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Abstract: In recent years, artificial intelligence and machine learning have captured the attention of
researchers and industrialists in order to estimate and predict the state of batteries. The quality of data
must be good, and the source of data must be the same for different models’ performance comparisons.
The lithium-ion battery is popularly used because of its high energy density and its compact size. Due
to the non-linear and complex characteristics of lithium-ion batteries, electric vehicle users have to
know about battery health conditions. Different types of state estimation methods are used, namely,
electrochemical-based, equivalent circuit model (ECM) based, and data-driven approaches. This
paper is a survey of electric vehicle history, different battery chemistries, battery management system
(BMS) basics and key challenges and solutions in BMS, and in-depth discussions about other battery
state of charge and state of health estimation methods. Research trend analysis, critical analysis of
this work, limitations, and future directions of existing works are discussed. This paper also provides
information on the open-access available datasets of different battery chemistry for a data-driven
approach. This paper highlights the key challenges of state estimation techniques. Knowledge of
accurate battery state of charge (SOC) provides critical information about remaining available energy.
In comparison, battery state of health (SOH) indicates its current health condition, remaining lifetime,
performance, and proper energy management of the electric vehicles.

Keywords: battery management system; state-of-charge; state-of-health; machine learning; data-
driven approach

1. Introduction

In order to reduce Green House Gas (GHG) emissions, the use of clean and green
energy needs to be promoted. Renewable energy sources such as solar, wind, and tidal are
abundant in nature. Combustion engine vehicles take crude oil such as petrol or diesel as
fuel. These internal combustion (IC) engine vehicles pollute the environment and release
harmful gases. Meanwhile, a pure electric vehicle (EV) takes electrical charges as input fuel.

The battery of the EV is charged by a grid mains supply or by the solar panel. To
promote EV manufacturing, in 2015, the Indian government launched the phase-I Fast
Adoption and Manufacturer of Electric Vehicles (FAME) program; however, due to the
lack of charging infrastructure and the high capital cost of EV batteries, the EV market
capture became slow-paced. Some countries are developing their existing technology to
enhance, modify, and equip themselves with the emerging technology for EVs [1]. Original
Equipment Manufacturers (OEMs) have started developing their existing technology to
enhance, modify, and equip themselves with emerging technology to fulfill the end-user’s
requirements.
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In the early days, lead–acid batteries were preferred for domestic stationary uses due
to their low cost and operation safety. Even now, there is a high demand for compact
electronic appliances with high-capacity storage for mobile applications. Considering
this requirement, lithium-ion batteries are used because of their high energy density and
compact size. Lithium-ion batteries are used in mobile phones, electric vehicles (EVs),
aircraft engines, battery-operated scooters, etc. Figure 1 shows the history and invention of
electric vehicle batteries. Electric vehicles came into the picture in early 1832, and Robert
Anderson invented the first crude electric carriage. Previously, non-rechargeable primary
battery cells were used in EVs. After the invention of the first rechargeable lead–acid
battery in 1859, the capability to store electricity onboard a vehicle came into the picture
for usage. The first human-carrying tricycle was invented in 1881. In 1901, the first hybrid
electric car was invented. These hybrid cars were powered by gasoline and batteries. In
1912, experiments with lithium-ion batteries started, and in 1970, these batteries became
available in the market for commercial use. After that, in 1971, NASA’s first lunar rover
electric manned vehicle was sent to the moon. Between 1920 and 1980, smooth roads
were constructed, and the transportation of fuel rapidly grew so that the fuel prices for
gasoline vehicles were reduced and fuel became abundantly available compared to electric
vehicle battery costs; therefore, the electric vehicle market faded. Again, in 1990, revisions
on EV policies, regulations, and the availability of different models attracted customers’
attention, and there developed a renewed interest for EVs. From 2009 onwards, charging
infrastructure for EVs has started to be built. Battery cost is almost 60–70% that of the cost of
the EV, but in 2013, battery costs were reduced by 50% compared to the previous four years
and made EV purchases affordable to customers. Different charging–discharging strategies
of EVs are discussed in [2–4].
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According to [7], however, the cumulative output of power batteries in China in 2020
was 83.4 GWh. In the transportation sector, EVs play a significant role in reducing CO2 and
SOx gases from the environment and also require less maintenance. EVs can be powered
by batteries, solar power, electric generators, or a combination of batteries and gasoline [8].
Types of EVs include battery electric vehicles (BEVs), hybrid electric vehicles (HEVs), and
plug-in hybrid electric vehicles (PHEVs). The average battery capacity for a BEV is 55 kWh,
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and for a PHEV it is 14 kWh. Globally, 10 million electric cars had been sold up to 2020, of
which 2.1 million were sold in 2019, which had surpassed the 2018-year record [9]. China
has the world’s largest market for EV cars. China sold about 1.06 million EV cars in 2019,
followed by Europe with 560,000 EV car sales, and then the US with 326,000 EV car sales.
In 2020, electric car registration increased by 41%, and global car sales dropped by 16%.
Around 3 million electric cars were registered globally in 2020. For the first time, Europe
significantly captured the largest EV market, with 1.4 million new registrations, overtaking
China with 1.2 million registrations. Different new models of EVs with new features
provide customers with a great deal of variety to choose from. Encrypting information
fetched from the vehicle is critical as it is the owner’s or driver’s personal data. Cyber
security plays a significant role in Plug-in Hybrid Electric Vehicles, Hybrid electric vehicles,
Battery Electric vehicles (xEVs), automated vehicles, and self-driving vehicles. Sport Utility
Vehicle (SUV) car models cover half of all the available EV car models in the market with the
aim of enticing customers. To boost EV sales and increase the purchase of BEVs and PHEVs,
some national subsidies have been granted by some countries like France, Germany, Italy,
and China. During the pandemic, China curtailed the subsidy at the year-end of 2020 and
postponed it till 2022. According to (the International Energy Agency) the IEA report of
2020, to achieve the global mass adoption of EV stock as a transport mode for light-duty
passenger vehicles, the government must also focus on commercial vehicles like buses, cars,
trucks, and fast-charging infrastructure. Some advantages of EVs are their low operating
cost, low maintenance cost, simple design, and no harmful gas emission. EVs can capture
energy during braking through regeneration, and EVs are more efficient in terms of not
having a complex Internal Combustion engine. Therefore, EVs are treated as eco-friendly.

Many countries, such as the USA, Norway, China, France, Japan, the U.K., and the
Netherlands, are the futuristic global stakeholders in faster EV adoption. Initiatives have
been taken to promote and expedite EV adoption globally. The USA has started numerous
incentive programs, income tax credit rebates, separate EV charging tariffs, discounts
in parking allowance, shared e-mobility, and awareness campaigns. The Department of
Energy has initialized a program called “EV Everywhere,” which focuses on research and
development and consumer awareness to market EVs and achieve parity in cost till 2022.
California is targeting to convert 100% of its municipal fleet to run on alternative fuel by
2022. Some incredible awareness campaigns like “Best Ride Ever” and “National Drive
Electric Week” have been organized in California. France started zero parking costs, a
15% subsidy for converting IC engine vehicles into electric vehicles, and a 25% purchase
subsidy on low-emission vehicles, such as e-bikes [4]. In the United Kingdom, one would
be exempted from congestion charges, car tax, and annual circulation tax upon purchase of
an EV car. Shanghai recorded the greatest level of EV adoption in the country. It ranks as
the leading city globally in terms of EV sales. The “Ten Cities, Thousand Vehicles” program
has been launched in 25 cities in China. Shenzhen is the headquarters of Build Your
Dreams (BYD), one of the leading suppliers of lithium-ion batteries and EV manufacturing
companies. Oslo, Norway, has implemented low taxes, free parking, discounts on road
toll fares, and exemption from public charging fares. Norway is further planning to ban
gas and diesel vehicles by 2025, India is also planning to ban gas and diesel vehicles by
2030, and France and Britain plan to ban gas-diesel cars by 2040 [4]. In this paper [10], the
authors have discussed different ways to predict charging duration time, which will be
helpful for researchers to estimate SOH.

Our contributions are summarized as follows:

• Research trends in state estimation, key challenges, and solutions related to BMS
are discussed;

• Literature review on SOC and SOH estimation techniques is discussed;
• Publicly available dataset details for Machine Learning/Deep Learning (ML/DL)

methods are listed;
• Critical analysis, limitations, and research gaps in existing work are discussed;
• Future direction and unmapped areas are discussed;
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• These contributions will help researchers choose the algorithm suited to their research
problem.

1.1. Different EV Lithium-Ion Battery Chemistry Comparison

Different low-temperature lithium-ion batteries are required based on specific applica-
tions [11]. An application-based lithium-ion battery low-temperature operating range is
shown in Figure 2. At low temperatures, below 0 ◦C, battery capacity starts to decrease, and
at below −20 ◦C, battery operation is highly not recommended. Maintaining individual
internal cell temperature is difficult, practically impossible, and also not feasible. Therefore,
external thermal management through the use of heating elements, hot liquid, or air heat
transfer is applied in practice in order to maintain thermal stability.
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In 2019, the Nobel Prize in Chemistry for research contributions to the development
of lithium-ion batteries was awarded to John Goodenough, Stanley Whittingham, and
Akira Yoshino. There are various types of batteries available on the market, but for EV or
automotive purposes, lead–acid and lithium-ion batteries are mainly used. Nowadays,
lithium-ion batteries are popular in terms of EV applications due to their high energy
density, high volumetric density, low self-discharge rate, long life, and also because they
operate at high voltages. There are different categories of lithium-ion batteries available on
the market, and some popular lithium-ion battery chemistries used for EVs are shown in
Table 1 [8]. The nominal voltage mentioned in Table 1 is referenced to a standard graphite
anode. Nickel–manganese–cobalt (NMC) dominates lithium-ion battery chemistry, with
a 71% sales share the rest comprising nickel–cobalt–aluminum (NCA) batteries. Lithium–
iron–phosphate (LFP) batteries still have a less than 4% sales share in the electric car
market [9]. LFP batteries can operate up to 40 ◦C, whereas NMC and NCA batteries
can function up to 35 ◦C. The prices of LFP, NMC, and NCA batteries range from USD
200 to 250 per kWh (according to 2019 prices) [4]. Globally, China leads 75% of the total
battery manufacturing capacity, followed by the USA with 9% and South Korea with 7%.
Some battery manufacturing organizations include Exide Leclanche, Panasonic, LG Chem,
CATL, Samsung SDI, Tesla, BYD, and TATA Chemicals (Group 2021). Some of the major
disadvantages of lithium-ion batteries are that they have non-linear characteristics, are
costly, are explosive in nature, and are complex. The non-linearity of lithium-ion batteries
can be seen when the battery temperature is near freezing point and above 60 ◦C when
operating at high Depth Of Discharge (DOD), high/low SOC, and high C-rates. Due to
the expensive and explosive nature of lithium-ion batteries, battery management system
(BMSs) play a major role in managing the battery state and protecting electronic devices
from danger, improving the performance and efficiency of xEV. Key technologies in the
BMS includes battery modeling, diagnosis, indication, controlling, communication, and
protection. A well-designed BMS strategy will protect the battery from any internal fault,
temperature variation, over-charge/over-discharge, and control current flow. The proper
design of BMS software can precisely perform state of charge (SOC) and state of health
(SOH) diagnostics and prognostics. Battery state cannot be measured directly, while voltage,
current, and temperature are measured directly from the battery. Knowledge of the battery
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state plays a significant role in the battery’s smooth functioning in working conditions.
Battery states can be monitored by using proper estimation techniques. Table 2 shows
some of the publicly available battery datasets focused on different papers. The results of
these datasets were achieved under different conditions using different chemistries and
capacities. In the data-driven technique, most of the literature uses one set of data and
compares results with different data present in another piece of literature; this way of
comparison of results is vague. For the different data-driven approach results comparison,
the data must be obtained from the same source. There is a lack of research interest and
literature publications focusing on SOC and SOH estimation or battery prediction using
different ML techniques. There are few papers that discuss both SOC and SOH for EV
applications [12–15]. This paper fills the literature gap by providing an overview of BMS
functioning and different techniques used to estimate and predict battery state. This paper
compares the advantages, disadvantages, research gaps, and future trends of different state
estimation and prediction techniques. This paper also discusses the online open-access
dataset used by different authors in their paper for study. Useful and meaningful data
gathering is an important and basic task for working on data-driven models. Most of the
time is spent gathering accurate data. Some free open-access public data sets are available
for synthesis and comparison. In EVs, SOC is a replacement for a fuel gauge in conventional
vehicles, whereas SOH is a replacement for an odometer [13].

