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Abstract: To address traffic congestion in urban expressways during the transition from wide to
narrow sections, this study proposed a car-following strategy based on deep reinforcement learning.
Firstly, a car-following strategy was developed based on a twin-delayed deep deterministic policy
gradient (TD3) algorithm, and a multi-objective constrained reward function was designed by
comprehensively considering safety, traffic efficiency, and ride comfort. Secondly, 214 car-following
periods and 13 platoon-following periods were selected from the natural driving database for the
strategies training and testing. Finally, the effectiveness of the proposed strategy was verified through
simulation experiments of car-following and platoon-following. The results showed that compared
to human-driven vehicles (HDV), the TD3 and deep deterministic policy gradient (DDPG)-based
strategies enhanced traffic efficiency by over 29% and ride comfort by more than 60%. Furthermore,
compared to DDPG, the relative errors between the following distance and desired safety distance
using TD3 could be reduced by 1.28% and 1.37% in simulation experiments of car-following and
platoon-following, respectively. This study provides a new approach to alleviate traffic congestion
for wide-to-narrow road sections in urban expressways.

Keywords: car-following; twin delayed deep deterministic policy gradient (TD3); wide-to-narrow
road sections; desired safety distance (DSD); traffic congestion

1. Introduction

In the sections of urban expressways where the road width narrows, the reduction
in the number of lateral lanes leads to a decrease in the road capacity. In addition, the
imperfection of drivers in adjusting their speed may result in an insufficient or exces-
sive response to the expected value, causing frequent acceleration and deceleration [1].
Therefore, such road segments often lead to traffic congestion and reduced ride comfort.
Simultaneously, the road environment becomes more complex, limiting overtaking op-
portunities for vehicles and thereby resulting in car-following (CF) behavior. However,
adopting high-accuracy control of shorter driving distances and CF technology with strong
generalization can reduce the drivers’ workload, improve road traffic efficiency, and thus
reduce traffic congestion [2].

CF describes the longitudinal interaction between vehicles traveling on single-lane
roads with restricted overtaking [3]. CF models are mainly divided into theory-driven
models and data-driven models. Theory-driven CF models rely on a few fixed param-
eters for theoretically modeling and deducing traffic phenomena, making it difficult to
comprehensively consider the influencing factors and resulting in poor model prediction
accuracy in complex traffic flows. Standard theory-driven CF models include the IDM
model [4], the Newell model [5], and the cellular automaton model [6]. Data-driven CF
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models mainly include deep learning CF models and deep reinforcement learning (DRL)
CF models. Deep learning models rely on large-scale data and imitate pure data samples,
resulting in poor generalization ability. Shared deep learning CF models mainly include
the RNN CF model, LSTM CF model, and GA-BP CF model [7–9]. In contrast, DRL adopts
a self-learning mode, does not require prior samples for pure imitation, and its agent learns
through continuous trial and error interaction with the driving environment until the
optimal strategy is obtained, demonstrating strong generalization ability [10].

Existing research shows that strategies based on DRL demonstrate superiority in
solving various types of CF problems. Gao et al. researched autonomous vehicle CF
decision-making based on reinforcement learning, proving that reinforcement learning
systems are more adaptable to CF and have a certain degree of interpretability and sta-
bility [11]. CF strategies based on reinforcement learning mainly spend time on offline
training, and after training, they can be quickly implemented in real-time on vehicles [12].
Ye et al. proposed a decision-making training framework for autonomous driving using
DRL. After training, the efficiency of the autonomous vehicles increased by 7.9% compared
to the vehicles controlled by the IDM model, verifying the effectiveness of the proposed
model in learning driving decisions [13]. Sun et al. established a heavy vehicle adaptive
cruise control strategy model based on the deep deterministic policy gradient (DDPG)
algorithm, achieving adaptive cruise control objectives for heavy vehicles on roads with
different curvatures, and verified the effectiveness and robustness of the model through
simulation experiments [14]. Zhu et al. constructed a speed control model during CF based
on the DDPG. They verified that the model-controlled vehicle is superior to human drivers
and model predictive control (MPC) adaptive cruise control models in terms of safety,
efficiency, and comfort, with a running speed of more than 200 times faster than the MPC
algorithm during testing [15]. Shi et al. proposed a DRL-based connected autonomous
vehicle collaborative control under mixed traffic flow, different penetration rates, and
different behaviors of human-driven leading vehicles. The proposed model can effectively
complete car tracking and energy-saving tasks [16]. Yan et al. developed a hybrid vehicle
CF strategy based on DDPG and cooperative adaptive cruise control, and the proposed
strategy improved vehicle tracking performance [17]. Qin et al. developed DDPG and
MADDPG CF models considering longitudinal and lateral joint control, using the Ope-
nACC dataset to train and test them under straight and curved conditions of highway free
flow, and the results showed that the developed models controlled the CF effect better
than human-driven vehicles (HDV) [18]. Chen et al. proposed an intelligent speed control
method for autonomous vehicles in cooperative vehicle-infrastructure systems based on
the DDPG, and through vertical comfort evaluation, the method was effective on rough
road surfaces [19].

