electric Vehicles (EVs)

The global adoption of electric vehicles (EVs) has seen a steady increase in recent
years, driven by the imperative to address greenhouse gas (GHG) emissions and reduce
reliance on fossil fuels. This overview of post-2018 literature on EVs encompasses their
environmental impact, policy landscape, and consumer preferences. Studies, such as
those by Spieser et al. [23] and Turrentine and Kurani [24], emphasize the potential of
EVs to significantly reduce GHG emissions, particularly when charged with renewable
energy sources. Government interventions, as highlighted by Zhang et al. [25] and Lin
et al. [26], play a pivotal role in promoting EV adoption, with subsidies proving more
influential than tax incentives and programs like California’s Zero Emission Vehicle (ZEV)
initiative contributing to a heightened EV market share. Recognizing consumer preferences
is deemed crucial, with studies by Li et al. [27] and Bruneau et al. [28] underscoring factors
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such as driving range, charging infrastructure, cost, and social context as key determinants
in shaping EV adoption. These insights collectively contribute to understanding and
fostering the ongoing transition toward EVs.

Studies, including those by Spieser et al. [29], Turrentine and Kurani [30] assess the
environmental impact of EVs, concluding that they can significantly reduce emissions,
especially with renewable energy sources. Government policies play a pivotal role, with
studies by Zhang et al. [31] and Kirschbaum et al. [32] highlighting the effectiveness of
subsidies and incentives in China and Germany. Consumer preferences, elucidated by
Li et al. [33] and Zmud et al. [34], underscore factors such as driving range, charging
infrastructure, and cost as crucial determinants [35–37]. In Thailand, the EV market is
rapidly growing due to government incentives, with over 40,000 EVs on the roads as of May
2021 and a projected 2.5 million by 2030, as per Bloomberg NEF [38]. Despite this growth,
challenges such as high costs, charging infrastructure limitations, and safety concerns
persist, reflecting the complex landscape of EV adoption [39,40].

2.2. Multi-Agent Reinforcement Learning (MARL)

MARL is an emerging research area that has gained considerable attention in recent
years. MARL involves the use of multiple agents to solve complex problems that would be
difficult to solve with a single agent [41]. This literature review provides a comprehensive
overview of MARL, including its background, applications, and recent advancements in
the field.

RL is a subfield of machine learning that involves training agents to make decisions in
an environment to maximize a cumulative reward signal. In the traditional RL framework, a
single agent would interact with an environment to learn an optimal policy [42]. However,
in many real-world scenarios, multiple agents would interact with each other and the
environment, hence making the problem more complex. MARL is an extension of RL
that involves multiple agents learning to coordinate with each other to solve a problem.
In MARL, each agent would have its own objective, and the agents would need to learn
to cooperate to achieve a common goal. MARL has been applied in various domains,
including robotics, traffic control, and game theory [43].

Mnih et al. [44] applied MARL to the problem of traffic light control, where multiple
agents learned to coordinate with each other to optimize the traffic flow. Another applica-
tion of MARL has been in robotics, where multiple agents have learned to collaborate to
perform complex tasks. A study by Sun et al. [45] used MARL to train a team of robots to
cooperatively transport an object to a target location. Recent advancements in MARL have
also focused on improving the efficiency and effectiveness of the learning process. Likewise,
Wu et al. [46] proposed a new MARL algorithm called QMIX, which used a centralized
value function to learn the joint action-value function of all agents. The QMIX algorithm
demonstrated that it could outperform other MARL algorithms in several benchmark
tasks. Another recent advancement in MARL is the use of deep reinforcement learning
(DRL) techniques. Foerster et al. [47] proposed a new DRL algorithm called CommNet,
which used a communication module to allow agents to exchange information during the
learning process. The CommNet algorithm could achieve a state-of-the-art performance
in several multi-agent benchmark tasks. As such, MARL is a promising research area that
has the potential to solve complex problems that would be difficult to solve with a single
agent. MARL has been successfully applied in various domains, including robotics, traffic
control, and game theory. Recent advancements in the field have focused on improving the
efficiency and effectiveness of the learning process, including the use of centralized value
functions and communication modules. Future research should continue to explore the
potential of MARL and its applications in real-world scenarios.

2.3. EV Recommendation Systems

As the popularity of EVs continues to grow, there will be a need for effective rec-
ommendation systems to help users make informed decisions when choosing an EV. EV
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recommendation systems use machine learning techniques to analyze users’ preferences
and provide personalized recommendations for EV models that would best meet their
needs. In this literature review, an overview of the EV recommendation systems is provided,
including their applications, challenges, and recent advancements. Huang et al. [48] pro-
posed a hybrid recommendation algorithm that combined content-based and collaborative
filtering techniques to recommend EV models to users on an online marketplace. Another
application of EV recommendation systems is in car dealerships, where they could be used
to help salespeople provide personalized recommendations to customers. Additionally,
Muratori et al. [49] proposed a model-based collaborative filtering approach that used
customers’ data to recommend EV models that best met their preferences. One of the main
challenges in EV recommendation systems is the lack of user data, as the adoption of EVs
is still relatively low compared to traditional gasoline-powered vehicles. This could lead to
sparse data, consequently making it difficult to accurately analyze users’ preferences and
provide personalized recommendations. Moreover, Almahmood and Tekerek [50] proposed
a transfer learning-based approach that utilized data from traditional vehicle recommenda-
tion systems to improve the accuracy of EV recommendations. Another challenge is the lack
of standardization in EV models and features, which could make it difficult to compare and
evaluate different models. Likewise, An et al. [51] proposed a feature-based approach that
used a feature matrix to represent the features of different EV models and compare them
based on the users’ preferences. Recent advancements in EV recommendation systems have
focused on improving the accuracy and efficiency of the recommendation process. Chen
et al. [52] proposed a deep learning-based approach that used a convolutional neural net-
work to analyze users’ preferences and recommend EV models. The approach was shown
to outperform traditional collaborative filtering and content-based algorithms. Another
recent advancement has been the use of hybrid recommendation algorithms that combine
multiple techniques to provide more accurate and diverse recommendations. In addition,
Li et al. [53] proposed a hybrid recommendation algorithm that combined a collaborative
filtering approach with a matrix factorization technique to recommend EV models to users.
Hence, EV recommendation systems are a promising research area that could help users
make informed decisions when choosing an EV. Furthermore, EV recommendation systems
have been successfully applied in various domains, including online marketplaces, car
dealerships, and EV rental services. However, challenges such as sparse data and lack of
standardization in EV models and features remain. Recent advancements in the field have
focused on improving the accuracy and efficiency of the recommendation process, includ-
ing the use of deep learning-based approaches and hybrid recommendation algorithms.
Therefore, future research should continue to explore the potential of EV recommendation
systems and address the challenges in the field.

2.4. Electric Vehicle Charging Stations in Smart Cities
2.4.1. Rayong Smart City, Thailand

Rayong, an industrial hub in Thailand, has embarked on several smart city initiatives
to enhance urban living. These initiatives encompass areas such as transportation, energy
management, and healthcare. For instance, the implementation of IoT sensors in trans-
portation systems has streamlined traffic flow [54], while renewable energy projects have
reduced the city’s carbon footprint [55].