Table 1. Some popular lithium-ion battery chemistries available on the market used in EV
applications.

Battery
Chemistry

Names

Nominal
Voltage (V)

Energy
Density Life Cycle Safety Cost Battery Manufacturing

Capacity in the World

LFP 3.2 low Long life Safest to use expensive 17%

NMC 3.6 high Average life Safe to use expensive 55%

LCO 3.6 high Average life Requires safety
measures cheaper 18% (LCO and including

other chemistries)

LMO 3.7 low Short life Safe to use expensive 2%

NCA 3.6 high Average life Require safety expensive 7%

Table 2. Open access online datasets used in different papers.

Dataset Category Description Cell Chemistry/No. of Cells Variables

NASA data set [16,17]
NASA provides six experimental datasets
at various DODs, discharge current rates,
and temperatures.

18650 NCA (2 Ah)/34 cells V, I, T, IR, Q

CALCE data set [16,17]
CALCE provides a dataset of the aging
cycle at different CC-CV charges and
CC discharges.

Prismatic LCO (1.35 Ah)/12
cells V, I, T, IR, Q, E

A123 System data set [16] This dataset is used for
comparative study. LFP Q, V, I, T, IR

CALCE, NASA, Oxford [18] The dataset is divided into groups based
on charging protocol.

Oxford -Pouch cell
(740 mAh)/8 cells V, I, T

Lithium-ion Panasonic NCR
18650 PF [19]

Six drive dataset is used for training
purposes and another three drive cycle
dataset is used for testing.

NMC (2.9 Ah) V, I, T

Battery Archive dataset [20]
This dataset is taken from various
institutions and converted into a
standard format.

LFP, NMC, NCA, LCO,
NMC-LCO

Q, Form Factor, T, SOC,
C-rate during charge/
discharge

Automotive Lithium-ion Cell
Usage dataset [21]

This dataset is generated from a
programmable battery cycler simulation
using a cell in an electric car using a
Federal drive cycle.

lithium polymer cell (15 Ah) T, V, I, SOC, Cycle
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The gathering of relevant big data plays a significant role when working with data-
driven models. A small dataset will increase the chance of error, so a big relevant dataset
will lead to proper training of the model and reduce the chance of error. Acquiring huge
amounts of data is a time-consuming process. This paper is based on a variety of battery
chemistry and drive cycle online open datasets that have been used in other papers.

1.2. Battery Modeling

Designing, controlling, and optimizing battery models will help analyze proper func-
tioning and accuracy under different conditions. There are broadly three categories of
battery models, namely electrical models, thermal models, and hybrids, i.e., electro-thermal
coupled models, as shown in Figure 3. The electrical model is further divided into electro-
chemical, equivalent circuit, reduced-order electrical, and data-driven models [16]. The
electrochemical model (EM) [22,23] is known for its highly accurate prediction model and
also accurately describes the internal electrochemistry of the battery. The disadvantage of
the electrochemical model is that it requires high computation effort, complex equations,
and is complicated to solve. It is also not suitable for real-time applications. In [23], it
is stated that EM has several dependent variables like electric potential, lithium-ion con-
centration, and molar flux of lithium at the surface of spherical active materials, which
are partially differentiated by independent variables like spatial macro-scale x along with
micro-scale r and temporal t. Then, the model is reduced or reformed into a differential
algebraic equation. Due to numerous unknown parameters related to battery electrochem-
istry, such as chemical composition, it requires high computation time to solve. By making
a suitable assumption, full-order EM can be converted into the reduced-order model. In
reduced-order electrical models, there are fewer parameters (voltage and current signals);
hence, less computation time is required, which is why it is used for real-time battery
applications. In the equivalent circuit model (ECM), the electrical behavior of the battery
is represented by circuit components such as voltage source, resistance, and capacitance.
ECM has a simple structure and fewer parameters; therefore, it is widely used for real-time
applications. The resistance–capacitor (RC) network in ECM represents the charge transfer
or diffusion process of battery electrical behavior, and this RC network is less complicated.
RQ and Warburg network in ECM characterize the electrochemical performance of the
battery, and their Laplace Transform is difficult for real-time applications [24]. RQ and
Warburg networks are used for time-domain analysis, and the RC network is used for
frequency-domain analysis. The data-driven model shows the relationship between the in-
put and output signals of the battery. Conventional ECM has to identify model parameters
via individual tests such as the Hybrid Pulse Power Characterization (HPPC) test, which
is time-consuming and impractical for EV applications. The accuracy and performance
of data-driven models [25–28] are dependent on the nature of the test data and training
methods involved.

Various data-driven models are support vector machines (SVMs), random forest (RF),
artificial neural networks (ANNs), ensemble learning [29], and decision tree-based, which
do not require prior knowledge of the internal characteristics of the battery. In [25], it is
mentioned that the SVM algorithm is used for state of health (SOH) estimation by reducing
the data size requirements to train the model to achieve good accuracy results.

Thermal characteristics like the temperature of the battery play a vital role in battery
performance and lifetime. Four categories of thermal models include heat transfer, heat
generated, data-driven, and reduced-order thermal models. Activation, concentration, and
ohmic loss are the three methods that determine the heat generation of a battery. There are
many reasons for heat generation, such as high-current passes through battery and internal
resistance, over-voltage across RC networks, and entropy change or Joule heating. Three
modes of heat transfer between the inside and surface of the battery include conduction,
convection, and radiation. The three-dimensional heat transfer electrical and thermal
model is capable of determining the distribution of temperature and electric potential and
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detecting hotspots inside of the battery [30]. Reduced-order thermal models can control
battery thermal management [31,32].
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To capture electrical parameters (voltage, current, and SOC) and thermal parameters
(internal and surface temperature) simultaneously, the electro-thermal coupled model [24]
is considered. The lumped and distributed parameters are used to develop the electro-
thermal coupled model. In [33], the three-dimensional coupled electrochemical, thermal
model is used to predict the temperature effect on series connection, parallel connection,
contact resistance, coolant flow rate, and the discharge current of the battery pack and
individual cells. [34] developed a 3-D electro-thermal coupled model that determines the
SOC and heat generation of a lithium-ion pouch cell battery pack.

In [35], there are three methods used to estimate the state of health (SOH): experimental,
model-based, and machine learning. In [36], a review of different SOH estimation methods
is discussed in which model-based approaches like ECM, EM, Electrochemical Impedance
Spectroscopy (EIS), and data-driven approaches like neural networks (NNs), SVMs, fuzzy
logic, fusion model and data-driven are used for estimation. In [37], different methods to
estimate SOC are discussed such as conventional methods like the Open-Circuit Voltage
(OCV) method, Electromotive Force (EMF) method, Coulomb Counting (CC) method,
internal resistance method, EIS, model method and ECM- and EM-adaptive filter methods
like Kalman Filter (KF), Extended Kalman Filter (EKF), Unscented KF (UKF), Sigma Point
KF (SPKF), Particle Filter (PF), H∞ Filter, Recursive Least Square (RLS), machine learning
methods like NN, fuzzy logic, SVM, Genetic Algorithm (GA), non-linear observer methods
like Sliding Mode Observer (SMO), Proportional Integral Observer (PIO), Non-Linear
Observer (NLO) and other methods like Multivibrate Adaptive Regression Splines (MARS),
Bi-linear Interpolation (BI), Impulse Response (IR), hybrid approach. In [38], thermal
models, like heat generation models, associated thermal issues, and different cooling
methods are discussed. Other ECM models used in vehicles are discussed in [39], like the
Rint model, Thevenin model, dual polarization model, N-RC Thevenin model, RC model,
and the PNGV model.

The RUL prediction method is divided into three categories: model-based, data-
driven-based and hybrid-based; model-based and physics-based modeling composed of
mathematical algebraic equations or derivative equations or empirical equations. This
approach is designed for a specific purpose (intended for batteries and cannot be used
for bearings). In data-driven-based modeling, feature selection, theoretical statistics and
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ML-based modeling is performed [40]. This algorithm approach can only be used for
different applications by changing the value of the parameters [41].

Section 2 focuses on the terms related to battery management system. Section 3 reviews
different methodologies used for SOC estimation. Section 4 reviews various techniques for
SOH estimation. Section 5 provides the concluding remarks.

2. Battery Management System Terminologies

Lithium-ion batteries show non-linear characteristics; cells will degrade based on
cycling or usage pattern. Lithium-ion batteries catch fire or explodes due to malfunctions
of the battery management system or when crossing the limit of the safe operating region.
Lithium-ion batteries are used in EV automotive applications, so end-customer safety is
essential. A battery management system (BMS) acts as the brain of an EV battery, which is
required to monitor, control, and communicate and allows operating in a safe region. BMS
is an electronic device, mechanical system, or any possible technology that can manage the
individual cells, modules, and packs. BMS has hardware and software parts that manage
the whole battery system. A BMS in an EV is composed of different kinds of sensors,
actuators, and controllers with inbuilt algorithms and communication signal wires. The
function of a BMS is cell balancing, battery parameter identification, state estimation, fault
diagnosis, battery safety, control, thermal management, communication, and storage of
data. Figure 4 shows different functions of BMS and how it is achieved.
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Figure 5 shows the number of publications in battery state estimation terminologies
produced in the last ten years. From Figure 5, SOC is the central research area focused on
by authors and achieves the highest number in terms of annual publications. State of the
art (SOA) is the second highest on the list, then End of Life (EOL), then Remaining Useful
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Life (RUL), then State of Health (SOH), and then other states. Different state estimation
topics serve various purposes other than battery-related topics. Few documents on state
estimation are focused on lead–acid batteries, apart from lithium-ion batteries. Some of
the documents on EOL testing have been produced for products in the electronics industry
and in relation to tires, vehicles, aircraft, engines, transformers, transformers for the oil
industry and other areas. The same terminology is used in different industry areas for
different research purposes. These data were collected from the Web of Science (WoS)
on 22 January 2022 by refining the research terms as Energy Fuels or Electrochemistry or
Chemistry or Engineering and the English language. Battery states play a significant role
in proper functioning, maintaining and providing information about present or future
conditions of use. Battery states can be monitored by using proper estimation techniques.
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Some common terminologies related to BMS state estimation must be addressed and
are discussed below.