In summary, CF control strategies based on DRL have made significant progress,
but they are mainly limited to road sections with fixed widths. Segments transitioning
from wide to narrow roads are bound to encounter increasingly intricate traffic scenarios,
necessitating more adept car-following control strategies. Existing research on CF strategies
for road sections with variable widths, such as those found in urban expressways, has
received insufficient attention, and few studies have been able to balance travel efficiency
and ride comfort. To alleviate this problem, this paper develops a CF control strategy based
on deep reinforcement learning. This strategy uses a self-learning method to continuously
interact with the CF environment to obtain the optimal strategy. The CF periods for
congested traffic with variable widths of urban expressways are used for strategies training
and testing. The main contributions of this study are as follows: (1) Developing a high-
accuracy, high-efficiency, and comfortable CF strategy based on the twin-delayed deep
deterministic policy gradient (TD3) suitable for road sections with variable widths of
urban expressways; (2) Designing a new multi-objective constraint reward function, which
considers safety, travel efficiency, and ride comfort. This function employs the error
between the following distance and the desired safety distance, the speed error between the
following vehicle and the leading vehicle, and the jerk value, as the variables in exponential
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functions. This formulation leads to rapid and stable convergence during training. Notably,
in instances of collisions during the training process, a substantial penalty is imposed,
prompting the agent to learn collision avoidance strategies swiftly and autonomously;
(3) Conducting simulation experiments on car-following and platoon-following to verify
the effectiveness of the proposed strategy.

The rest of this paper is organized as follows: Section 2 introduces the research
methods and data extraction. Section 3 presents the results and discussion. The final section
concludes the paper.

2. Methods and Data
2.1. CF Strategy Based on TD3

The policy function π of reinforcement learning is defined by Equation (1), which
represents the probability of taking action at in a given environmental state st at the time t.

π(at|st) =p( At = at|St = st ) (1)

Using a policy function π, the agent selects an action at based on the current environ-
mental state st at each time step. The agent then transitions to the new state st+1 according
to the state transition probabilities P(st+1|st, at) and receives an immediate reward rt from
the environment. This process is known as reinforcement learning, as shown in Figure 1.
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Figure 1. Reinforcement learning process.

The twin delayed deep deterministic policy gradient (TD3) is a DRL algorithm that
is good at handling continuous state-action space problems. The TD3 algorithm is an
improvement over the DDPG algorithm by Scott Fujimoto et al., to reduce the bias and
variance introduced by function approximation in the actor–critic framework, making
the model more stable [20]. In the TD3, there are a total of six neural networks. An
actor network is used to fit the policy function π, while critic networks 1 and 2 are used
to estimate the action-value function Qi=1,2, with their parameters being independent.
The target actor network is used to fit the target policy function π′, and the target critic
networks 1 and 2 are used to fit the target action-value function Q′i=1,2, reducing the risk
of overestimation.