The development of a smart city in Rayong is not without challenges. Issues such
as data security, citizen privacy, and technological infrastructure must be carefully ad-
dressed [56]. Smart city initiatives in Rayong have had a significant socio-economic impact.
Research by Phan and Nguyen [57] demonstrated a positive correlation between smart
city development and job creation in the region. Additionally, smart city technologies
have empowered citizens, enabling them to actively engage in urban governance. Figure 1
depicts the smart city model in Thailand and red box indicates the location of the EV
charging station.
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2.4.2. Electric Vehicle Charging Stations in Smart Cities

The adoption of electric vehicles (EVs) is increasing worldwide, driven by environ-
mental concerns and the need for sustainable transportation. Rayong City, Thailand, is
actively pursuing the development of electric vehicle charging infrastructure as part of its
smart city initiatives.

One of the primary considerations in the establishment of EV charging stations is their
strategic placement within urban landscapes. Onion [59] emphasize the importance of
data-driven approaches in determining optimal locations for charging stations, ensuring
accessibility and convenience for EV users in Rayong smart city. Their study highlights
the role of advanced analytics in identifying high-traffic areas and integrating charging
infrastructure seamlessly into the city’s transportation network.

Technological advancements have propelled the evolution of EV charging stations,
with a focus on enhancing user experience and reducing charging times. Smith & Jones [60]
explores innovations such as fast-charging technologies, illustrating their potential to
minimize charging durations and accommodate the needs of both residents and tourists [60].
This research also highlights the critical role of cutting-edge technology in promoting EV
adoption and ensuring the efficiency of charging facilities in Rayong smart city.

Economic sustainability and revenue generation mechanisms are paramount for the
long-term viability of EV charging stations. Smith and Jones [60] develop financial models
and funding strategies, advocating for innovative approaches like public–private part-
nerships and subscription-based services. Their findings provide valuable insights for
Rayong’s policymakers, offering solutions to the economic challenges associated with the
operation and maintenance of charging infrastructure in smart cities.

The integration of renewable energy sources into EV charging stations aligns with Ray-
ong’s commitment to environmental sustainability. Patel [61] investigate the feasibility of
solar-powered charging stations, emphasizing their potential to reduce the carbon footprint
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of EV charging operations. Their study presents a compelling case for the implementation
of eco-friendly charging solutions, aligning with Rayong smart city.

Understanding user behavior and preferences is pivotal for ensuring the widespread
adoption of EVs and charging facilities. They explore user perceptions and preferences
regarding charging station accessibility and payment methods. Their research underscores
the significance of user-centric design, emphasizing the need for seamless interfaces and
convenient payment systems to encourage the use of EV charging stations by both residents
and visitors in Rayong [60–62].

3. Materials and Methods
3.1. Research Framework

Figure 2 illustrates a systematic research framework designed for the optimization
of electric vehicle charging stations (EVCSs) through multi-agent reinforcement learning
(MARL). The process initiates with the collection and preprocessing of EVCS data, focusing
on critical parameters like accessibility, availability, and charging rate. This data collection
step forms the basis for the subsequent development of MARL algorithms, where a variety
of algorithms, including DDPG, DQN, MADDPG, Real, and Random, are implemented
to strategically optimize the placement and allocation of EV charging stations. Following
algorithm development, the framework integrates an evaluation phase utilizing metrics
such as Mean Charging Wait Time (MCWT), Charging Failure Time (CFT), and Total Saving
Fee (TSF) to assess the performance of the MARL algorithms. The insights gained from this
evaluation phase guide the implementation of a recommendation system with MADDPG,
aimed at providing enhanced recommendations for EV charging stations. Addressing
challenges in users’ experience and adoption, the system strives to improve the overall user
experience and ensure better adoption of EVCSs. The research framework concludes with
an exploration of future research directions and potential extensions within the realm of
optimizing EVCSs through MARL, culminating in the completion of the comprehensive
research process.

3.2. Research Design

This section explains how the task of recommending EVCSs using MARL was ap-
proached. Each charging station was treated as an individual agent and denoted as ci. The
goal was to optimize the charging recommendations for a sequence of incoming charging
requests Q over a day by taking into account the multiple long-term optimization goals.

To achieve this, an observation oi
t was defined for each agent that included information,

such as the current time, number of available charging spots at the station, number of
charging requests in the near future, charging power of the station, and the estimated time
of arrival of the EV to the station. The state “st” was also defined as the combination of all
agents’ observations at step t.

For each observation, an intuitive action was designed for each agent, which was a
binary decision of whether to recommend the charging request or not. However, as only
one station could serve a charging request, coordinating multiple agents’ actions could be
challenging. Hence, a bidding mechanism was adopted, where each agent offered a scalar
value to “bid” for the charging request as its action. The joint action “ut” was defined as
the combination of all agents’ bids, and the charging request qt was recommended to the
agent with the highest bid value. This was denoted by rc,t = ci, where i = arg max(ut).

Overall, a Master framework with centralized training and decentralized execution
and a generalized multi-critic architecture was used to optimize multiple objectives.

Observation transition is the shift from the current charging request to the next one
after the current request is finished. For each agent, denoted as ci, this transition was
de-fined as the change in the agent’s observation from the current charging request qt to
the observation corresponding to the next request qt+j.
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For example, suppose a charging request qt occurs at time Tt (13:00). At that moment,
each agent ci takes action ai

t based on its observation oi
t t and jointly recommends station

r_ct. After the request finishes at time Tc
t (13:18), the next charging request qt+j occurs at

time Tt+j (13:20). The observation transition of agent ci is defined as (oi,t, ai
t, oi,t+j), where

oi
to_i,t is the current observation and oi

t+j is the observation corresponding to qt+j.
In the MARL formulation of the current study, the authors proposed a lazy reward

settlement scheme where rewards were returned when a charging request was finished.
Three goals were integrated into two natural reward functions. If a charging request qt
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succeeded in charging, we would return the negative of the CWT and the negative of the
CP as part of the reward rct

w
(
st, ut) and reward rcp

(
st, ut), respectively. If the CWT of qt

exceeded the threshold, the recommendation would be considered a failure and return
a smaller penalty reward to stimulate agents to reduce the CFR. Two immediate reward
functions for three goals were defined as follows:

rct
w
(
st, ut) = −CWT (3)

charging success penalty reward εcwt if charging fails

rcp
(
st, ut) = −CP (4)

charging success penalty reward εcp.
If charging failed, all agents in the authors’ model shared the same rewards, which

meant that they made recommendation decisions cooperatively. Since the observation
transition from oi,t to oi,t+j could cross multiple lazy rewards (e.g., Tc

t−h and Tc
t as illustrated

in Figure 2), the cumulative discounted reward was calculated by summing up the rewards
of all recommended charging requests qt′ (e.g., qt−h and qt) whose Tc

t′ was between Tc
t and

Tc
t−j, which was denoted by Rt:t+j. This was achieved by applying the discount factor r

to the time difference between Tc
t and Tc

t and summing up the rewards r
(

st′ , ut′
)

of all

the charging requests within this range. The reward function r
(

st′ , ut′
)

could be either

rct
w

(
st′ , ut′

)
or rcp

(
st′

i′ , ut′
i′

)
, or their average, depending on the learning objectives.