2.1. State of Health (SOH)

Lithium-ion batteries experience gradual degradation of service life due to cycling and
calendar aging. The health of the battery degrades inevitably and leads to a loss of lithium
inventory. Electrochemical changes occur in batteries, like side reactions, lithium plating
and cracks. For EV applications, degradation of the battery results in capacity reduction
and an increase in internal resistance [42]. When the capacity is reduced by 20−30% or the
internal resistance of the battery is doubled, then the battery is declared fully degraded (0%
SOH). A fresh battery has 100% SOH. The SOH limit is set based on the lithium-ion battery
chemistry composition and OEM operating range settings. From BMS, voltage, current,
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and temperature can be measured directly, whereas the direct measuring of different states
is not possible. Equation (1) shows a general formula to calculate SOH in two ways [16].
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where Caged = reduced capacity after a certain interval;
Rincrease = increase in resistance after a certain interval;
Cin, Rin = initial or nominal capacity, initial or nominal resistance, respectively.
Accurate SOH estimation and prediction are necessary to understanding how the

battery is degrading based on different driving profiles, road conditions, weather conditions,
and traffic congestion.

2.2. State of Charge (SOC)

The remaining capacity or charge in the battery by total capacity is known as SOC.
It indicates how long a vehicle can run, similar to a fuel gauge. For example, 100% SOC
means the battery is fully charged, whereas 0% SOC indicates that the battery is empty
or discharged. Direct and indirect methods estimate SOC. In the direct or conventional
method, the Ampere-hour (Ah), Coulomb Counting (CC), or Open-Circuit Voltage (OCV)
method is used [16]. This method’s estimation results are not satisfactory as compared
to data-driven or filter model-based methods. SOC at time t is expressed as shown in
Equation (2) [16,19]. Other battery states are dependent on SOC, like State of Function
(SOF) and State of Safety (SOS). High SOC accuracy is required for other battery states to
protect against the inevitable failure of BMS.

SOC(t) = SOCin ±
1

Crated

∫ t

0
ηi(t)dt (2)

where SOCin = initial or total SOC of the battery;
Crated = rated capacity of battery;
η = charge–discharge efficiency of battery;
i(t) = battery current at time interval t.
An accurate estimation of SOC and remaining driving range is necessary; otherwise,

drivers may face the problem of an empty battery. SOC also determines how long xEV can
run, and a better route plan can be considered.

2.3. State of Temperature (SOT)

Lithium-ion batteries show dynamic and non-linear characteristics. The battery is
sensitive to temperature variation. Due to the high energy density of lithium-ion batteries
and their small size, they are used for many static and movable applications. High energy
density batteries face issues related to thermal management during charging–discharging.
A rise in the temperature of the battery causes capacity degradation or resistance increment.
Thermal runaway occurs in batteries due to thermal, mechanical, and electrical stress.
The study of characteristic changes during thermal management, like heat generation,
transfer, and dissipation inside the battery, is important. The minimization of stress factors
is carried out by introducing safety techniques in the battery. Studies related to heat flow
and distribution inside the battery denote the State of Temperature (SOT) [43]. An accurate
thermal model and parameters are used to obtain precise thermal dynamic characteristics
of the battery.
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2.4. State of Energy (SOE)

SOE [44–47] determines the remaining energy in the battery so that EV BMS can
predict the remaining driving mileage. During battery discharge, the voltage decreases,
whereas charging voltage increases at different SOC levels. Correspondingly, the energy
also varies [48]. During a high discharge rate, a significant amount of internal energy
loss occurs, whereas a small change in capacity takes place. SOC represents the residual
capacity (Ah) in the battery rather than the available energy (Wh) in the battery. In [49], the
author discusses the difference between SOC and SOE. This difference is represented as
a parameter for SOH estimation. When this difference increases, temperature decreases,
whereas aging increases. Equation (3) expresses SOE in the mathematical form, which is
very similar to Equation (2).

SOE (t) = SOEin +
1

Erated

∫ t

0
P(τ)dτ (3)

where SOEin = initial SOE of the battery;
Erated = rated energy of battery;
P(τ) = battery power at time interval τ.

2.5. State of Power (SOP)

SOP plays a vital role in EV dynamic driving conditions like ramp climbing, speeding
acceleration, overtaking, cruise mode driving and braking suddenly. This dynamic driving
condition information is given to the vehicle control unit in order to control the power flow
from the battery. SOC and SOP [50–52] are the two deciding factors of energy management
in the battery. SOP [53] is the available power that can be absorbed or delivered from the
battery to the power train of the EV.

2.6. State of Function (SOF)

SOF denotes the battery peak power capability, and it is estimated with the help
of SOC, voltage, current, and temperature parameters [54]. Battery manufacturers give
upper and lower limits of voltage, current, and temperature in order to use batteries safely.
Battery function deteriorates, which results in changes in the safe operating area (SOA)
of the battery due to aging and environmental conditions. SOF indicates the battery’s
instantaneous maximum power capability during charging–discharging and denotes the
battery operating within SOA. SOF is obtained from SOP. The SOF of the battery can be
estimated via the co-estimation of SOC and SOH [55–57].

2.7. Remaining Useful Life (RUL)

The RUL [15] of a battery is also known as the residual service life of a battery before it
degrades to a point after which it can no longer be used. The prediction of RUL is necessary
because it prevents the battery from failing or fully shutting down in a controllable fashion,
and its maintenance can be undertaken properly. RUL prediction plays a significant role
in battery technology, but very little literature work has been produced in this area [58].
RUL prediction helps in enhancing battery life and also helps in finding the current health
status of the battery from past collected data, hence helping in detecting the chance of
failure. In [59], the diagnostic model is developed to identify the health indicator for online
SOH estimation of supercapacitors. In [60], the author discusses several issues related to
the safety and reliability of batteries. A battery malfunction leads to a fire explosion and
increases the chance of system failure. In 1999, the US Space Research Laboratory failed
due to the nonstandard internal impedance of the battery, and in the year 2013, the Boeing
787 caught fire due to abnormal behavior in the battery. NASA’s MARS probe failed due to
continuous overcharging of the battery. In [61], RUL is also used in electronic devices for
predictive maintenance, and in this paper, the RUL model is developed using Unscented
Kalman Filter and Baysein Progression neural network.
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3. Issues and Challenges in Battery Management System

This paper discusses the BMS’s various tasks or functions and also analyzes the issues
or difficulties associated with it. There are various issues that need to be addressed in
order to meet the demand for the safe and secure operation of lithium-ion batteries. Key
issues related to BMS are battery management of cell voltage, greater accuracy in state
estimation, battery equalization, and real-time fault diagnosis [62,63]. A BMS optimizes
the performance of EVs and prevents overshooting, over-current, overvoltage, over-charge,
high temperature, and anomalous behavior of the battery.

3.1. Cell Voltage Management

Thousands of cells are connected in series and parallel fashion in the battery pack. All
the cell voltage needs to be measured by the BMS. The function of the BMS is to manage
and make balance in each cell voltage. High precision to maintain the same cell voltage is
necessary. There are two ways of cell balancing techniques, namely active balancing [64–66]
and passive balancing [67–69]. A slight change in load or weather conditions leads to
a change in cell voltages. A BMS needs to balance voltage among all the cells of the
battery pack. If one of the cells is charged fully and another is partially, then it creates cell
imbalance, leading to the sudden collapse of the battery pack or even heating up of the
battery, degrading performance.

3.2. State Estimation

A BMS estimates and predicts the different states of batteries, such as SOC, SOH, SOP,
SOF, End of Life (EOL), Beginning of Life (BOL), RUL, State of the art (SOA), and SOT.
The inaccurate estimation and prediction of battery states leads to severe issues in BMS;
therefore, precise estimation is necessary. Suppose there is no charge in the battery (0%
SOC) and the SOC indicates 15%, then the driver will drive thinking that there is some
charge left in the battery, and suddenly, when the vehicle stops in between running traffic
or a highway, an accident may occur. Therefore, errors in SOC estimation will be dangerous.
Different battery states play a major role in battery diagnosis; therefore, timely monitoring
of states will secure the battery from any unknown hazard. For an efficient BMS, timely
updating of data without noise is necessary.

3.3. Battery Equalization and Normality

There exists a certain difference between the characteristics of each freshly manufac-
tured cell, such as voltage, SOC, capacity, internal resistance, and self-discharge rate [63]. If
the production line is manual, not automatic, then the difference in characteristics is much
more than automation. If the manufacturing environment is not as per standard and the
production line is manual, not automatic, then it is inevitable that there will be differences
between cell characteristics.

3.4. Fault Diagnosis

Intelligent fault diagnosis [40,70,71] of batteries is necessary for the safe and reliable
operation of batteries. Much research and development are going on to improve fault
detection techniques. A good BMS has to respond immediately, and the switch-on alarm
or relay will cut off immediately from the main supply. There are mainly two kinds of
faults in BMSs: hardware and software. Different types of faults may occur in BMS, like
over or under current, over or under voltage, short circuit, thermal run away, contractor
fault, internal short circuit (ISC) and external short circuit (ESC) fault, connection fault,
sensor fault, over-charge and over-discharge fault [72]. If these faults are not solved in
time, then passengers might experience endangering conditions, high battery temperatures,
lithium plating, efficiency will decrease, battery aging, and electric power quality may
decrease. A battery model is developed, which is compared with the real battery system
and checked for different fault conditions [73]. This paper also discusses different voltage
ranges for warnings under faulty conditions, and their relay action and BMS behavior
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is also discussed. Figure 6 shows battery fault diagnosis stages for under-voltage and
over-voltage conditions. There are two limits for each input condition. The first limit is
set for alarming and declaring a particular fault occurred, whereas when a particular fault
reaches the second limit, then the BMS declares a particular fault reached the danger zone
and immediately stops the system.

World Electr. Veh. J. 2023, 14, x FOR PEER REVIEW 13 of 43 
 

3.4. Fault Diagnosis 
Intelligent fault diagnosis [40,70,71] of batteries is necessary for the safe and reliable 

operation of batteries. Much research and development are going on to improve fault de-
tection techniques. A good BMS has to respond immediately, and the switch-on alarm or 
relay will cut off immediately from the main supply. There are mainly two kinds of faults 
in BMSs: hardware and software. Different types of faults may occur in BMS, like over or 
under current, over or under voltage, short circuit, thermal run away, contractor fault, 
internal short circuit (ISC) and external short circuit (ESC) fault, connection fault, sensor 
fault, over-charge and over-discharge fault [72]. If these faults are not solved in time, then 
passengers might experience endangering conditions, high battery temperatures, lithium 
plating, efficiency will decrease, battery aging, and electric power quality may decrease. 
A battery model is developed, which is compared with the real battery system and 
checked for different fault conditions [73]. This paper also discusses different voltage 
ranges for warnings under faulty conditions, and their relay action and BMS behavior is 
also discussed. Figure 6 shows battery fault diagnosis stages for under-voltage and over-
voltage conditions. There are two limits for each input condition. The first limit is set for 
alarming and declaring a particular fault occurred, whereas when a particular fault 
reaches the second limit, then the BMS declares a particular fault reached the danger zone 
and immediately stops the system. 

 
Figure 6. Battery fault diagnosis stages. 

3.5. Diverse Application of BMS 
There are various functions that a BMS has to perform at a time; therefore, the BMS 

has to be flexible, manageable, and rapid in operation. The BMS monitors all of the cell 
parameters and estimates and predicts different states. The concept of a wireless BMS [74] 
is an emerging technology leading to copper saving and reducing the congestion of wires. 
Very little literature has been published on wireless BMS and less research work has been 
performed in this area, which should be further focused on. 

3.6. Handling of Unknown Hazard 
An intelligent BMS has to respond quickly in unforeseeable hazardous situations. 

Lithium-ion batteries, when retired, need to be recycled, reduced and reused for the sec-
ond life of battery applications. The separation of components from retired lithium-ion 
batteries is a difficult task. The separation of lithium, copper, aluminum, nickel, manga-
nese, cobalt, and iron requires separate equipment to sort these elements. The manual 
separation is time-consuming, and automatic methods are more costly, so a lot of research 
work needs to be performed in this area. Lithium-ion undergoes an exothermic reaction 
when exposed to oxygen or water. Gases coming out when opening retired batteries are 
harmful to health and known to cause breathing problems. 