In the TD3, the critic networks 1 and 2 are updated by minimizing the loss function
Loss(θi) and Q′ can be calculated using the temporal difference (TD) principle:

Loss(θi) = N−1∑ (Q′ −Qi=1,2(st, at))
2 (2)

{
Q′ = rt + γmin

i=1,2
Q′i=1,2(st+1, π′(st+1) + ε)

ε ∼ clip(N(0, σ̃),−c, c)
(3)

where θ1 and θ2 represent the parameters of critic network 1 and critic network 2, respec-
tively, N refers to randomly selecting state transitions from the experience replay buffer as
a mini-batch for training, rt represents the reward obtained by taking a particular action
in the current state, γ is the future discount reward factor, and ε represents the noise from
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a Gaussian distribution with a mean of 0 and a variance of σ̃, and this noise is confined
within the range of (−c, c).

The actor network is updated using the policy gradient method:

∇φ J(φ) = N−1∑∇Q(st, at)∇φπφ( s t) (4)

where φ represents the parameters of the actor network.
The target actor network and target critic networks 1 and 2 update their parameters:{

θ′i=1,2 ← τθi + (1−τ)θ′i
φ′ ← τφ + (1−τ)φ′

(5)

where θ′1 and θ′2 represent the parameters of the target critic network 1 and 2, respectively,
τ is the soft update rate, and φ is the parameter of the target actor network.

After multiple experiments, it was found that using a hidden layer with 64 neurons
could achieve the best balance between computational cost and accuracy. In the hidden
layers of both the actor and critic networks, the ReLU activation function was employed.
Additionally, a Tanh activation function was applied to the actor network’s output layer
to constrain the output actions’ boundary values. Furthermore, all the other layers of the
actor and critic networks utilized fully connected layers. For more detailed information on
the network structure and parameter updates of the TD3, refer to Figure 2.
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The process of CF can be abstracted as a reinforcement learning problem, and the
partially observable Markov decision process (POMDP) can be described using the param-
eter tuple (st, at, rt, st+1). At a particular time step t, the observed environment state st
consists of the following variables: the speed of the following vehicle v f (t), the distance
∆dl− f (t) to the leading vehicle, and the relative speed ∆vl− f (t). The continuous action of
the agent is the acceleration of the following vehicle a f (t) ∈

[
−2m/s2, 2m/s2] [21]. The

update of the new state observation value depends on the vehicle’s kinematic Equation (6),
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where vl(t + 1) is the speed of the leading vehicle at the next moment and Ts = 0.08s is the
simulation time step.

v f (t + 1) = v f (t) + a f (t) ∗ ∆t
∆vl− f (t + 1) = vl(t + 1)− v f (t + 1)
∆dl− f (t + 1) = ∆dl− f (t) + (∆vl− f (t) + ∆vl− f (t + 1)) ∗ ∆t/2

(6)

The TD3 algorithm is used to construct a CF strategy in a simulation environment
based on the CF trajectory data. The optimal strategy is obtained through continuous
interaction between the agent and the driving environment and the supervision of the
reward function signal. The training framework is shown in detail in Figure 3.
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2.2. Evaluation Metrics for Car-Following Behavior

This study introduces the generalized force model to define the desired safe distance
(DSD) dDSD(t) [22]. The slighter the error between the following distance and the DSD,
the more stable the distance control between the following and leading vehicles, and the
higher the safety:

dDSD(t) = tr ∗ v f (t) + d0 (7)

where tr = 1.2s is the constant headway distance, and d0 = 2m is the gap between the
two cars when the following speed is 0.

Time headway (THW) describes the time interval between the leading and following
vehicles. Under the premise of meeting safety conditions, a minor time headway means
higher traffic efficiency [23], as defined in Equation (8).

THW(t) = ∆sl− f (t)/v f (t) (8)
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The jerk value represents the rate of change of acceleration during the CF process.
A slighter absolute value of jerk indicates smoother acceleration and deceleration of the
following vehicle, leading to increased riding comfort, as defined in Equation (9).

Jerk(t) = (a f (t + 1)− a f (t))/∆t (9)

2.3. Reward Function

The design goal of the reward function in this study is to control the following vehicle
to travel accurately according to the DSD in the section of the urban expressway where
the road width changes from wide to narrow while significantly improving road traffic
efficiency and ride comfort. As the supervision signal of DRL, the quality of the reward func-
tion design directly affects the agent’s ability to learn the expected strategy, thus affecting
the reinforcement learning algorithm’s convergence speed and final performance. Under
the premise of ensuring safety, a multi-objective constrained reward function is designed
by considering safety, traffic efficiency, and ride comfort. The reward function expression is
designed to minimize the difference between the target and observation values.