3.3. Centralized Training Decentralized Execution (CTDE)

CTDE is a type of method used in MARL that helps agents learn coordinated policies
and overcome the problem of non-stationary environments. In the context of an EV
charging recommendation, CTDE has three modules: the centralized attentive critic, the
delayed-access information strategy, and the decentralized execution process.

CTDE offers two key benefits for the EV charging recommendation. First, the cen-
tralized training process would enable multiple agents to learn cooperation and specific
policies by considering a more comprehensive landscape and using future information.
Second, the decentralized execution process would be efficient and flexible because it
would not require complete information during the training phase.

To encourage agents to make recommendations together, a multi-agent actor–critic
framework was developed with a centralized attentive critic for learning deterministic
policies. A similar approach used the full state and joint action of all agents to motivate
cooperative policies. However, this method had issues due to the large state and action
space in the task. This paper found that EVs tended to go to nearby charging stations,
so only nearby agents were activated for the charging requests. This used the attention
mechanism to integrate information from the active agents, as the active agents for different
requests could vary. Additionally, this mechanism quantified the influence of each active
agent in a permutation-invariant way. In this manner, this only involved a small number of
agents for better cooperation in making recommendations.

The given equations describe a centralized attentive critic approach for MARL.

αt
i = softmax

(
vTReLU

(
Wast

i
))

(5)

softmax
(
αt) = eα

t
i

∑j eα
t
j

(6)

at = ∑
i

softmax
(
αt)

i · st
i (7)
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Equation (5) computes the weight α for each active agent based on its current state t
using learnable parameters v and Wa. Equation (6) calculates the softmax of these weights
to normalize them, and Equation (8) uses these weights to create an attentive representation
of all the active agents.

θi = θi +α∇θi logπθi

(
at

i
∣∣st

i
)

(8)

L⌋∇⟩⊔⟩⌋ = E
[((

rt
i + γQb

(
st+1

i , at+1
)
− Qb

(
st

i, at
i
)))2

]
(9)

Equation (9) describes how each agent’s actor policy could be updated using the
gradients of the expected return, following the chain rule. The experience replay buffer
would contain the transition tuples of the states, actions, rewards, and future information
for each active agent.

Overall, this approach would allow the centralized attentive critic to gather infor-
mation from all active agents, consequently motivating them to learn coordinated and
cooperative policies.

3.4. Mathematical Model for the Optimization

This section presents a mathematical model for the optimization problem. The opti-
mization problem involves recommending the optimal placement and allocation of electric
vehicle charging stations (EVCSs) using multi-agent reinforcement learning (MARL). The
objective is to minimize the Mean Charging Wait Time (MCWT) and Charging Failure Time
(CFT) while considering multiple long-term optimization goals. The formulation can be
expressed as a constrained optimization problem.

Objective Function:

Minimize the cumulative discounted reward, which is a combination of MCWT and
CFT penalties. The optimization goal is to find the optimal placement and allocation of
EVCSs that minimize the negative impact on users.

Minimize : J(θ) = ∑
t

∑
i
γt−t’

(
rct

w

(
st’

i’ , ut’

i’

)
+ rcp

(
st’

i’ , ut’

i’

))
(10)

where

J(θ) is the objective function to minimize.
θ represents the parameters of the MARL algorithms.
t′ represents the time step of the charging request.
r is the discount factor.

Bidding Constraint:

ut
i ≥ 0 (11)

Bids must be non-negative.

Bidding Mechanism Constraint:

∑
i

ut
i = 1 (12)

The bidding mechanism ensures that one charging request is recommended to the
agent with the highest bid.
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Charging Allocation Constraint:

0 ≤ at
i ≤ 1 (13)

The action variable at
i represents whether the charging request is recommended to

itself or not, ensuring it is a binary decision.

Observation Transition Constraint: (
oi+t, ai,t, oi,t+j

)
(14)

Define the transition from the current charging request to the observation correspond-
ing to the next request.

Reward Function Constraints:

Constraints related to the reward functions rcwt and rcp based on charging success
or failure.

Other MARL Algorithm Constraints:

Constraints related to the specific MARL algorithms being used, such as actor–critic
training processes.

These constraints collectively ensure that the MARL algorithms make recommenda-
tions and bid for charging requests in a coordinated and cooperative manner.

3.5. Algorithms
3.5.1. Real Algorithm

1. Initialize the charging station recommendation system:

- Prepare the system for making recommendations based on real-time data.

2. For each EV charging request:

- Iterate over incoming charging requests.

3. Calculate the distance between the EV and all available charging stations:

- Determine the distance between the EV in need of charging and all accessible
charging stations.

4. Recommend the nearest charging station to the EV:

- Suggest the charging station that is closest to the EV based on the calculated
distances.

5. Update the charging station availability status and queue length:

- Reflect any changes in the availability of recommended stations and the length of
the charging queue.

6. Track and record relevant metrics such as Mean Charging Wait Time (MCWT), charg-
ing facility utilization (CFT), and total service failures (TSF):

- Keep detailed records of important metrics to evaluate the algorithm’s perfor-
mance.

7. Evaluate and analyze the performance of the Real algorithm based on the recorded
metrics:

- Assess how the Real algorithm performed by analyzing the collected data.

8. Conclude the algorithm analysis, discussing its strengths, limitations, and potential
improvements:

- Summarize the findings, highlighting what the algorithm did well, where it had
limitations, and suggesting possible enhancements.

Figure 3 illustrates the flowchart of the Real algorithm.
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3.5.2. Random Algorithm

1. Initialize the charging station recommendation system:

- Prepare the system for making random recommendations.

2. For each EV charging request:

- Iterate over incoming charging requests.

a. Randomly select a charging station from the available options:

- Randomly choose a charging station from the list of available stations.

b. Recommend the selected charging station to the EVs:

- Suggest the randomly selected charging station to the incoming EV.

c. Update the charging station availability status and queue length:

- Reflect on the utilization and status changes of the recommended sta-tion.

d. Track and record relevant metrics such as Mean Charging Wait Time (MCWT),
charging facility utilization (CFT), and total service failures (TSF):
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- Keep records of metrics to evaluate the algorithm’s performance.

3. Evaluate and analyze the performance of the Random algorithm based on the recorded
metrics:

- Assess how the Random algorithm performed by analyzing the collected data.

4. Conclude the algorithm analysis, discussing its strengths, limitations, and potential
improvements:

- Summarize the findings, highlighting what the algorithm did well, where it had
limitations, and suggesting possible enhancements.

Figure 4 illustrates flowchart of the Random algorithm.

World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 15 of 36 
 

b. Recommend the selected charging station to the EVs: 
- Suggest the randomly selected charging station to the incoming EV. 

c. Update the charging station availability status and queue length: 
- Reflect on the utilization and status changes of the recommended station. 

d. Track and record relevant metrics such as Mean Charging Wait Time (MCWT), 
charging facility utilization (CFT), and total service failures (TSF): 
- Keep records of metrics to evaluate the algorithm’s performance. 

3. Evaluate and analyze the performance of the Random algorithm based on the rec-
orded metrics: 
- Assess how the Random algorithm performed by analyzing the collected data. 

4. Conclude the algorithm analysis, discussing its strengths, limitations, and potential 
improvements: 
- Summarize the findings, highlighting what the algorithm did well, where it had 

limitations, and suggesting possible enhancements. 
Figure 4 illustrates flowchart of the Random algorithm. 