  

Figure 6. Battery fault diagnosis stages.

3.5. Diverse Application of BMS

There are various functions that a BMS has to perform at a time; therefore, the BMS
has to be flexible, manageable, and rapid in operation. The BMS monitors all of the cell
parameters and estimates and predicts different states. The concept of a wireless BMS [74]
is an emerging technology leading to copper saving and reducing the congestion of wires.
Very little literature has been published on wireless BMS and less research work has been
performed in this area, which should be further focused on.

3.6. Handling of Unknown Hazard

An intelligent BMS has to respond quickly in unforeseeable hazardous situations.
Lithium-ion batteries, when retired, need to be recycled, reduced and reused for the second
life of battery applications. The separation of components from retired lithium-ion batteries
is a difficult task. The separation of lithium, copper, aluminum, nickel, manganese, cobalt,
and iron requires separate equipment to sort these elements. The manual separation is
time-consuming, and automatic methods are more costly, so a lot of research work needs to
be performed in this area. Lithium-ion undergoes an exothermic reaction when exposed to
oxygen or water. Gases coming out when opening retired batteries are harmful to health
and known to cause breathing problems.

3.7. Lack of Safe Operating Area (SOA) of Battery

Lithium-ion operates non-linearly; therefore, the operating area also changes. When
cells are connected in series or parallel, there is a certain amount of difference in character-
istics existing between each cell, like difference in capacity, internal resistance, or voltage.
This difference causes inconsistency, is unreliable, and decreases efficiency. Therefore, BMS
has to operate in safe operating regions for better performance of the battery.

3.8. Ensure the Power Converter Operates in a Safe Operating Region

Small changes in the design or working of the power converter [75–77] will change
the direction of the current flow. Hence, the operation of the control signal generated
by the controller will change and leads to an unprecedented issue with the BMS of the
battery. Therefore, ensuring that the power converter operates in a safe region for the proper
functioning of BMS is important. BMS with a power converter will extend the capacity
in the second life of the battery [78]. BMS controls the individual cell’s temperature level,
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voltage level, charge level, and current level and also estimates present and future SOC,
SOH, SOF, and SOP.

4. Solutions to Tackle Problems in Battery Management Systems

BMS is the heart of EV, and in order to ensure its safe, reliable operation and proper
communication, the BMS has to be handled carefully by monitoring the temperature of
integrated circuits, wiring harness, controlled area network (CAN) communication protocol
between BMS and connected device, checking power supply from PDU, and avoiding
direct contact between the BMS and the battery pack. In between the battery pack and the
BMS, an insulation layer has to be established to protect against the heat transfer between
them. Checking communication protocols such as Serial Peripheral Interface (SPI), Inter-
Integrated Circuit (I2C), and Universal Asynchronous Receiver Transmitter (UART) in the
BMS board components in the case of BMS failure. Checking the power supply of the BMS
board components in the case where the BMS LED is not glowing.

5. Bibliometric Analysis of Research Trend

SOH plays a significant role in the BMS in terms of a battery health diagnosis of the
battery. If the battery is not safe and secure, then the EV is in a risky state. End-users always
have uncertainty about when the battery will expire or catch fire due to some anomalous
activity. Therefore, continuous monitoring of battery health is essential. SOC also plays an
important role in order to know how much charge is left in the battery and how long the
driver can drive. In EVs, SOC is a replacement for the fuel gauge, and SOH is a replacement
for the odometer compared to conventional vehicles. Many of the algorithms are developed
for SOC estimation and prediction. Figure 7 shows the research trend of both SCOPUS and
the Web of Science (WoS) databases accessed on 21 October 2021.
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Common documents in machine learning (ML) and SOC are 512, whereas common
documents in ML and SOH are 264. This shows that many studies have been undertaken
with a focus on SOC, but very little research work has been carried out for SOH. SOH plays
a more significant role than SOC. Very few documents have been published concerning the
combination of ML, SOC, and SOH, which is 169 documents.

There are some duplicate papers that exist in both SCOPUS and WoS databases, which
need to be excluded. Table 3 shows the outcomes of SCOPUS and WoS databases.

Table 3. Outcome of Scopus and WOS databases.

S.No. Keyword/(s) NoD in SCOPUS NoD in WoS Duplicate Documents

1. Machine Learning 257,589 580,832

2. State of Health 1765 5798

3. State of Charge 8731 23,492

4. Machine Learning AND
State of Health 64 246 46

5. Machine Learning AND
Charge State of Charge 104 476 59

6. State of Health AND State
of Charge 659 2291 588

Table 4 summarizes the review papers related to EV, HEV, battery, BMS, and charging
technology. Most of the review papers are concentrated on SOC or SOH only, not on both
state estimation techniques. Many of the review papers have not explained state estimation
methods and research trends in detail. When taking different operating conditions, like
different driving conditions [79], temperature conditions, battery chemistries, and different
vehicle loads, experiments are not performed. All of the experiments are performed in a
controlled laboratory environment; therefore, the failure rate and accuracy rate are higher
in real-time experience. Most of the documents are focused on cell behavior control at
different conditions, not on the battery pack behavior control.

Table 4. Summary of review documents published on electric vehicles.

S.No. Reference Topic of Review Documentation Discussion on Paper

1. [16] BMS Battery types, modeling categories, state estimation
techniques, and charging approaches are discussed.

2. [19] BEV and HEV components
estimation techniques

Different estimation strategies for battery management,
vehicle energy management, and vehicle control are
discussed.

3. [35] HEV battery SOH estimation
methods

Experimental-based, model-based, and Machine
Learning based SOH estimation methods are discussed,
along with the advantages and disadvantages.

4. [36] Battery SOH estimation Different SOH estimation methods are discussed

5. [37] SOC estimation methods

Conventional, adaptive filters, learning algorithms and
non-linear observer methods are discussed for SOC
estimation. Challenges and issues in battery
management are also discussed.

6. [14] SOH estimation methods
Different SOH estimation methods discussed in
different papers comparison along with advantages and
disadvantages

7. [15] SOC estimation methods, RUL
prediction methods

Different SOC estimation methods, voltage and capacity
estimation, and RUL prediction methods are discussed.
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Table 4. Cont.

S.No. Reference Topic of Review Documentation Discussion on Paper

8. [77] BMS issues Detail discussion on BMS operation, function, and key
issues faced in BMS

9. [38] Battery thermal issues and
management techniques

Detail discussion on battery thermal behavior, problems,
ways to manage thermal issues by cooling techniques in
battery, challenges, and future scope

10. [80] ML-based SOH estimation methods

Different non-probabilistic ML-based SOH estimation
methods are compared in terms of publication trend,
advantages, disadvantages, challenges, and also
according to different metrics. Non-probabilistic ML
algorithms are Linear Regression, Ensemble Learning,
Nearest Neighbor regression, Support Vector Machines,
Artificial Neural Networks, and their variants.

11. [39] BMS BMS functions, reconfiguration topology, and challenges
like fault diagnosis are discussed

12. [81] Battery monitoring methods SOC, impedance, capacity, power, SOH, and RUL
estimation techniques are discussed in general

13. [82] SOC estimation methods General discussion on types of battery models for SOC
estimation and battery pack SOC estimation methods

14. [83] SOH estimation techniques

Differential analysis-based, ML-based SOH estimation
methods are discussed, along with advantages and
disadvantages. RUL prediction methods are
also discussed.

15. [84] EV charging management EV charging control strategies, charging management
techniques and their pros-cons are discussed.

16. [85] Battery health prognostic Challenges in battery health and different techniques for
health issues are discussed

17. [86] Cell Balancing Different cell balancing techniques and importance of
cell balancing are discussed

18. [56] State Indicators Familiarizing with the terms SOC, SOH, SOF, SOT and
research trends on state indicators

19. [63] BMS
BMS performing stages, monitoring, protection,
management strategy, key issues in BMS and
opportunities-challenges in battery are discussed

20. [48] BMS
Defining battery state terminologies, methods for state
estimation and related key issues and future direction
are discussed

21. [12] SOC and SOH control methods Aging and SOC control methods for super-capacitors
are discussed in general.

22. [87] Charging methods Different charging methods are discussed in general

6. Literature Review on SOC Estimation Methods

In Figure 8, a summary of SOC estimation techniques is shown. Different documents
have different classification categories. Battery voltage, current, and temperature can only
be measured directly. At a high-temperature charging rate, then Solid Electrolyte Interface
(SEI) growth is increased, which causes cycle life degradation. At low temperatures, SEI
growth is decreased, but lithium plating is initiated at the anode side of the battery [88].
Through SOC, the remaining battery power and capacity can be determined, and through
SOH, the remaining useful life of the battery can be determined.
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There are different methods through which SOC and SOH can be known. Different
degradation factors influence the real SOC value; among them, the temperature is one
of the reasons leading to the fluctuating results. Other degradation factors include the
hysteresis curve and self-discharging. The main reasons for the aging of the battery are due
to capacity and resistance. The battery also ages due to calendar life and cycling activity.
Due to structural changes, and also the use of different anode/cathode materials, aging
occurs [37]. Plenty of data under different conditions need to be collected to better monitor
battery health. A BMS can be integrated with IoT, cloud servers, ML, and big data in order
to improve performance in a realistic pattern. It is critical to achieve an accurate SOC for
safety, behavioral changes, range determination, designing cost, and passenger comfort
experience. Battery SOH determines the degradation of battery capacity with respect
to the new battery. Lithium-ion battery diagnosis is necessary for energy management
in order to control and keep the battery performance within desired limits and safety.
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Different authors and researchers have different thought processes and different ways of
selecting particular niche algorithms. Every method has its own benefits and drawbacks;
based on the use case, data, input-output requirement and condition scenario, a particular
method is selected. Conventional or traditional methods are categorized into different
techniques, such as Electro Motive Force (EMF), Coulomb Counting (CC), Open-Circuit
Voltage (OCV) and model-based methods [89]. These techniques are simple and easy
to implement. Therefore, it is also called the direct method. This method requires low
power and, therefore, costs less. There are some drawbacks of using this method, such
as difficulty in measuring precise parameters, such as OCV. For different environmental
uncertain conditions or for real-time operations, this technique is not suitable. In this
method, the initial SOC value is unknown, and the accuracy of this technique is highly
dependent on model accuracy. Another technique is adaptive filter, which is used for
non-linear, uncertain, and real-time systems. This technique accurately estimates SOC in
less time. There are various types of filter techniques, such as Kalman Filter (KF), Extended
KF (EKF), Unscented KF (UKF), Adaptive EKF (AEKF), Particle Filter (PF) and H∞. This
technique requires high mathematical calculation, and computation complexity makes
it complicated. The accuracy of the model is reduced by external disturbance, aging,
temperature, uncertainty, and hysteresis, making the overall system less robust. There are
different learning algorithms or data-driven methods used for SOC estimation, and these
methods are model-free. Some of the learning methods are Artificial Neural Networks
(ANNs), Fuzzy Logic (FL), Support Vector Machines (SVMs), Genetic Algorithm (GA). This
technique is used for online parameter estimation and the identification of new parameters
for accurate state estimation. The main problem with this technique is over-fitting. Deep
knowledge of the domain to handle data is required in this technique. Next, the SOC
estimation technique is the Observer method, such as Non-Linear Observer (NLO), Sliding
Mode Observer (SMO), and Proportional Integral Observer (PIO). This observer method
controls the gain in the model and enhances the stability, accuracy, and robustness of the
model. Designing and adjusting proper controller gain is a laborious task. There are some
other SOC estimation techniques, such as the hybrid method or fusion method, Multivariate
Adaptive Regression Splines (MARS) and Non-linear AutoRegressive Moving Average
with eXogenous input (NARMAX). These methods are highly robust, accurate, and stable
for SOC estimation. The drawback of these methods is high computational complexity, and
combining two or more algorithms for estimation is laborious. SOC estimation by using
the LSTM-RNN model with average voltage as an input feature. This average voltage is
calculated by using the sliding window technique in order to reduce the fluctuations in the
data [90].