Considering the safety of the CF behavior and road traffic efficiency, the error between
the distance dl− f (t) and DSD dDSD(t) is used to design the reward function r1(t). The
slighter the error between the distance and DSD, the greater the reward, as defined in
Equation (10). In order to make the agent learn to avoid collisions, a penalty function
r1_collision(t) is designed, as shown in Equation (11). The reward function r2(t) is also de-
signed using the speed difference between the leading and following vehicles to encourage
the vehicle to maintain an appropriate speed difference, as shown in Equation (12). In
consideration of ride comfort, the reward function is designed using the ratio of the jerk
value to the maximum jerk value, as shown in Equation (13):

r1(t) = exp(−ω1 ∗ (dl− f (t)− dDSD(t))
2) (10)

r1_collision(t) =
{
−1 dl− f (t) < 0
0 otherwise

(11)

r2(t) =

{
exp(−ω2 ∗ (v f (t)− vl(t))

2) 0 ≤ v f (t) ≤ 22.22 m/s
−1 v f (t) > 22.22 m/s

(12)

r3(t) = exp(−ω3 ∗ (Jerk(t)/Jerkmax)
2 ) (13)

where ω1= 1, ω2= 1, and ω3= 1 are the weight coefficients, and 22.22 m/s is the speed
limit of the urban expressway.

In summary, the total reward function expression is as follows:

r(t) = λ1 ∗ r1(t) + λ2 ∗ r2(t) + λ3 ∗ r3(t) + r1_collision (14)

where λ1= 0.8, λ2= 0.2, and λ3= 0.1 are the weight coefficients of each sub-reward function.
The pseudo-code of the CF strategy based on TD3 is shown in Algorithm 1, and its

corresponding hyperparameters are detailed in Table 1.

Table 1. TD3 algorithm hyperparameters.

Parameter Symbol Value

Sampling step (s) Ts 0.08
Batch size / 128

Discount factor γ 0.91
Actor learning rate α 3 × 10−4

Critic learning rate β 3 × 10−4

Soft update rate τ 8 × 10−3

Replay buffer capacity / 2 × 106



World Electr. Veh. J. 2023, 14, 244 7 of 14

Algorithm 1: Car-Following Strategy Based on TD3

Initialize critic networks Q1(st, at), Q2(st, at) and actor network π(st)
With random parameters θ1, θ2, φ
Initialize target networks θ′1 ← θ1 , θ′2 ← θ2 , φ′ ← φ
Initialize replay buffer
for episode = 1 to M do

Initialize random process for action exploration ε0
Receive initial state s
for t = 1, Tf do

Choose action based on current policy and noise: at ← π(st)+ε , ε ∼ N(0, σ)
Execute action at, obtain the reward rt, and enter the next state st+1
Store the state transition sequence (st, at, rt, st+1) in the replay buffer
Randomly take a small batch of samples from the replay buffer:

at+1 ← π′(st+1) + ε , ε ∼ clip(N(0, σ̃),−c, c)
Calculate based on the temporal difference:

Q′ ← r(st, at) + γmin
i=1,2

Q′i(st+1, at+1)

Update critic networks
∇θi Loss(θi) = N−1∑ (Q′ −Qi=1,2(st, at))

2

θi=1,2 ← θi − β ∇θi Loss(θi)
if t mod d then

Update actor network: φ← φ + α∇φ J(φ)
Update target networks: θ′i=1,2 ← τθi + (1−τ)θ′i , φ′ ← τφ + (1− τ)φ′

end if
end for

end for

2.4. Data

The CF trajectory data used in this study was obtained by the ubiquitous traffic
eyes (UTE) team of Southeast University through high-altitude aerial photography using
drones on multiple urban expressways in Nanjing, China. The speed limit on these urban
expressways is 80 km per hour. The drones were set at over 200 m to cover congested and
free-flow traffic conditions. Finally, the team used algorithms to extract data from the video
footage [24].