 
Figure 4. Flowchart illustrating the steps of the Random algorithm.  Figure 4. Flowchart illustrating the steps of the Random algorithm.

3.5.3. DQN Algorithm

1. Initialize the Q-network with random weights:

- Set up a neural network to represent the Q-function with random initial weights.
- Configure hyperparameters, such as learning rate, discount factor (γ), and explo-

ration rate (ε).

2. For each episode:

- Begin a new episode of interaction with the environment.

a. Reset the environment and obtain the initial state:
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- Reset the charging station recommendation environment.
- Retrieve the initial state, including information about available charging

stations and EV requests.

b. For each time step within the episode:

- Continue interacting with the environment for the current episode.

i. Select an action using an exploration–exploitation strategy (e.g., ε-greedy):

- Choose an action based on the current state:
- With probability ε, choose a random action (exploration).
- Otherwise, select the action with the highest Q-value (exploitation).

ii. Execute the selected action in the environment:

- Apply the chosen action, which may involve recommending a charg-
ing station to an EV.

iii. Receive the reward and the next state:

- Receive feedback from the environment in the form of a reward.
- Obtain the next state that results from taking the selected action.

iv. Store the transition tuple (state, action, reward, next state) in the replay
memory:

- Save the observed transition for experience replay.

v. Sample a minibatch of transition tuples from the replay memory:

- Randomly sample a batch of previous experiences for training the
Q-network.

vi. Calculate the TD target using the Q-network’s target network:

- Use the target network to estimate the TD target for the Q-learning
update.

vii. Update the Q-network’s weights using gradient descent to minimize
the TD error:

- Perform a gradient descent step to update the Q-network’s weights
toward minimizing the TD error.

viii. Update the target network’s weights periodically:

- Periodically update the weights of the target network to stabilize
training.

c. Evaluate the performance of the learned Q-network:

- Run simulations or real-world trials using the learned Q-network to assess
its performance.

d. Track and record relevant metrics:

- Measure and record metrics such as MCWT, CFT, and TSF during the
evaluation.

3. Compare the performance of the DQN algorithm based on the recorded metrics:

- Analyze and compare the algorithm’s performance across episodes and different
scenarios.

4. Analyze and discuss the results, highlighting the strengths and limitations of the DQN
algorithm:

- Examine the algorithm’s strengths and discuss areas where it may fall short.

5. Conclude the algorithm analysis, emphasizing the potential of DQN for EV charging
station recommendation and discussing future research directions:

- Summarize the findings and suggest potential research directions for further
improving the algorithm’s effectiveness.
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Figure 5 illustrates flowchart of the DQN algorithm.
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3.5.4. DDPG Algorithm

1. Initialize the actor network with random weights and the critic network with random
weights:

- Set up separate neural networks for the actor and critic with random initial
weights.
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- Configure hyperparameters and network architectures for both networks.

2. Initialize the target networks with the same weights as the corresponding actor and
critic networks:

- Create target actor and target critic networks with the same architecture as their
counterparts.

- Initialize their weights to be identical to the actor and critic networks.

3. Initialize the replay memory:

- Create a replay memory buffer to store experience tuples for experience replay.

4. For each episode:

- Begin a new episode of interaction with the environment.

5. Reset the environment and obtain the initial state:

- Reset the charging station recommendation environment.
- Retrieve the initial state, including information about available charging stations

and EV requests.

6. For each time step within the episode:

- Continue interacting with the environment for the current episode.

a. Select an action using the actor network and exploration noise:

- Use the actor network to choose an action based on the current state.
- Add exploration noise to encourage exploration of different actions.

b. Execute the selected action in the environment:

- Apply the chosen action, which may involve recommending a charging
station to an EV.

c. Receive the reward and the next state:

- Receive feedback from the environment in the form of a reward.
- Obtain the next state that results from taking the selected action.

d. Store the transition tuple (state, action, reward, next state) in the replay memory:

- Save the observed transition for experience replay.

e. Sample a minibatch of transition tuples from the replay memory:

- Randomly sample a batch of previous experiences for training the actor
and critic networks.

f. Calculate the target Q-values using the target actor and target critic networks:

- Utilize the target networks to estimate the target Q-values.

g. Update the critic network by minimizing the mean squared Bellman error:

- Perform a gradient descent step to update the critic network’s weights
based on the Bellman error.

h. Update the actor network using the sampled policy gradient:

- Calculate the policy gradient and update the actor network to maximize
the expected return.

i. Soft update the target networks using a small fraction of the current network
weights:

- Blend the target networks’ weights with the current networks’ weights to
achieve soft updates.

7. Evaluate the performance of the learned actor network:

- Run simulations or real-world trials using the learned actor network to assess its
performance.

8. Track and record relevant metrics:

- Measure and record metrics such as MCWT, CFT, and TSF during the evaluation.
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9. Compare the performance of the DDPG algorithm based on the recorded metrics:

- Analyze and compare the algorithm’s performance across episodes and different
scenarios.

10. Analyze and discuss the results, highlighting the strengths and limitations of the
DDPG algorithm:

- Examine the algorithm’s strengths and discuss areas where it may fall short.

11. Conclude the algorithm analysis, emphasizing the potential of DDPG for EV charging
station recommendation and discussing future research directions:

- Summarize the findings and suggest potential research directions for further
improving the algorithm’s effectiveness.

Figure 6 illustrates flowchart of the DDPG algorithm.
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3.5.5. MADDPG Algorithm

1. Initialize the critic networks and actor networks for each agent with random weights:

- Create separate neural networks for critics and actors for each agent.
- Set up initial random weights for these networks.

2. Initialize the target networks for each agent with the same weights as the correspond-
ing critic and actor networks:

- Create target actor and target critic networks for each agent.
- Initialize these target networks’ weights to be identical to the critic and actor

networks of their respective agents.

3. Initialize the replay memory shared among all agents:

- Set up a shared replay memory buffer to store experience tuples for experience
replay.

4. For each episode:

- Start a new episode of interaction with the environment.

5. Reset the environment and obtain the initial states for all agents:

- Reset the charging station recommendation environment.
- Retrieve initial states for all agents, including information about available charg-

ing stations and EV requests.

6. For each time step within the episode:

- Continue the episode, allowing all agents to interact with the environment.
- For each agent:

a. Select an action using the actor network and exploration noise:

- Use the actor network of the respective agent to choose an action based on
its current state.

- Incorporate exploration noise to encourage exploration of different actions.

b. Execute the selected actions in the environment:

- Apply the selected actions for all agents in the environment.

c. Receive the rewards and the next states for all agents:

- Collect rewards and observe the next states for all agents as a result of their
actions.

d. Store the transition tuples (states, actions, rewards, next states) in the replay
memory:

- Save the observed transitions for experience replay in the shared memory.

e. Sample a minibatch of transition tuples from the replay memory:

- Randomly sample a batch of previous experiences from the shared memory
for training.

f. Calculate the target Q-values using the target actor and target critic networks
for each agent:

- Utilize the target networks for each agent to estimate the target Q-values.

g. Update the critic networks for each agent by minimizing the mean squared
Bellman error:

- Perform gradient descent to update the critic networks’ weights for each
agent based on the Bellman error.

h. Update the actor networks for each agent using the sampled policy gradient:

- Calculate the policy gradient and update the actor networks for each agent
to maximize expected return.
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i. Soft update the target networks for each agent using a small fraction of the
current network weights:

- Blend the target networks’ weights with the current networks’ weights for
each agent to achieve soft updates.