SOC is one of the important parameters in battery management. Accurate SOC
estimation is necessary to improve energy management in the system and allows for the
efficient utilization of the battery by optimizing the performance, extends the lifetime, and
prevents permanent damage of batteries in vehicle systems. Reduction in SOC leads to less
power supply by the battery to drive the motor, and the magnitude of the charge–discharge
cycle is increased.

The capacity of the battery changes with changes in ambient temperature and changes
in cycle time. The most common technique used for SOC estimation is the Ah counting
method. This method is simple, easy to implement and direct. The drawback of this method
is that it is costly for accurate current estimation.

KF is a highly accurate method for dynamic systems, but it requires high computation.
Non-linear autoregressive moving average with exogenous variables (NARMAX) is also
used for non-linear system prediction, high convergence rate, and high approximation
precision. SOC helps in preventing the battery from over-charge and over-discharge. It
also helps in recognizing how far a vehicle can go [91]. The Kalman Filter (KF) is stated as
being an intelligent and robust method for SOC estimation [92]. KF is good for estimating
time-varying states in dynamic environments and handles noise gently. In Equation (2),
SOCin varies with the change in current, but KF does not bother changing in the initial
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SOC. SOCin has errors in measurement or due to external factors. According to [93],
Battery Available Capacity (BAC) is defined as the amount of electrical power delivered
by a fully charged battery at a certain discharge current profile and temperature until a
certain cut-off voltage is reached; in this paper, the cut-off voltage is 10.8 V. According
to [94], KF and NN achieve high performance, but computational complexity and high cost
of implementation limits their usage. SVM is used to solve classification and regression
problems. NN solves local minimization problems, whereas SVM solves quadratic problems
and is used as a global minimization solution. Multilayer feed-forward networks, such
as MLP, compete with SVM, therefore, the total replacement of ANN is not possible.
ANN has a fixed size and has single or multiple outputs, whereas SVM model size varies,
increasing in nature and has a single output. Table 5 shows a comparison of different
SOC estimation methods. Battery performance depends on various factors like DoD,
SOC, charging strategy, temperature, environmental condition, and driving pattern. These
factors are necessary to predict battery life. The electrochemical and equivalent model-
based approach is applied for charge/discharge cycle and battery lifetime prediction and
gives better performance in simulation or offline mode. In contrast, data-driven methods
do not require prior electrochemical or in-depth composition knowledge to do the analysis.
Data-driven approaches require a large amount of data for analysis. A machine learning-
based data-driven approach is used for online real-time estimation and the prediction of
model and has been known to yield more accurate results [19]. Battery capacity is predicted
via the fusion of empirical and data-driven methods [95]. Two cases are taken for study, in
case 1, discretized Arrhenius aging model (DAAM) is used along with two EKF, and in case
2, the linear aging model is used along with the PID controller and Luenberger observer.
The error in both cases is under 1%.
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Table 5. Comparison of various Soc estimation methods.

Ref. Year of Publication Battery Type Parameter Condition Model/Method Description Average Error Future Scope

[96] 2012 Li-NMC, 4.2 V and,
100 Ah

Charge/discharge
pulses at different
current levels

Recursive least squared
algorithm (RLS)

Ah counting method along with ECE 15
European drive cycle

Max. error @ 0.8% and the mean
relative error @
0.07%

[97] 2002 NiMH Charging/discharging
cycle Model-based State-space model-based estimation unspecified

Comparison of estimator by
considering uncertainty in battery
parameter

[98] 2008 NiMH 80 Ah, 96 V Current, voltage NARMAX Estimate residual capacity by using
FUDS drive cycle Max. avg. error @ 0.02%

Investigation of robustness of the
model to overcome external
disturbance

[99] 2005 NiMH 45 Ah, 24 V, 25 ◦C 3 Discharging current
profile, terminal voltage 3-layer NN

32 testing dataset, discharging and
regenerative current distribution and,
temperature. Low-cost microcontroller
is used

Avg. Relative error @ 2.67%

Performing on different battery
modules and influence of aging
effect, perform on dynamic models
of NiMH battery and on HEV for
determining fully charged state

[91] 2002 NiMH

Constant current
discharge, random
discharge and standard
discharge

ANFIS Low-cost microcontroller is used. Avg. Relative error @ 2% Can be performed on other battery
types.

[100] 2010 NiMH 100 Ah, 1.2 V Charging discharging OCV Takacs model is used which is based on
hysteresis phenomenon of OCV 10%

[101] 2011 6 series NiMH, 8 Ah, 1.2
V

Charging discharging at
constant current

radial basis function
network (RBF)

MATLAB and ADVISOR software are
used, data collected between
15–85% SOC

MSE@ 1.618%

[102] 2004 3 cells series NiMH, 2.7
Ah EIS over 100 cycles Fuzzy Logic Charged @ C/3 rate at 4 h, discharged

C/2 rate for 28 cycles ±5%

[103] 2009 NiMH Current, voltage and
past SOC ANN 4 networks 5%

[104] 2009 NiMH Current, voltage and
past SOC BPNN Short term (ST), long term (LT). BPNN

has good self adaptability 1.94%@ ST, 0.93% @ LT
To improve local minimum, training
speed and accuracy GA should be
added to BPNN

[105] 2010 NiMH 27 Ah
Different temperature,
charge and discharge
current rate

Ah method
0 ◦C, −18 ◦C, −12 ◦C, 25 ◦C @
temperature, 1/3 C, 1 C, 3 C @charge
rate, 1/3 C @ discharge rate

3.6%
Coulomb efficiency and SOC
analysis in high temperature can be
performed with this model in future

[106] 2009 NiMH, HEV on dynamic
model

Hysteresis effect,
polarization effect,
internal resistance

EKF Capacity balance test and capacity
consume test

Mean error @ 3%, maximum error
@ 7%

[107] 2005 Lead–acid, HEV on
dynamic model Real-time drive cycle Hybrid (KF + EKF) 2% This work can be extended for

different models and cell chemistries

[108] 2008 HEV, NiMH Voltage, current, SOC
Hybrid or Adaptive (EKF +
Coulomb accumulation +
OCV)

• OCV method is good for steady
state condition SOC estimation.
For, e.g., When vehicle is parked.

• KF method is good for SOC
estimation with dynamic current.

• Coulomb accumulation method is
good for HEV dynamic and
time-varying system, but
unsuitable for dynamic current
and incorrect initial SOC.

• Starting estimating SOC with
wrong SOC after 500 cycles
match with true SOC.

• For random noise: estimating
SOC without EKF variance @
0.0122 and estimating SOC with
EKF variance @ 0.0059

• Estimated SOC by coulomb
accumulated method @ 57.1%,
OCV method @ 46.3%,
combined method @ 51.3%
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Table 5. Cont.

Ref. Year of Publication Battery Type Parameter Condition Model/Method Description Average Error Future Scope

[109] 2010 10NiMH batteries in series
@1.2 V, 8 Ah, HEV

Different charging rates
@ 4 C, 3 C, 2 C, 1 C, 0.5 C Hybrid (GA + BPNN) Fast convergence speed and strong

learning ability
MSE BP @ 0.9408%, 8 steps
MSE GA-BP @ 0.7577%, 3 steps

[110] 2009 NiMH

C/3 rate discharge test,
current and voltage
record during FUDS
drive cycle

Hybrid (AEKFAh)
Max. Discharge current @ 129.2 A, max.
Charge current @ 63.8 A, temperature
ranges @ 25.91–27.52 ◦C

AEKFAh error @ 2.4%, Ah error @
11.4%

[111] 2007 NiMH battery

C/3 rate discharge test,
current and voltage
record during FUDS
drive cycle

Hybrid (KalmanAh)
Max. Discharge current @ 129.2 A, max.
Charge current @ 63.8 A, temperature
ranges @ 25.91–27.52 ◦C

KalmanAh error @ 2.5%, Ah error @
11.4%

[93] 2007 12 V lead–acid battery, EV

Discharge and
regenerative capacity
distribution, which
represents different
discharge current
profiles @ theoretical
and practical data,
different temperature

NN

7 Input neurons @ different discharge
current, regenerative current,
temperature. 1 Output neuron @ State Of
Available Capacity (SOAC).
11 hidden neurons

Avg. Relative percentage error (ARPE)
of NN@ 2%

This work can be extended for
other types of EV battery

[112] 2008 6 Ah, 2 V lead–acid battery,
HEV,

Discharging current,
OCV test for initial
parameters

Dynamic ECM model with
EKF

Comparison of static (Rint-based SOC
estimation) and dynamic (EKF-based
SOC estimation)

3%

[113] 1998 Sealed-type lead–acid
battery

Temperature, terminal
voltage, discharge
current, internal
impedance

NN

4 Input neurons @ discharge current,
temperature, terminal voltage, internal
impedance.
10 Output neurons @ 0–100% in 10% step
size SOC.
50 hidden neurons

Max. Error @ 10%, avg. Error @ 3%
Finding new ways for
improvement is the next
research plan

[114] 2005 Lead–acid battery, HEV Dynamic ECM model KF Charging discharging of cells through
observer technique 1%

[115] 2007 24 V lead–acid battery Charging, internal
resistance Fuzzy Logic Proposed method avoids over-charging

and under-charging 5%

[116] 2011 Li-polymer battery
Full discharge test
(4.15–2.5 V) @ 1 C, 2 C,
5 C

Reduced-order EM
Different ECM, reduce order EM, full
order EM, experimental model is
analyzed

1%

Perform analysis with high
discharge current rate up to
10 C along with different
ambient temperature

[117] 2014
Li-polymer battery, Voc-
SOC relationship,
charging–discharging

RC ECM Adaptive method EKF and state-observer is used for
over-potential dynamic of battery

Max. Error:
SOC co-estimation @ 0.063, EKF @
0.077, Sliding Observer @0.12

[118] 2008 Li-polymer battery, HEV Charge–discharge test at
different temp. Sliding mode observer RC model is developed by OCV test and

then SMO is applied for SOC estimation 3%

[119] 2006 3.8 V, 7.5 Ah, Li-polymer
battery, HEV

16USSD cycles,
separated by 40 A
discharge pulse and 5
min. rest time, 90–10%
SOC range

Sigma Point KF(SPKF)

Enhanced Self Correction Model (ESCM)
which is a discrete-time state-space
model. ESCM is used for cell modeling
because it includes effect due to OCV,
internal resistance, voltage time constant
and hysteresis. Comparing error in SPKF
with EKF for SOC estimation

• By correctly initializing SOC @
100%:

RMS error: EKF@ 0.64, SPKF @ 0.49

• By incorrectly initializing SOC @
80%:

RMS error: EKF@ 0.75, SPKF @ 0.69

This work can be extended for
accurately estimating SOC if
cell parameters are taken real
time in order to overcome
manufacturing difference
between cells and also tracking
aging effect in cell parameters
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Table 5. Cont.