The UTE team extracted six datasets, and this study selected datasets 1 and 3 as the
data sources. Both datasets were collected on sections of urban expressways where lanes
narrow, covering the entire evolution process from free-flow to congested traffic. Dataset
1’s lane distribution is shown in Figure 4a, where the number of lanes decreased from 5
to 4, then from 4 to 3. Dataset 3’s lane distribution is shown in Figure 4b, where the lanes
decreased from 5 to 3 [25]. The database parameters can be found in Table 2, and the
congested scenes in the video can be seen in Figure 4c.

This study extracted a total of 214 CF periods and 13 platoon-following periods from
the database, which had the following characteristics: (1) The duration of each CF trajectory
data was greater than 20 s; (2) To ensure that the vehicles did not change lanes or make
sudden turns, the lateral position difference between the leading vehicle and the following
vehicle should have been less than 1 m; (3) All vehicles were in congested traffic flow.

Table 2. Description of natural driving CF trajectory database.

Parameter
Value

Dataset 1 Dataset 3

Road length (m) 427 362
Duration (s) 255 545

Temporal accuracy (s) 0.01 0.01
Position accuracy (m) 0.01 0.01

Sampling frequency (Hz) 25 25
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Table 2. Description of natural driving CF trajectory database. 

Parameter 
Value 

Dataset 1 Dataset 3 
Road length (m) 427 362 

Duration (s) 255 545 
Temporal accuracy (s) 0.01 0.01 
Position accuracy (m) 0.01 0.01 

Sampling frequency (Hz) 25 25 

This study extracted a total of 214 CF periods and 13 platoon-following periods from 
the database, which had the following characteristics: (1) The duration of each CF trajec-
tory data was greater than 20 s; (2) To ensure that the vehicles did not change lanes or 
make sudden turns, the lateral position difference between the leading vehicle and the 
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3. Results and Discussion
3.1. Strategies Training

The purpose of training is to enable the agent to interact fully with the environment
and obtain the optimal strategy. During the training process, a trajectory was randomly
selected from 150 CF trajectories for training for each episode, with the remaining data
(64 CF periods and 13 platoon-following periods) utilized as the test dataset. The training
was repeated for 1800 episodes. The mean reward referred to the average reward value of
all the time steps in a training episode, while the moving mean episode reward was the
average reward value of a moving window of size 100. Under the supervision of the reward
function signal, the agent continuously interacted with the environment through trial-and-
error learning, maximizing the cumulative rewards and eventually reaching convergence.
Figure 5 illustrates the training results based on the TD3 and DDPG. The TD3-based
strategy began to converge after about 110 episodes and reached convergence after about
235 episodes, with a training duration of 1 h and 5 min. The DDPG-based strategy began to
converge after about 168 episodes and reached convergence after about 296 episodes, with
a training duration of 1 h and 35 min. Therefore, the TD3-based strategy converged faster
and reduced the training time by 31.58% compared to the DDPG, effectively reducing the
training costs.
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3.2. Simulation Results of Car-Following Experiments

In total, 64 CF periods were tested to verify the effectiveness of the proposed strategy
on CF behavior, and no collisions occurred during the entire testing process. Figure 6
illustrates that the mean rewards for the TD3 and DDPG strategies in the test results
were 1.04 and 1.02, respectively, indicating that the mean reward was higher using the
TD3 than the DDPG. Table 3 presents the results of all the car-following tests. Compared
to the HDV and DDPG, the relative errors between the following distance and the DSD
through the TD3 were reduced by 41.82% and 1.28%, respectively, suggesting that the
TD3-based strategy offered the highest accuracy. The mean-time headway using the TD3
and DDPG could be reduced by 29.30% and 29.17%, respectively, compared to the HDV,
and the mean absolute jerk values were reduced by 60.22% and 64.61% m/s3, respectively.
This significant reduction in the time headway and absolute jerk values for TD3 and
DDPG greatly enhanced the road traffic efficiency and ride comfort. Although the average
absolute jerk based on TD3 was slightly larger than the DDPG, the TD3 exhibited a distinct
advantage in maintaining the error between the following distance and the desired safety
distance. Moreover, it demonstrated higher traffic efficiency. The TD3-based strategy
demonstrated the best performance in CF behavior.
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Figure 6. Test results.

Table 3. Results of all car-following simulation tests.