7. Evaluate the performance of the learned actor networks:

- Conduct simulations or real-world trials using the learned actor networks to
assess their performance.

8. Track and record relevant metrics:

- Measure and record metrics such as MCWT, CFT, and TSF during the evaluation.

9. Compare the performance of the MADDPG algorithm based on the recorded metrics:

- Analyze and compare the algorithm’s performance across episodes and different
scenarios.

10. Analyze and discuss the results, highlighting the strengths and limitations of the
MADDPG algorithm:

- Examine the algorithm’s strengths and discuss areas where it may have limita-
tions.

11. Conclude the algorithm analysis, emphasizing the potential of MADDPG for EV
charging station recommendation in a multi-agent setting and discussing future
research directions:

- Summarize the findings and suggest potential research directions for further
enhancing the algorithm’s effectiveness, particularly in multi-agent scenarios.

Figure 7 illustrates flowchart of the MADDPG algorithm.

3.6. Integrate Future Charging Competition

When EVs arrive at a public charging station, they may have to compete for a charging
spot, which could create delays and even charging failure. To avoid this, it would be
important to consider future charging competition when recommending charging requests.
However, this would be a difficult task because it would be difficult to predict how many
EVs would arrive in the future and how many charging spots would be available. This work
improved on a previous approach by incorporating information about future charging com-
petition. This was conducted by delaying access to transition tuples until there was accurate
information about the number of available charging spots in the future. This information
would be obtained via a fully connected layer and integrated into the centralized attentive
critic to help agents learn policies with future knowledge. The execution process would
be decentralized with each agent acting based on its own observation and the charging
request being recommended to the agent with the highest action. This approach would
have fault tolerance even if some agents failed and were lightweight because this would
not require future charging competition information for execution.

3.7. Multiple Objective Optimization

The EV recommendation task aimed to minimize the overall CWT, average CP, and
CFR. To achieve this, two reward functions were used, namely rcwt and rcp as defined
in Equations (1) and (2). This observed that the distribution of different objectives could
vary significantly, and the optimal solution for each objective could be different. For
instance, a cheaper charging station could be popular and have a longer CWT. This would
suggest that a policy that performed well on one objective could struggle with another.
Therefore, a charging recommender that was biased toward a specific objective could lead
to unsatisfactory experiences for most users. As such, the given text described a method to
optimize multiple objectives by dynamically adjusting the optimization direction based on
the performance of different objectives. The approach was an extension of the centralized
attentive critic, where multiple critics corresponded to different objectives, and each critic
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was associated with a specific policy. The performance of these policies was measured by
the gap ratio between the multi-objective policy and the objective-specific optimal policy.
The gap ratio was used to derive dynamic update weights for the two objectives, which
adaptively adjusted the step size. A larger gap ratio indicated a poorly optimized objective
that needed a larger update weight, while a small gap ratio suggested a well-optimized
objective that required a smaller step size. These updated weights were learned using the
Boltzmann softmax function.
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STMARL is a type of machine learning that combines reinforcement learning, spatio-
temporal modeling, and multi-agent systems.

RL is a type of machine learning where an agent learns to take actions in an environ-
ment to maximize a reward signal. Spatio-temporal modeling involves modeling the spatial
and temporal dynamics of the environment in which the agent is operating. Multi-agent
systems involve multiple agents that interact with each other and their environment.

In STMARL, multiple agents would learn to take actions in a spatio-temporal envi-
ronment to maximize a joint reward signal. This would require each agent to learn how
to cooperate and coordinate with other agents to achieve their common goal. STMARL is
useful in a wide range of applications, including robotics, traffic control, and environmental
monitoring.

One example of STMARL in action is in the context of traffic control. In this case,
multiple autonomous vehicles may need to coordinate their actions to minimize congestion
and optimize the traffic flow. By using STMARL, vehicles could learn to work together to
achieve these goals even in complex and dynamic traffic environments.

STMARL could be applied to the problem of EV charging station recommendations to
optimize the location and operation of the EVCS. The following is a general approach to
applying STMARL to this problem:

(1) Define the problem: Define the problem of the EV station recommendation as an
STMARL problem. In this case, the agents would be the charging stations, and their
goal would be to optimize the charging infrastructure to maximize the satisfaction of
the EV drivers.

(2) Define the environment: Define the spatio-temporal environment in which the agents
would operate. This would include information about the location of the charging
stations, EV demand patterns, and other relevant factors.

(3) Define the reward signal: This would be performed for each agent. In this case, the
reward signal for each charging station could be a function of the number of EV
drivers served, the duration of the charging sessions, and other relevant factors.

(4) Implement the STMARL algorithm: This would optimize the location and operation
of the charging stations. The algorithm would involve each charging station learning
how to cooperate and coordinate with other stations to maximize their collective
reward.

(5) Evaluate the results: Evaluate the performance of the STMARL algorithm by measur-
ing the number of satisfied EV drivers, the efficiency of the charging infrastructure,
and other relevant metrics. Use this feedback to adjust the model and improve its
performance.

Overall, STMARL would provide a powerful tool for optimizing the location and
operation of the EVCS. By using a coordinated, multi-agent approach, the charging in-
frastructure could be optimized to meet the needs of EV drivers and improve the overall
efficiency of the transportation system.

The algorithm for STMARL would involve multiple agents learning to take actions
in a spatio-temporal environment to maximize a joint reward signal. The following is a
general overview of the STMARL algorithm:

(1) Initialize the agents and their parameters: Each agent should have a set of states,
actions, and a policy for selecting actions.

(2) Define the environment: Define the spatio-temporal environment in which the agents
would operate. This would include information about the location of the agents,
rewards for each agent, and other relevant factors.

(3) Set up communication: This would be conducted between the agents to allow them
to exchange information and coordinate their actions.

(4) Determine the joint action: The agents would select their actions according to their
policies and communicate with each other to determine a joint action. The joint action
would then be executed in the environment.
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(5) Receive feedback: Each agent would receive feedback from the environment in the
form of a reward signal. The reward signal would reflect the success or failure of the
joint action taken by the agents.

(6) Update the agents: The agents would update their policies based on the feedback they
would receive. This would involve adjusting the agents’ states, actions, and policies
to better optimize the joint reward signal.

(7) Repeat: The above steps would be repeated until the agents converge on an optimal
joint policy that would maximize the joint reward signal.

(8) The STMARL algorithm would be designed to enable agents to learn to cooperate
and coordinate with each other to optimize their performance in a spatio-temporal
environment. By using STMARL, they could improve the efficiency of a wide range
of applications, including robotics, traffic control, and environmental monitoring.

(9) Integrate future charging competition.

When EVs arrive at a public charging station, they may have to compete for a charging
spot, which could create delays and even charging failure. To avoid this, it would be
important to consider future charging competition when recommending charging requests.
However, this would be a difficult task because it would be difficult to predict how many
EVs would arrive in the future and how many charging spots would be available. This work
improved on a previous approach by incorporating information about future charging com-
petition. This was conducted by delaying access to transition tuples until having accurate
information about the number of available charging spots in the future. This information
would be obtained via a fully connected layer and integrated into the centralized attentive
critic to help agents learn policies with future knowledge. The execution process would
be decentralized with each agent acting based on its own observation and the charging
request being recommended to the agent with the highest action. This approach would
have fault tolerance even if some agents failed and were lightweight because this would
not require future charging competition information for execution.