Ref. Year of Publication Battery Type Parameter Condition Model/Method Description Average Error Future Scope

[120] 2006

GEN3 (old cell) 20 C
capable, 7.5 Ah and GEN4
(new cell) 30 C capable,
5 Ah, both Li-polymer
battery, HEV

18USSD cycles, separated
by 15 A discharge pulse
and 5 min. rest time,
90–10% SOC range

Square Root-Sigma Point
KF(SR-SPKF)

One cell data is used to fine-tune cell
model parameter and another cell data is
used to test in dynamic condition for
filter analysis

• By correctly initializing SOC @
100%:

RMS error: SPKF, SR-SPKF @ 0.3, joint
SPKF @ 0.29, dual SPKF @ 0.32, dual
SR-SPKF @ 0.27,

• By incorrectly initializing SOC @
80%:

RMS error: SPKF, SR-SPKF @ 1.44,
joint SPKF @ 1.13, dual SPKF @ 1.35,
dual SR-SPKF @ 1.26

[121] 2013 3.7 V, 32 Ah Li-polymer
battery, EV Voltage, current, DST test

Adaptive Extended KF
(AEKF), lumped battery
model

Multi-state joint estimator is used along
with 3 different degraded cells capacity.
SOC estimator is verified via DST test

1%

[122] 2014 3.7 V, 32 Ah Li-polymer
battery, EV Voltage, current lumped battery model,

AEKF

RLS-based online parameter updating,
SOC estimator is verified at 5 different
loading profiles (DST and FUDS) and
different degradation capacity

Max. Error @1.5%
In future, data-driven approach
based on joint SOC and peak
power estimation

[123] 2014 50 Ah, 51.2 V Lithium-ion
battery, HEV

Charging–discharging @
285A max. rate, current
and voltage measured @
1s. interval, temperature
(20 ◦C)

RC model, H∞ filter

0.3 C discharging from 100% SOC to 90%
SOC. Then, OCV, HPPC test @ Id = 1 C,
Ic = 0.75 C, performance of filter is
verified via 6 USSD cycle test.

Without time-varying parameter @ 4%
(Max. error), 1.4813% (Mean error).
Time-varying parameter @ 2.49% (Max.
error), 0.8436% (Mean error)

[94] 2013 60 Ah Lithium-ion battery,
LFP chemistry

3 times discharge test at
particular C-rate in
controlled environment,
Dynamic Stress Test,
current, voltage,
temperature

SVM- SVR, RBF kernel
Charging @ 0.3 C up to 3.6 V (18 A),
discharging @ 0.33 C (20 A), CCCV
charging method, cut-off voltage @ 2.8 V

Max. error @ 6%, RMSE @ 0.71%
This model can be further
applied and tested for different
similar battery chemistry

[124] 2014 Lithium-ion battery, LFP
chemistry, EV

Temperature, current @
input variable and
terminal voltage @ output
variable

Dual particle filter (DPF)
based battery model

Temperature and current taken as input
to model parameters to find the
relationship between voltage, internal
resistance and temperature of battery

MAE:
DPF @ 0.67%, UKF @ 1.37%, EKF @
2.05%

Study of energy loss in internal
resistance and efficiency of
charging–discharging will
improve the energy range of the
battery

[125] 2013

60 V, max.
charge–discharge current
@300 A, Lithium-ion
battery, LMO chemistry,
PHEV

Current, voltage,
temperature

AEKF, Dynamic
electrochemical
polarization battery model,
joint estimation approach

Available capacity test, HPPC test, OCV
test, UDDS driving test, dynamic
cycle test

Max. error @ 0.02 or 2%

In future, dynamic battery
model has to focus on online
parameter identification
method and systematic
validation test for available
peak power capacity estimation

[126] 2013 NMC, 40 Ah Lithium-ion
battery, EV Voltage, current EMF By using EMF-OCV, SOC is estimated 2%

[127] 2014 Lithium-ion battery Voltage, current PIO RC battery model, USSD drive cycle 2%

[128] 2013 LFP, 3.2 V, 12 Ah
Lithium-ion battery

Battery terminal voltage,
current, temperature @
input, SOC @ output

LS-SVM

Select sample data, prepare and process
it, build training and prediction sample
dataset, select k-function and parameter,
set objective function, find Lagrange
Multiplier a and b, build prediction
model and predict future SOC

LS-SVM @ 2%,
BPNN @ 3%
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Table 5. Cont.

Ref. Year of Publication Battery Type Parameter Condition Model/Method Description Average Error Future Scope

[129] 2013
LFP, 3.2 V, 100 Ah
Lithium-ion battery,
0.3 C rate charging

Battery current, voltage,
temperature MARS SOC (25–90%), CCCV @ charge method,

CC @ discharge method 1% Using this model for testing of
dynamic data profile

[96] 2012 Lithium-ion battery, EV Battery current, voltage,
temperature, SOC RLS

ECE 15 drive cycle, real data and
RNN-based SOC predictor used for
battery modeling and terminal voltage
estimation

Max. error @ 1.032%, mean error @
0.1744%

[130] 2013 Lithium-ion battery Voltage, temperature AWNN AWNN response of SOC estimation is
comparable to BPNN and WNN 2%

[131] 2013 Lithium-ion battery Charge–discharge EKF SOC varies from 5–95% 1%

[132] 2012 7.5 Ah Lithium-ion
prismatic battery

Cell terminal voltage,
current, SOC

Hybrid (EKF + coulomb
counting) ESC model, 15 UDDS test, 100–4% SOC Dual EKF @ 6.573%, Multi-scale

framework @3.93%

To investigate the effect of
time-scale on accuracy and
State of Life (SOL) prediction of
proposed work with lifetime
cell aging test
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The Coulomb counting (CC) method is also known as the Ampere hour (Ah) counting
method and is easy to implement but time-consuming and also yields inaccurate results in
uncertain conditions. The CC method is the most commonly used method because of its
simplicity and because it does not significantly affect parameters like DoD, temperature,
and C-rate, which the battery performance is dependent upon [18,133,134] in this paper,
the authors have compared different SOC estimation methods.

Support Vector Machine (SVM) and fuzzy logic are complex algorithms, and they are
used for non-linear and high-dimensional vectors. The fuzzy logic method has a high com-
putational cost, and battery parameters frequently change with the battery lifecycle [135].
The least-square SVM (LS-SVM) has higher accuracy than SVM; in [136] paper, SOC is
determined quickly with more accuracy by LS-SVM as compared to conventional SVM and
also has the ability to tolerate noise. Similarly, weighted LS-SVM (WLS-SVM) also quickly
determines SOC with less computation. SVM-based feature identification can operate at
different capacities, resistances, and temperatures for SOH estimation. This new feature
shows a good correlation with capacity and is, hence, useful in SOH estimation. Proper
knowledge of hyperparameters for tuning in Support Vector Regression (SVR) is necessary;
otherwise, the training model is inappropriate. SVR is used as a regression algorithm for
non-linear problems and is best suited for SOH estimation.

Kalman Filter (KF) is a fast as well as accurate method for linear applications and does
not require any SOC/SOH parameters for measurements. KF is also helpful in filtering
noise errors from sensors [14]. Extended KF (EKF) is an advanced method for non-linear
applications. In this EKF method, non-linearity is converted to linear with the help of a
linear time-varying system. Initial SOC is required to estimate SOC after a certain period
of time, and in the case of the Ah counting method, it is difficult to extract, so Adaptive
Extended KF (AEKF) is used to extract the initial SOC, and then the improved Ah counting
method is used for better SOC estimation. A hybrid method, AEKF, along with the Ah
counting approach (AEKFAh)-based SOC estimation for an Ni-MH battery for FUDS drive
cycle yields a 2.4% error [110].

A deep Neural Network (DNN) is used to extract non-linear, complex SOH values and
other parameters. These can also be fitted in a model to find the correlation between these
parameters. Results show that diverse SOH parameters will enhance system performance.
The Artificial Neural Network (ANN) technique is simple and used for non-linear data.
ANFIS and group method data handling (GMDH) are employed for the analysis of SOH
and selected features.

Extreme Learning Machine (ELM) and Random Vector Functional Link (RVFL) are
two of the latest emerging learning algorithms whose training speed is thousands of times
faster than conventional learning, and are discussed in much detail in another widely cited
paper [137]. ELM and Ensemble Learning are used as single-step and multi-step ahead
prediction techniques. Random learning-based ELM is proposed to find HI, a small voltage
range is used to find HI in 1 ms, and this method is robust for different load profiles and
temperature conditions. Probabilistic approaches, like Gaussian process regression (GPR)
and Relevance Vector Machine (RVM), are used for predictions under uncertain conditions,
like environmental uncertainty, measurement error, or model error. GPR is based on low
data precision and changeable parameters and is good for uncertain conditions. GPR is
a non-parametric approach based on Bayesian learning. State transition and equivalent
circuit model were combined to find the SOC, SOH, and SOL of a lithium-ion battery [92].
Different battery models are compared and discussed in [138]. Different ECM and EM
model features and corresponding equations are compared in this battery model paper.
Among seven models, the DP model shows better performance than the other models.

7. Literature Review on SOH Estimation Methods

In Figure 9, a summary of SOH estimation techniques is shown. Different techniques
for SOH estimation are discussed in different documents. Some documents have been
classified according to whether they are experiment-based, model-based, or machine-
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learning-based methods [35,56]. Some have categorized SOH estimation techniques into
direct, indirect, adaptive and data-driven methods [139]. Some have categorized SOH esti-
mation techniques into physically based, empirically based, Incremental Capacity Analysis
(ICA)-Differential Voltage Analysis (DVA) and data driven approaches [48]. Adaptive filter
and data-driven techniques for both SOC and SOH estimation are similar. Model-based
approaches are highly accurate when combined with other algorithms. This technique is
sensitive to small changes in a system and is not suitable for real-time dynamic conditions.
The accuracy of this model highly depends on the model parameters. Direct and indirect
methods are categorized under experimental methods. Direct methods require high-quality
test equipment and a controlled environment to achieve highly accurate results. The direct
method measures internal resistance or charging capacity in the offline mode. Electro-
chemical Impedance Spectroscopy (EIS) and current pulse tests are conducted to find the
internal resistance and impedance of a battery. Charging–discharging cycles are conducted
to identify charging capacity depending on voltage or different temperature conditions.
The Hybrid Pulse Power Characterization (HPPC) test is conducted to determine the power
capability and measures cell voltage in a short high-current charge–discharge pulse [140].
In the indirect method, ICA-DVA incremental curves of capacity and voltage, respectively,
are generated throughout the experiment. Based on the curves, peak analysis is performed.
This technique is not suitable for real-time operating conditions and results in tempera-
ture changes. This method requires constant current charging to conduct this method of
experiment. High-precision current and voltage is required to gain good accuracy.

A battery has non-linear characteristics and degrades due to many reasons. Battery
aging is categorized into two parts: cyclic aging and calendar aging. Cycling aging is when
a battery is in a use case and mainly occurs due to the frequent charging/discharging of
the battery. Inside the battery, there is a chemical reaction taking place, which causes aging.
Some of the stress factors are high SOC, low temperature, high temperature, high cycling
rate, over-charge and over-discharge. Their corresponding degradation mechanisms are
loss in lithium-ion, lithium plating, SEI decomposition, metallic loss of the active material,
loss in active material and corrosion in the current collector, respectively. Calendar aging
occurs when the battery is in an idle state or not in use. Calendar aging is caused due to
high SOC and high temperatures. Calendar aging occurs throughout the life of the battery
and does not depend on whether the battery is cycling or not [83].