Comparative Indicator TD3 DDPG Human

Mean relative error to DSD 0.96% 2.24% 42.78%
Mean-time headway (s) 1.643 1.646 2.324

Mean absolute value of jerk (m/s3) 0.290 0.258 0.729

Since the error between the initial distance and DSD can cause differences in CF
behavior, a CF trajectory was randomly selected from the test dataset for detailed analysis
and discussion under three conditions: when the initial distance was equal to, less than, or
greater than the DSD.

As indicated by Table 4 and Figures 7–9, the TD3-based strategy consistently demon-
strated superior control accuracy regardless of whether the initial distance was equal
to, less than, or greater than the DSD. When the initial distance was equal to DSD, the
following vehicle using the TD3 and DDPG could immediately drive according to the
DSD. Compared with the HDV and DDPG, the relative error using the TD3 reduced by
0.73% and 15.14%, respectively. When the initial distance was less than DSD, the vehicle
using the TD3 and DDPG could decelerate to reach the DSD and then drive according to
DSD. Compared with HDV and DDPG, the relative error using TD3 reduces by 3.53% and
14.18%, respectively. When the initial distance is greater than the DSD, the vehicle using
the TD3 and DDPG could decelerate to reach the DSD and then drive according to the DSD.
Compared with the HDV and DDPG, the relative error using the TD3 reduced by 3.35%
and 99.49%, respectively. In all three scenarios, the TD3-based strategy proved to be highly
accurate, efficient, and comfortable in CF.
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Table 4. Results of randomly selected car-following simulation tests.

Initial Condition
Data

Source
Distance Time Headway (s) The Absolute Value of Jerk (m/s3)

MREDSD * Minimum Mean Maximum Minimum Mean Maximum

An initial distance equal
to DSD

TD3 0.30% 1.449 1.701 2.052 0 0.211 0.904
DDPG 1.03% 1.441 1.697 2.090 0 0.218 1.075
Human 15.44% 1.053 1.835 3.393 0.002 0.673 3.197

An initial distance less
than DSD

TD3 0.88% 1.188 1.704 2.336 0.002 0.260 3.915
DDPG 4.41% 1.188 1.647 2.343 0.002 0.215 5.787
Human 18.59% 1.161 1.857 3.765 0 0.877 3.411

An initial distance greater
than DSD

TD3 2.30% 1.539 1.837 5.303 0 0.289 2.810
DDPG 5.58% 1.520 1.905 5.303 0.002 0.267 0.986
Human 101.72% 2.963 3.741 5.321 0.003 0.890 2.967

* MREDSD is mean relative error to desired safety distance.
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Figure 7. An initial distance equal to DSD: (a) Comparison of distances; (b) Comparison of the
relative error to DSD; (c) Comparison of time headway; (d) Comparison of speed; (e) Comparison of
acceleration; (f) Comparison of jerk values.
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Figure 8. An initial distance less than DSD: (a) Comparison of distances; (b) Comparison of the
relative error to DSD; (c) Comparison of time headway; (d) Comparison of speed; (e) Comparison of
acceleration; (f) Comparison of jerk values.
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Figure 9. An initial distance greater than DSD: (a) Comparison of distances; (b) Comparison of the
relative error to DSD; (c) Comparison of time headway; (d) Comparison of speed; (e) Comparison of
acceleration; (f) Comparison of jerk values.

3.3. Simulation Results of Platoon-Following Experiment

In congested traffic flow, most vehicles travel in a platoon with multiple vehicles
following each other. To further verify the effectiveness of the proposed strategy in this
paper, thirteen platoon-following simulation experiments were conducted, each contain-
ing from five to nine vehicles. The topology structure of the platoon-following was the
predecessor-following communication topology [26], as shown in Figure 10. The leading
vehicle in each platoon-following was an HDV, and the initial values of the following
vehicles in the simulation were derived from the trajectory data. No collisions occurred
during all the platoon-following simulation experiments.
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Figure 10. Predecessor-following communication topology.