4. Results

This section presents the results of the current study’s proposed MARL-based ap-
proach for recommending the best EVCSs to EV drivers. The proposed approach was
designed to address the challenges of recommending EVCSs in a dynamic and uncertain
environment. The main objective of this study was to evaluate the performance of the
proposed MARL-based approach in comparison to baseline methods. Specifically, the
performance of the method was compared with two baseline methods: a random rec-
ommendation and a popularity-based recommendation. The random recommendation
approach suggested EVCSs randomly to the EV drivers, while the popularity-based recom-
mendation approach recommended the most popular EVCS based on their previous usage
history. Furthermore, the performance of the proposed approach was evaluated under
different scenarios, including varying numbers of EVCSs and EV drivers. The approach
was evaluated using real-world data, which were collected from a metropolitan city. The
results of this study provided insights into the effectiveness of the proposed MARL-based
approach for recommending EVCSs to EV drivers. In addition, these findings had im-
portant implications for improving the EV driver experience and promoting the adoption
of EVs. Overall, the results of this study demonstrated that the proposed MARL-based
approach outperformed the baseline methods in terms of recommendation accuracy. A
detailed analysis of the performance of the proposed approach was also provided under
different scenarios. Hence, these findings suggested that the proposed approach had the
potential to be an effective solution for recommending EVCSs to EV drivers in real-world
environments.

The results of the proposed MARL-based approach for recommending EVCS to EV
drivers were based on four different performance metrics comprising MCWT, mean Charg-
ing Price (MCP), TSF, and CFT. The performance of the proposed approach was compared
with four baseline methods: Random, DQN, DDPG, and MADDPG.
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In this study, the authors used a random selection approach to recommend EVCSs to
EV drivers. To evaluate the effectiveness of this approach, charging stations within a certain
radius of the driver’s location were randomly selected, and the results were compared to a
baseline scenario in which the driver had no recommendation. The results showed that the
random selection approach had a positive impact on the driver’s experience. On average,
drivers who received recommendations were able to find a charging station faster and with
fewer problems compared to those who did not receive recommendations. Additionally, the
recommendations helped to reduce the amount of time that the drivers spent searching for
available charging stations, which in turn helped to reduce their overall travel time. Despite
the benefits of the random selection approach, it is important to note that this approach
was limited in its ability to provide personalized recommendations. The recommendations
were based solely on the driver’s current location and did not take into account the driver’s
specific needs or preferences. Therefore, while the random selection approach could be
useful in certain situations, it may not be the most effective approach for all drivers.

However, the random selection approach showed promise as a simple and effective
way to recommend EVCSs to drivers. However, further research is needed to explore
more sophisticated recommendation algorithms that could provide more personalized
recommendations to drivers.

The DQN algorithm is a DRL algorithm that has been successfully used to provide a
policy for recommending EVCSs to users. This algorithm works by using a neural network
to estimate the Q-values, which represent the expected reward for taking a particular action
in a certain state. The average reward per episode for the DQN agent was found to be
significantly higher than that of the random agent. This indicated that the DQN agent
was able to learn a more effective policy for recommending charging stations. The DQN
agent was also able to significantly reduce the number of steps taken to recommend a
charging station compared to the random agent. This inferred that the DQN agent was
able to quickly provide recommendations to users. The ability of the DQN algorithm to
learn from user feedback and adapt to changing conditions would make it well suited for
dynamic and complex environments, such as EV charging networks. This is because EV
charging networks would be constantly changing with new charging stations being added
and old ones being removed. As a consequence, the DQN algorithm would be able to adapt
to these changes by continually learning and updating its policy. In addition, the DQN
algorithm would have the ability to manage high-dimensional input data, which would
be important for EV charging networks, where there could be many different factors that
would need to be considered when recommending a charging station. For example, the
DQN agent may need to take into account the location of the user, the type of EV they have,
and the availability of the charging stations in the area. Overall, the results of using the
DQN algorithm for EV station recommendation systems demonstrated the effectiveness of
DRL algorithms in complex and dynamic environments. By learning from user feedback
and adapting to the changing conditions, these algorithms could provide more effective
and efficient recommendations for EVCSs by helping to reduce the barriers to EV adoption
and promote sustainable transportation.

DDPG is a powerful algorithm that combines deep neural networks and Q-learning to
learn a continuous action policy for continuous-state spaces. This would make it particu-
larly well suited for solving problems with high-dimensional input spaces, such as those
encountered in EVCS recommendations. In this study, the DDPG algorithm achieved im-
pressive results by outperforming the Real and Random algorithms in terms of MCWT, CFT,
and TSF. Specifically, the algorithm achieved a relatively low MCWT value of 14.54 min,
thus indicating shorter wait times for users. It also achieved a low CFT value of 3.86%,
which suggested high reliability compared to the Real and Random algorithms. Addition-
ally, the DDPG algorithm achieved a positive TSF value of 12,305 that indicated significant
cost savings for EV owners. Overall, these results suggested that the DDPG algorithm
has the potential to provide a better user experience and increase the adoption of EVs. Its
ability to learn continuous action policies for continuous-state spaces makes it a promising
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approach for addressing the EVCS recommendation problem. Hence, the impressive per-
formance of the DDPG algorithm in this study highlighted the potential of RL techniques
for solving complex problems in the field of EVs.

MADDPG is a multi-agent extension of the DDPG algorithm that allows for collabora-
tion and communication among agents to solve a problem collectively. In the context of
EVCS recommendations, the MADDPG algorithm could be used to optimize the placement
and allocation of charging stations in a city or region by considering the needs and behavior
of multiple EV drivers. In this study, each EVCS was modeled as an agent that could take
actions, receive rewards, and learn from its environment. The agents interacted with each
other and with the environment to optimize the overall system’s performance. Specifically,
each charging station agent selected a charging rate for each EV based on its state (e.g.,
battery level, estimated time of arrival, etc.), as well as the states of other charging stations
and EVs in the vicinity. The agents aimed to minimize the overall wait times and costs
for EV owners, while maximizing the utilization of the charging stations. The MADDPG
algorithm achieved a low MCWT value of 14.37 min, which indicated shorter wait times
for users compared to the Real and Random algorithms. It also achieved a low CFT value
of 3.17%, consequently suggesting higher reliability compared to the Real and Random
algorithms. The MADDPG algorithm also achieved a positive TSF value of 13,174 that
indicated significant cost savings for EV owners. These results demonstrated the potential
of the MADDPG algorithm for improving the user experience and increasing the adoption
of EVs in a multi-agent setting. The use of charging stations as agents in the MADDPG
algorithm allowed for a more holistic approach to the EVCS recommendation problem.
By modeling the charging stations as agents, the algorithm was able to take into account
the interactions and dependencies among the different stations and EVs and optimize the
system’s performance accordingly. The success of the MADDPG algorithm highlighted the
potential for MARL in solving complex real-world problems, such as EVCS recommenda-
tions, where interactions and dependencies among agents would be crucial for achieving
optimal results.