A comparison of different SOH estimation methods is discussed in Table 6. Cell
capacity is recovered during rest periods after long cycling [140]. Measuring battery
capacity after cycling without a rest period and with a rest period is different. This is one of
the critical issues when discussing battery accelerated aging tests and degradation patterns.
One piece of literature [141] suggests that a 2-day rest period between every 50th cycle will
double the battery’s cycle life. In another piece of literature [142], the minimum duration
required for a rest period is 2 h in order to noticeably recover capacity. Capacity recovery
depends on rest periods at different SOC. A 0% SOC has better capacity recovery than a
10% or 20% SOC. In [143], this phenomenon of capacity recovery is known as self-recovery
or regeneration. Regenerative capacity can be detected by using the particle filter method
and isolating the influence of regeneration in the life cycle model to improve the initial
conditions in long-term prediction. Prognostics or predicting the health condition is a
summation of knowledge gathered from past usage data, present usage data, and future
usage data. Past usage data are obtained from historical operational data; current state
knowledge is obtained from sensor feedback or a feature obtained from it. Future usage
depends on operational and environmental conditions [144].
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Table 6. Comparison of various SoH estimation methods.

Ref. Year of Publication Battery Type Parameter Condition Model/Method Description Average Error Future Scope

[96] 2012 Li-NMC, 4.2 V and,
100 Ah

Charge/discharge
pulses at different current levels

Recursive least squared
algorithm (RLS)

Ah counting method along with ECE 15
European drive cycle, battery internal
resistance is identified

Max. error @ 0.92% and
the mean relative error @
0.14%

[145] 2014

5 different Lithium-ion
batteries (NMC/LTO, 20
Ah), (LFP/C, 60 Ah, 11
Ah), (LMO/C, 35 Ah, 10
Ah), pure EV

Different temperature (45 ◦C,
5 ◦C) at different seasons

Genetic Algorithm,
Semi-empirical capacity
loss model for online and
offline SOH estimation

Reference Performance Test (RPT)
(combination of HPPC test and capacity
test), cycle life test

1%

[146] 2013
Pouch cell, 32 Ah, 4.05 V
full voltage, Lithium-ion
battery, EV, HEV

Diffusion capacitance, current,
terminal voltage, different
charge/discharge rate

Genetic Algorithm, 2-order
RC model

RC model diffusion capacitance is
compared with experimental result
capacity obtained. Diffusion capacitance
is reciprocal of capacity or SOH.

5.11% Further improving
convergence speed

[147] 2012 4 V, 30 Ah Lithium-ion
battery

Temperature (−30 ◦C to 90 ◦C),
current (0 to 400 A) Fuzzy Logic (FL) FL-based SOH estimator is developed by

varying temperature and current Unspecified

[148] 2014 Lithium-ion battery
(LMO chemistry)

Different charging/discharging
rate, interval time, voltage,
temperature

ECM

6 different cells are tested under different
charging/discharging current rates,
voltages, temperatures, end of
charge/discharge current–voltage and
times. Model parameters are identified
via the Least Square method

2%

[149] 2014 Lithium-ion battery, PHEV
Current, temperature, SOC @
input parameters, voltage @
output parameter

SVM

Dynamic conditions, such as
temperature-dependent/independent
resistance/capacity and different SOC
range taken for virtual and
experimental analysis

unspecified

[150] 2013 Lithium-ion battery, HEV Temperature, cell aging,
current, voltage

Linear Parameter Varying
(LPV) Model

Central Difference KF (CDKF) based
LPV model unspecified

[151] 2011 6.5 Ah Lithium-ion battery,
HEV

Measured terminal voltage,
current, temperature ECM

Temperature, SOC, current affects
internal resistance of battery
incorporating ohmic and
polarization resistance

unspecified

Further research will be
performed on considering
inner cell temperature and
dynamic load condition

[152] 2014
2150 mAh Samsung
Lithium-ion battery (NCA
chemistry)

Change in voltage and current
during charging/discharging
process

Dynamic Impedance
Technique

Calculating a, b, SOC values through
mathematical equation then SOH is
calculated and this method is
independent of temperature variation,
data recorded @ 1 s

SOC estimated and actual
SOC error @5%

[153] 2014 3.7 V, 6000 mAh Li-Mn
battery

Terminal voltage of battery
recorded during constant
charge process

Dynamic Bayesian
Network (DBN)

Capacity test, lifecycle test, SOC @hidden
nodes, terminal voltage @ observed
nodes, data recorded @ 10 s, categorizing
aging states into 5 @ >95%—brand new,
95–90%—new, 90–85%—ok,
85–80%—old, <80%—very old

5%

[154] 2018
Four 3.2 V, 2.5 Ah
Lithium-ion battery (LFP
chemistry)

Voltage and current during
charging process at CV mode 1st order RC ECM

Current time constant is correlated to
nominal battery capacity @ −0.988 to
indicate SOH, sampling freq. 1 Hz. In
original BMS sampling freq. is 100 Hz

2.5%

In future, higher-order RC
model tested under
different battery chemistry,
charging protocol
and temp.
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Table 6. Cont.

Ref. Year of Publication Battery Type Parameter Condition Model/Method Description Average Error Future Scope

[155] 2015 Lithium-ion battery (NMC
chemistry), EV 1st order RC ECM, 2 EKF

Sampling freq. 10 Hz, HPPC test, RLS
algorithm is used for polarization
resistance and capacitance extraction,
FUDS and DST drive test

unspecified

[156] 2016 Battery, EV
10 driving profiles, current,
voltage, temperature,
charging/discharging rate

NN

Combination of different temperature,
charging/discharging rate and driving
profile 80 dataset is prepared.
Classification and regression both take
place on offline and online dataset

2.18%

Charging/discharging
experiment data can be
taken along with rest
period for more realistic
condition

[157] 2009 Lithium-ion battery Charging–discharging voltage
and current of battery CC method

SOC determination by three modes:
charging, discharging, open-circuit mode.
Hence, SOC(t) = SOH(t)—DOD(t)

1.08%

[158] 2011 Li-polymer battery OCV, internal resistance ECM, Internal resistance
method

Lookup table and simulation of adaptive
control method for controlling
parameters

1%

[159] 2017
10 Lithium-ion battery
(LPF chemistry), 10
Ah, 25 ◦C

1st order ECM, 3-layer
BPNN

HPCC test is conducted for model
parameter identification and verification

[160] 2014 32 Ah Lithium-ion battery Change in level time scale of RC
parameter

Lumped battery model,
Data-driven method
multi-scale EKF

Different tests have been performed for
characterization and aging. Then, macro
and micro-level evaluation other cases
are performed for capacity estimation,
inaccurate initial SOC and
current integral

Peak estimation error @ 2%

[161] 2014 8 Lithium-ion battery,
NMC chemistry

Discharge curve voltage sequence,
different temperatures Sample entropy

HPPC test is conducted to obtain voltage
sequence. By non-linear LS optimization,
capacity at different temperature is
estimated. Finally, prediction of other
7 batteries capacity at different
temperatures is calibrated.

Avg. relative error @ 2%

[143] 2013 Lithium-ion battery,
NASA dataset Charging–discharging cycles GPFR

Battery 5,6,7 is taken for analysis.
Regeneration is taken into account for
SOH estimation.

For battery 7, MAPE @
0.017, RMSE @ 1.73

Self-recharge phenomenon
is taken into account for
SOH estimation.

[144] 2009 18650 Lithium-ion battery Electrochemical model
parameters

Bayesian Framework
(RVM-PF)

RBPF model is used for finding
correlation between capacity and EM
parameters (RE and RCT) and RUL
prediction.

This model-based
approach can handle
uncertainty like NN
and GPR.

[162] 2018 38 Ah, 3.7 V Lithium-ion
battery, NMC chemistry Electrochemical model and ECM PSO-GA

PF is employed in SOC and OCV for
noise reduction occurring in battery
terminal voltage and current drift. RSLM
is used to update cell capacity

In future, SOH estimation
can be evaluated by using
different temperature
condition

[163] 2017
2.8 Ah Panasonic
Lithium-ion battery, NCA
chemistry, EV

Different driving load profiles at
constant current discharge @
different temperature, cycle depth
and SOC

Real-time driving profile
Effect of regenerative braking, calendar
aging and cyclic aging @ different
temperature.

Calendar aging decreases
with low temp., whereas
cyclic aging increases.
Cycling at high SOC will
lead to capacity recovery,
due to regenerative
braking cycle depth
decrease.
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Table 6. Cont.

Ref. Year of Publication Battery Type Parameter Condition Model/Method Description Average Error Future Scope

[164] 2021 Lithium-ion battery NASA dataset (charge, discharge,
impedance) NPSO-SVR, ORPF model

SVR and NPSO are used for SOH
estimation and ORPF is used for RUL
prediction.

[165] 2021 50 Ah Lithium-ion battery
Voltage data from 11,000 charging
processes (charged capacity and
incremental capacity)

Ridge regression, PSO

IC and charged capacity curves are
extracted from raw data. 250 features are
extracted from angles are optimized by
using the feature wrapper method. Then,
ridge regression method is used for SOH
estimation. PSO is used for
multi-objective optimization of features.

In future, battery pack
characteristics will be
considered for SOH
estimation.

[166] 2020 Lithium-ion battery, NASA
dataset CC-CV charging curve LS-SVR with polynomial

kernel function

Grey relational analysis is used for
feature selection. In SVR model, K-fold
cross-validation is performed for
hyper-parameter tuning.

RMSE @ 0.95–1.36%

[167] 2016 Lithium-ion battery
Vehicle dynamics (speed, acc.,
slope), energy usage (data
obtained from battery terminals)

Indirect method Real-time vehicle data is captured for
calibrating energy usage.

[168] 2021 Lithium-ion battery, BEV Km driven, charge through-put,
SOC, C-rate, temp., age of vehicle NN

By using Pearson correlation, it is found
that C-rate and SOC are less correlated
to SOH.

RMSE @ 3%

In future, different
algorithms will be tested
for these 704 real-time
vehicle datasets.

[169] 2021 Lithium-ion battery
Different parameters extracted
from field and physical
modeling-based.

Data-driven, physical
model

By conducting RPT tests SOH can be
easily determined.
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Figure 9. SOH estimation methods and their advantages, disadvantages, and research trends.

The state transition model is helpful in identifying and eliminating noise. Short-term
current pulse tests have been applied to estimate SOH. The publicly available datasets, data
pre-processing, and ML are applied for better understand and compare feature extraction
and selection [40]. Different features from current in the CV charging phase were used to
find battery SOH [92].

ML-based SOH estimation for three differently grouped sets of data is analyzed for
Bayesian Ridge Regression (BRR), GPR, Random Forest (RF), and DNN; for fast charging
protocol, DNN yields the better response. BRR and GPR were unable to measure the level
of uncertainty naturally. GPR and BRR are suited for random samples drawn from uniform
distributed work, whereas RF and DNN are suitable for random initialization and provide
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better results. RF is based on a decision tree and sequentially conducts a homogenous split
of data. In the RF technique, the number of decision trees in the forest is controlled by
the user.

When the driver turns off the vehicle, voltage reduces to Open-Circuit Voltage (OCV),
and then the recovery voltage is identified as a new parameter of SOH estimation. Recovery
voltage is a parameter of temperature and aging. Selecting more no. or redundant features
for SOH estimation will lead to reducing the performance. An indirect technique to convert
available vehicle data into power and tested was conducted in their experiment and errors
were found between global energy consumption and experimental analysis between 1.4%
and 4.5%. used ICA-Bi-LSTM in a NASA dataset to estimate SOH [167,170]. Physics-based
internal chemical changes while cycling a lithium-ion battery were observed and analyzed
for SOH estimation in [171].