The MCWT, MCP, TSF, and CFR are metrics used to evaluate the efficiency, cost-
effectiveness, reliability, and user experience of EVCSs. In this paper, an EV station rec-
ommendation model was proposed based on MARL, and its performance was evaluated
using these metrics.

The MCWT was used to measure the average time that an EV spends waiting in line
to use a charging station. A lower MCWT indicated that the charging station was more
efficient, as EVs spent less time waiting in line. The MCP measured the average price that
EV owners paid to charge their vehicles at a charging station. A lower MCP indicated that
the charging station was more affordable for EV owners. These metrics were important as
they could impact customer satisfaction and influence the adoption of EVs.

The TSF is a metric used to evaluate the cost savings achieved by the charging rec-
ommendation system proposed in this paper. It measures the difference between the total
cost of charging without the recommendation system and the total cost of charging with
the recommendation system. The TSF could make EV ownership more affordable and
appealing, which could help to increase the adoption of EVs.

Finally, the CFR was used to evaluate the reliability of EVCS. It represents the per-
centage of charging sessions that result in a failure to charge, either due to technical
malfunctions, equipment failures, or other issues. A high CFR would indicate that the
charging station is not reliable and could discourage people from using the station and
adopting EVs. Therefore, it would be important to monitor and minimize the CFR to ensure
that charging stations are dependable and provide a positive user experience.

The evaluation results underscore the substantial impact of diverse algorithms on key
parameters, offering crucial insights into their effectiveness in the context of EV charging
station recommendations. Examining each metric:

Mean Charging Wait Time (MCWT):

Real Algorithm: 25.4 min
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Random Algorithm: 41.25 min
DQN Algorithm: 21.61 min
DDPG Algorithm: 14.54 min
MADDPG Algorithm: 14.37 min

Analysis reveals that both DDPG and MADDPG outperform the Real and Random
algorithms, providing significantly shorter wait times, while DQN also demonstrates
improved efficiency compared to Real and Random.

Mean Charging Price (MCP):

Real Algorithm: 1.83
Random Algorithm: 1.87
DQN Algorithm: 1.62
DDPG Algorithm: 1.67
MADDPG Algorithm: 1.63

DQN achieves the lowest MCP, indicating more cost-effective recommendations, but
commendable affordability is also observed with DDPG and MADDPG.

Total Service Failures (TSF):

Real Algorithm: −581 (negative value indicates cost savings)
Random Algorithm: −521
DQN Algorithm: 8752
DDPG Algorithm: 12,305
MADDPG Algorithm: 13,174

DDPG and MADDPG achieve positive TSF values, signifying significant cost savings,
while DQN also contributes positively to overall cost-effectiveness.

Charging Facility Utilization (CFT):

Real Algorithm: 27.4%
Random Algorithm: 58.3%
DQN Algorithm: 8.41%
DDPG Algorithm: 3.86%
MADDPG Algorithm: 3.17%

The analysis highlights that DDPG and MADDPG achieve low CFT values, indicating
high reliability and efficient facility utilization, with DQN also showing improved reliability
compared to the Real and Random algorithms. In conclusion, the collective findings suggest
the consistently high performance of the DDPG and MADDPG algorithms, showcasing
their efficacy in enhancing the efficiency, affordability, and reliability of EV charging station
recommendation systems.

The performance of the proposed EV recommendation model was evaluated using
these metrics. The authors demonstrated that the model of this current study outperformed
the random selection model in all metrics, including MCWT, MCP, TSF, and CFR. The
model provided more efficient, cost-effective, and reliable charging recommendations,
which could help to encourage more people to change to EVs.

Table 1 provides the results of the evaluation of the five algorithms (Real, Random,
DQN, DDPG, and MADDPG) based on four metrics: MCWT, MCP, TSF, and CFR. The
results showed that the Real algorithm had a relatively high MCWT of 25.4 min, which
indicated that users would have to wait for a significant amount of time to access the
charging station. The Real algorithm also had a high CFT of 27.4%, thus suggesting that a
significant percentage of the charging sessions resulted in failure. The Random algorithm
had a higher MCWT of 41.25 min that indicated longer wait times for users, and a higher
CFT of 58.3%, therefore indicating a high failure rate. The DQN algorithm had the lowest
MCWT of 21.61 min, which indicated shorter wait times for users. It also had the lowest
CFT of 8.41%, which suggested higher reliability compared to the other algorithms. The
DQN algorithm also achieved a positive TSF of 8752 that indicated cost savings for the
EV owners. The DDPG and MADDPG algorithms also achieved low MCWT values of
14.54 and 14.37 min, respectively, which suggested short wait times for users. They also
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achieved low CFT values of 3.86% and 3.17%, respectively, which indicated high reliability.
The DDPG and MADDPG algorithms achieved positive TSF values of 12,305 and 13,174,
respectively, indicating significant cost savings for EV owners.

Table 1. Comparison of the optimization of each type of algorithm.

Algorithm MCWT MCP TSF CFT

Real 25.4 1.83 −581 27.4%
Random 41.25 1.87 −521 58.3%

DQN 21.61 1.62 8752 8.41
DDPG 14.54 1.67 12,305 3.86

MADDPG 14.37 1.63 13,174 3.17

Overall, the results suggested that the DQN, DDPG, and MADDPG algorithms out-
performed the Real and Random algorithms in terms of MCWT, CFT, and TSF. These
algorithms would have the potential to provide a better user experience and increase the
adoption of EVs.

5. Discussion

The results of this study suggested that the MADDPG algorithm would be a promising
approach for addressing the problem of EVCS recommendations. The findings demon-
strated that the MADDPG algorithm outperformed the Real and Random algorithms in
terms of MCWT, CFT, and TSF, which indicated that it has the potential to provide a bet-
ter user experience and increase the adoption of EVs. One of the key advantages of the
MADDPG algorithm was its ability to model the interactions and dependencies among
multiple agents (in this case, charging stations). By considering the needs and behavior of
multiple EV drivers, the MADDPG algorithm could optimize the placement and allocation
of the charging stations in a way that would benefit all users. This would be particularly
important in urban areas where space would be limited and demand for charging stations
would be high. Another advantage of the MADDPG algorithm would be its ability to adapt
to changes in the environment or user behavior over time. As the adoption of EVs increases,
the demand for charging stations will likely change [1,17]. Furthermore, the MADDPG
algorithm could continuously learn and update its policies to ensure that it would provide
the best possible recommendations to users.

While this study focused on a specific scenario and set of assumptions, the MADDPG
algorithm had the potential to be applied to other related problems, such as optimizing the
routing of autonomous EVs or managing energy storage systems in smart grids. Overall,
this study highlighted the potential of MARL and the MADDPG algorithm in particular for
addressing complex real-world problems related to EVS and sustainable transportation [1,2].
Therefore, further research would be needed to explore the scalability and robustness of the
MADDPG algorithm in real-world settings and to investigate its potential for addressing
other related problems.

In addition, this study directly addressed the challenge of optimizing EVCS recom-
mendations using the MADDPG algorithm. By leveraging MARL, the approach took into
account the interactions and dependencies among multiple agents (charging stations) and
considered the needs and behavior of multiple EV drivers. This concurred with the findings
from the literature review, which emphasized the importance of considering these factors
for successful EV adoption.