The reverse of the unit time voltage drop (1/V) is taken as a new parameter for SOC,
and this new parameter is directly proportional to SOH. Clustering the driving behavior
patterns is then used to model SVM for state estimation. The fusion of CC- and Differential
Voltage (DV)-based SOH estimation will reduce the computational time but is only applied
to CC charging profiles. Frequency and time domain indicators are treated as internal
condition indicators, which are based on onboard data like the voltage and current profiles
will give less than 1% error in GPR. The advantages and disadvantages of semi-empirical,
empirical, and ML-based techniques are discussed. EVS with EMF works well for different
C-rates. The NMC532 battery system under other operating conditions is analyzed on
a model-based approach. Multi-vibrate Adaptive Regression Splines (MARSs) are used
to build a non-linear model automatically from a linear model and interact with a non-
parametric regression algorithm. The MARS tool is used for SOC capacity estimation, and
battery model parameters are extracted from direct current, voltage, temperature, and the
charge–discharge cycle. The experiment is conducted using the model, and 1% accuracy is
achieved from a 25% to 90% SOC range data profile. This accuracy result was achieved in
the experimental results. The MARS tool is used to generate non-linear model from a linear
model. Random SOC ranges are selected for analysis, the highest accuracy is completed in
the 25–90% SOC region, i.e., 1%. Accuracy is calculated from the closeness of the correct
prediction of the test data. The hybrid method consists of a combination of two-three
algorithms in order to enhance efficiency, accuracy and overcoming short comes of the
independent algorithm in order to perform well. The hybrid method also decreases the
cost of BMS. Hybrid approaches are formed by applying two or more different techniques
in the same dataset. These hybrid algorithms are helpful when a single algorithm cannot
give good results or faster results. Using filter techniques along with ANN or LSTM will
improve the performance. The filter technique is used to cancel noise in the dataset, whereas
ANN is used for complex data and LSTM is used for time-series data. Each method has its
own unique quality; therefore, the combination or hybridization of methods will improve
the performance of system and yield precise results. Where SOC is determined by OCV and
CC with reduced error, and then KF is applied to increase accuracy. RBF is used to adjust
the parameter of the model, and AUKF is applied to estimate SOC. Cell imbalances, aging,
and degradation factors such as hysteresis curve, temperature variation, self-discharge,
rate of charge–discharge affects the battery state. Charge imbalance of cells is caused due to
frequent charge–discharge cycles, which results in reduced capacity and the lifetime of the
battery. The over-charge of a lithium-ion battery may cause distortion, rise in pressure, and
leakages, which result in the explosion of cells, whereas over-discharge of a lithium-ion
battery is due to high current flow out of the battery, which results in reduced battery
life cycle.

8. Critical Analysis of Literature Survey

The status, techniques and performance of SOC and SOH estimation are described
in Sections 5 and 6, respectively. Through this comparative table, it is clear that there are
numerous methods used for state estimation, with the primary goal of obtaining high
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accuracy. To achieve high accuracy and improvement in state estimation, most research
focuses on hybrid algorithms. The combination of two or more than two algorithms to
improve accuracy is a good choice, but complexity, model size and the time required
to run the model will increase. The environment and operating conditions can easily
affect the results of state estimation. Different chemistry of lithium-ion batteries, capacity
grading and form factor also affect the aging characteristics. Therefore, the previously
mentioned factors need to be kept in mind when choosing algorithms. ECM, selected
in the current literature, are traditional methods, which are based on Thevenin theorem,
first-order RC models, or second-order RC models. The primary battery models do not
consider physical and electro-chemical changes. Internal reaction changes non-linearly
and unpredictably in a rapid manner, and describing these changes in a model is complex.
There are various SOC and SOH estimation methods that operate in simulated conditions
and laboratory environments but are not practically applicable due to low performance in
terms of uncertainty. The lack of publications focusing on both SOC and SOH estimation
seems to be one of the gaps to be filled by this work. The focus of future research should be
to make state estimation more realistic and accurate. The hybrid battery model consists of
both ECM and EM characteristics that better serve online real-time performance measures.
Data-driven modeling can be performed in two ways: first, by considering hybrid ECM-EM
along with ML/DL algorithms, and second, without the ECM-EM model, by selecting
relevant features from raw data and then pre-processing and applying ML/DL algorithms.
A review of machine learning (ML)/data-driven approaches and publicly available datasets
seems to be another gap to be filled by this work. Data-driven modeling uses external
features like uncertainty for online real-time monitoring of battery state. Self-recharge
capacity plays a significant role in capacity estimation. Very little literature has been
published in relation to the field of self-recharge capacity and the polarization effect for
SOH estimation. After the development of a model algorithm, validation with a similar
experimental kit scenario will give a better picture and ideas for improvement of the model
in terms of design and accuracy. Different SOC, SOH, and RUL estimation methods have
been discussed in different pieces of literature due to the fact that different authors have
used different datasets, different filtering techniques, different test scenarios, and different
applications.

Some literature focuses on evaluating the performance of the different chemistries
used in lithium-ion batteries, whereas some focus on different filtering techniques, reducing
noise from data. Some literature covers different test scenarios to test their model accuracy
for non-linear behavior, whereas others focus on applications, like EVs, aircraft, solar
panels, and military equipment. In some places, real-time monitoring is necessary so that
model is fast and should take less time to provide estimation or prediction results. In some
applications, microcontroller storage space is less so that the model can be light (takes less
storage space) and fast to operate.

9. Limitation and Future Perspective

The common limitation of existing conventional SOC estimation methods [152] are:
(a) error in finding the correct initial value of SOC will cause error in estimated or predicted
SOC values; (b) existing methods are unsuitable for real-time estimation; (c) there is
difficulty in battery modeling due to changes in temperature, charge/discharge rate, SOC
and diffusion current, and ECM parameters value changes. From the battery, we can
record voltage, current, and temperature data, whereas internal resistance and capacity
can be known via characterization tests. Some instruments show internal resistance and
capacity, but it depends on instrument accuracy. More accurate instruments are more
costly compared to low accuracy instruments. EV’s maximum capital cost is shared by the
battery if more instruments with high accuracy are fitted into the BMS, which will further
increase the cost and weight of the battery with the BMS. Keeping a minimum number of
sensors with high accuracy and an algorithmic model for different state estimations will
balance overall battery cost and weight. Existing SOH estimation methods are limited
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by the fact (a) conventional methods are not suitable for real-time application health
estimation; (b) require additional testing equipment’s or circuits; (c) and existing methods
are time-consuming due to testing for full cycle charging/discharging. For better accuracy
and performance, the optimization of state parameters is necessary. Data collected from
sensors must be noise-free and be high-quality, and it is observed that hybrid algorithms
perform far better than conventional algorithms. There are different publicly available
datasets present, and many authors are performing SOH estimation verification on the
basis of that. The judgement of the accuracy of an EV battery system on the basis of
publicly available datasets may be insufficient. Still, it is clear that the estimation and
prediction model accuracy are based on diverse datasets, and very few research works
have been undertaken on data-driven approaches for real-time analysis. The data-driven
models require many datasets and an optimal feature extraction selection method. This
process is time-consuming, and if the data set is large, then the required modeling, training,
and testing time is greater. For online real-time data analysis, a properly trained and
tested model is required; however, very little data are available for analysis. Datasets
based on different temperature conditions, driving profiles, charging–discharging profiles,
charging modes, different chemistry, and arrangement of cells are required for analysis.
In many pieces of literature, only one dynamic condition is considered, but working with
one scenario is not sufficient for real-time analysis. With this, one needs to work on an
available, focused dataset to effectively analyze the outcomes of the model. ECM and EM
battery models vary with temperature variation; therefore, designing a real battery using
simulations is difficult. The main challenges in health estimation are, firstly, the fact that
online estimation of capacity requires a complete charge/discharge cycle process, which
is a time-consuming and difficult task in many applications. Secondly, the prediction of
direct health indicators (DHI) from the early cycle with negligible capacity fade is low [41].
Refined health indicator (RHI) performs better in predicting HI than DHI. Some RHI is
mean voltage drop and time interval of equal discharging voltage series. Some DHI is
minimum, mean, and variance of change in discharge voltage curve, sample entropy of
measured voltage sequence. Many literature survey documents considered in this paper
are reviewed and are based on operations/testing undertaken under different laboratory
conditions; they differ in techniques used and battery types and are compared only on
the basis of errors or accuracy level. However, different models are applied to different
datasets, and comparing these makes it difficult to verify the accuracy claim mentioned
in the documents and judge the model. In order to claim accuracy and compare models,
comparative analyses of different methods have to be performed on the same dataset.
By considering these conditions when analysis is performed, the results will be more
appropriate, authentic, and easier to accept globally. Other application areas of batteries
include E-boats, golf carts, space technology, missile systems, telematics, and hybrid EVs.
The size of a battery is decided based on the application type, capacity requirement, voltage
and current requirement, and battery type. Battery health not only depends on cycling but
also on the pattern of usage and environmental conditions. The scope is to achieve online-
controlled BMS to monitor battery parameters and enable better visibility of battery state
during driving under different environmental conditions; OEMs would be able to showcase
their warranty claims and scale up their EV sales, saving the battery from any dangerous
situation by achieving the correct prognosis of the battery’s health condition. From the
initial few cycles of battery usage, the consumers will receive information concerning their
battery’s health condition and take the proper step at the right time to maintain, replace or
exchange the battery. After completion of the first life use–case, then, the battery is used
for the second life use–case. Estimating the present battery health and predicting the later
stage in advance based on dynamic use–case patterns will help the OEMs to develop a
good BMS for better control. Different factors affect battery capacity, and the selection of
highly correlated factors is difficult. Artificial Intelligence, IoT. and cloud computing came
into play to make an unbiased and quick decision in selecting the features and algorithm
development.
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10. Conclusions

The objective of this paper was to summarize the history of EVs, study different
battery characteristics available on the market, discuss publicly available datasets, functions,
challenges, solutions and basic terminologies related to battery management system, and
lastly, provide an in-depth discussion of different approaches used in other documents
to estimate SOC and SOH. Critical analysis, challenges and future directions are also
discussed in this paper. This paper aims to provide guidance to select the correct option
among the listed methods or improve the model to achieve reasonable accuracy. After
reviewing different estimation methods, hybrid ECM and data-driven technique will
give better results in terms of accuracy and the non-linearity of batteries. This article
focuses on dragging researchers’ interest away from SOC estimation and towards battery
health estimation, RUL, and the importance of these states in battery lifetime assessment.
Nowadays, news about EVs catching fire is spreading, and in order to prevent dangerous
incidents, battery health status has to be observed carefully and driving–charging behavior
must be properly managed. Combining IoT, Amazon Web Service (AWS), and data analytics
will help improve real-time BMS performance and enhance battery life. There are some real
challenges in modeling the battery’s state estimation, such as data quality, model processing
time, model storage space, and the fact that the model must be accurate for non-linear
scenarios and that the model should operate under different working environments.

The benefits of this paper are:

• Enable OEMs to visualize their battery performance and bring attention to whether
their batteries working up to warranty or not.

• Allow OEMs to upscale sale by demonstrating their battery performance.
• To spread awareness that the replacement of batteries in proper time can and must be

undertaken.
• Predictive maintenance of the battery will enhance battery life.
• By tracking SOC and SOH parameters: parking, charging strategy, and driving pat-

terns can be improved.
• Based on the battery capacity, battery retirement, reuse, recycling, and disposal can be

planned accordingly.
• Based on the available capacity and aging patterns, pricing of the retired batteries can

be determined.
• To spread awareness about the usefulness of disposed batteries and how they can be

reused, or that purchasing retired batteries is also helpful.
• Encourage the accumulation of old battery packs, and then identify and cluster the

good cells with life and then assemble them to make a new battery.
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