Furthermore, the current study contributes to the literature by demonstrating the
effectiveness of the MADDPG algorithm in improving the user experience and increasing
the adoption of EVs. The results showed that the MADDPG algorithm outperformed the
Real and Random algorithms in terms of metrics, such as MCWT, CFT, and TSF. This
supported the notion that intelligent recommendation systems based on MARL could
provide better charging station recommendations, ultimately enhancing the overall EV
charging experience [62–66].
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Future research in the field of intelligent recommendation systems for EVCSs holds
significant potential for advancing optimization techniques and addressing transportation
challenges [67–69]. Building upon the findings of this study, several avenues for future
research could be explored.

Firstly, further investigation is needed to evaluate the scalability and robustness of
the MADDPG algorithm in real-world settings. Assessing its performance in larger-scale
environments and diverse user scenarios could provide valuable insights into its practical
applicability and potential limitations.

As the adoption of EVs continues to grow, the demand for charging stations will
evolve over time. Therefore, future research could focus on developing adaptive algorithms
that could dynamically adjust charging station recommendations based on real-time data,
user behavior patterns, and changes in the charging infrastructure, specifically in smart
cities the developing countries.

Another important direction for future research is exploring the integration of charging
station recommendation systems with smart grids and renewable energy sources. This
integration could enable optimized charging strategies that could consider the availability of
renewable energy and contribute to a more sustainable and efficient charging infrastructure.

In addition, investigating the privacy and security aspects of the recommendation
system would be crucial given the sensitive user data involved. Future research should
aim to develop privacy-preserving algorithms and robust security measures to ensure
widespread adoption and user trust.

Extending the application of MARL to optimize shared mobility systems, such as
ride-sharing or EV fleet management, would also present an intriguing research avenue.
This extension could help reduce congestion, improve resource utilization, and enhance
the overall efficiency of transportation systems.

To evaluate the practical implementation of the MADDPG algorithm and its impact on
user behavior and adoption of EVs, conducting field experiments and user studies would
be valuable. Assessing user acceptance, usability, and user experience in real-world settings
could provide insights for system deployment and further improvements.

Finally, future research endeavors should focus on addressing the aforementioned
aspects to enhance the efficiency, sustainability, and user-friendliness of EVCS recommenda-
tion systems [69–71]. By continuing to explore and refine MARL algorithms, this could pave
the way for more intelligent and optimized transportation systems that would promote the
widespread adoption of EVs and contribute to a greener future [72].

6. Conclusions

This study investigated the effectiveness of multi-agent reinforcement learning al-
gorithms, including DDPG, DQN, MADDPG, Real, and Random, for optimizing the
placement and allocation of EV charging stations. Our results demonstrate that both DDPG
and MAD-DPG outperform the Real and Random algorithms, and MADDPG outperforms
DDPG in terms of MCWT, CFT, and TSF. These findings suggest that MADDPG is superior
to other algorithms in addressing the EV charging station recommendation problem in
a multi-agent setting. We attribute the superior performance of MADDPG to its ability
to facilitate collaboration and communication among agents, including the EV stations
as agents. Our results indicate that MADDPG can provide a better user experience and
increase the adoption of electric vehicles.

Our exploration of multi-agent reinforcement learning algorithms for optimizing EV
charging stations has yielded compelling numerical indicators, vividly illustrating the
efficacy of these algorithms. Noteworthy among these metrics is the Mean Charging Wait
Time (MCWT), with DDPG and MADDPG outshining other algorithms by significantly
reducing wait times to 14.54 and 14.37 min, respectively. Charging facility utilization (CFT)
reflects the operational efficiency, where DDPG and MADDPG exhibit low percentages of
3.86% and 3.17%, highlighting enhanced resource utilization. The total service failures (TSF)
metric underscores the reliability of the algorithms, with DDPG and MADDPG showcasing
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values of 12,305 and 13,174, indicating superior performance. In contrast, the comparative
algorithm, DQN, lags in certain aspects, emphasizing the distinct advantages offered by
DDPG and MADDPG in optimizing the efficiency and user experience of EV charging
stations over other methodologies.

The advantages of MADDPG are prominently highlighted in its unique capabilities.
MADDPG excels in fostering collaboration and communication among agents, notably
treating EV stations as active participants in the optimization process. This strength trans-
lates into an enhanced user experience, as evidenced by shorter wait times, cost savings,
and increased reliability, outperforming other algorithms. MADDPG consistently demon-
strates superiority in a multi-agent setting, making it an optimal solution for intricacies
related to EV charging station recommendations. These numerical insights firmly estab-
lish MADDPG as a robust and effective approach, offering tangible benefits in efficiency,
cost-effectiveness, and reliability. The application of multi-agent reinforcement learning
algorithms, exemplified by MADDPG, holds immense promise for reshaping the landscape
of EV charging infrastructure, marking a pivotal step towards fostering sustainable and
intelligent transportation systems.

Additionally, we believe that the approach presented in this study can be extended
to other transportation-related problems, such as the optimization of shared mobility
systems and traffic management. Overall, our study highlights the potential of multi-
agent reinforcement learning as a powerful approach for solving complex optimization
problems in transportation and beyond. The results suggest that the MADDPG algorithm
is a promising candidate for further exploration and implementation in real-world settings.
We hope that our work will contribute to the development of more efficient and sustainable
transportation systems, and we encourage further research in smarties cities for sustainable
development.

Future research in the field of intelligent recommendation systems for electric vehicle
charging stations holds significant potential for advancing optimization techniques and
addressing transportation challenges. Building upon the findings of this study, several
avenues for future research can be explored.

Firstly, further investigation is needed to evaluate the scalability and robustness of
the MADDPG algorithm in real-world settings. Assessing its performance in larger-scale
environments and diverse user scenarios can provide valuable insights into its practical
applicability and potential limitations [73].

As the adoption of electric vehicles continues to grow, the demand for charging
stations will evolve over time. Therefore, future research can focus on developing adaptive
algorithms that can dynamically adjust charging station recommendations based on real-
time data, user behavior patterns, and changes in the charging infrastructure.

Another important direction for future research is exploring the integration of charging
station recommendation systems with smart grids and renewable energy sources. This inte-
gration can enable optimized charging strategies that consider the availability of renewable
energy and contribute to a more sustainable and efficient charging infrastructure.

In addition, investigating the privacy and security aspects of the recommendation
system is crucial, given the sensitive user data involved. Future research should aim to
develop privacy-preserving algorithms and robust security measures to ensure widespread
adoption and user trust.

Extending the application of multi-agent reinforcement learning to optimize shared
mobility systems, such as ride-sharing or electric vehicle fleet management, presents an
intriguing research avenue. This extension can help reduce congestion, improve resource
utilization, and enhance the overall efficiency of transportation systems [73–78].

To evaluate the practical implementation of the MADDPG algorithm and its impact
on user behavior and adoption of electric vehicles, conducting field experiments and user
studies would be valuable. Assessing user acceptance, usability, and user experience in
real-world settings can provide insights for system deployment and further improvements.
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Finally, future research endeavors should focus on addressing the aforementioned
aspects to enhance the efficiency, sustainability, and user-friendliness of electric vehicle
charging station recommendation systems. By continuing to explore and refine multi-agent
reinforcement learning algorithms, we can pave the way for more intelligent and optimized
transportation systems that promote the widespread adoption of electric vehicles and
contribute to a greener future.
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