Table 5 presents the results of the simulation tests for all the platoons. In these tests,
the TD3-based strategy demonstrated superior control accuracy in the platoon-following
simulations. When compared to the HDV and DDPG, the mean error between the follow-
ing distance of the following vehicles and the DSD was reduced by 1.37% and 41.12%,
respectively, when using the TD3. Furthermore, the mean-time headway of the following
vehicles could be reduced by 31.59% and 31.10% when using the TD3 and DDPG, respec-
tively, compared to the HDV, leading to a significant enhancement in the traffic efficiency.
Lastly, the mean absolute jerk of the platoons could be reduced by 81.26% and 83.08%
when using the TD3 and DDPG, respectively, resulting in a substantial improvement in the
ride comfort.

The results of a randomly selected platoon-following experiment are presented in
Table 6 and Figures 11–13. We could observe that the platoon using the TD3 could travel
along the desired trajectory. The mean error between the following distance of the following
vehicles and the DSD using the TD3 was 0.87%, with the highest control accuracy, and the
road traffic efficiency and ride comfort were significantly improved.
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Table 5. Results of platoon-following simulation experiments.

Comparative Indicator TD3 DDPG Human

Mean relative error to DSD 1.10% 2.47% 42.22%
Mean-time headway (s) 1.665 1.677 2.434

Mean absolute value of jerk (m/s3) 0.181 0.155 0.780

Table 6. Results of a randomly selected platoon-following experiment.

Comparative Indicator TD3 DDPG Human

Mean relative error to DSD 0.87% 2.58% 36.51%
Mean-time headway (s) 1.570 1.593 2.129

Mean absolute value of jerk (m/s3) 0.175 0.158 0.934
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Figure 11. The result of a randomly selected platoon-following experiment based on HDV: (a) Driving
trajectory; (b) The relative error to DSD; (c) Time headway; (d) Speed; (e) Acceleration; (f) Jerk values.
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Figure 12. The result of a randomly selected platoon-following experiment based on DDPG: (a) Driving
trajectory; (b) The relative error to DSD; (c) Time headway; (d) Speed; (e) Acceleration; (f) Jerk values.
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Future research can expand on this study in several ways. Firstly, this study consid-
ers two datasets of urban expressways with wide-to-narrow road sections, and additional 
similar scenarios can be incorporated. Secondly, while this study focuses on longitudinal 
following strategies, future research could include lateral control and robustness studies 
of deep reinforcement learning CF strategies. Lastly, this study relies on CF trajectory data 
for simulation tests, and further hardware-in-the-loop or real vehicle platform tests could 
be conducted to validate the proposed strategy’s effectiveness. 
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Figure 13. The result of a randomly selected platoon-following experiment based on TD3: (a) Driving
trajectory; (b) The relative error to DSD; (c) Time headway; (d) Speed; (e) Acceleration; (f) Jerk values.

4. Conclusions

This study proposes a high-accuracy, high-efficiency, and comfortable CF strategy
based on the TD3 for wide-to-narrow road sections in urban expressways. The results
indicate that the following vehicle using the TD3, compared to the HDV and DDPG, can
accurately drive according to the DSD while maintaining high traffic efficiency and ride
comfort. In the test dataset of CF and platoon-following simulations, the traffic efficiency
and ride comfort increased by over 29% and 60%, respectively, when using the TD3
and DDPG, compared to the HDV. The TD3-based strategy exhibited the highest control
accuracy, with mean relative errors between the following distance and DSD during driving
being 0.96% and 1.10%, respectively. The primary errors were due to the initial distance
discrepancy with the DSD. When the initial distance equals the DSD, the vehicle using
the TD3 drives according to the DSD immediately, maintaining a low jerk value and high
ride comfort. If the initial distance is less or more than the DSD, the vehicle using the TD3
will decelerate or accelerate to reach the DSD, with a brief jerk value fluctuation during
this transition. Once the DSD is achieved, the jerk value remains small and stable near
zero, indicating that the TD3-based strategy significantly enhances the ride comfort under
varying conditions.

Future research can expand on this study in several ways. Firstly, this study considers
two datasets of urban expressways with wide-to-narrow road sections, and additional
similar scenarios can be incorporated. Secondly, while this study focuses on longitudinal
following strategies, future research could include lateral control and robustness studies of
deep reinforcement learning CF strategies. Lastly, this study relies on CF trajectory data for
simulation tests, and further hardware-in-the-loop or real vehicle platform tests could be
conducted to validate the proposed strategy’s effectiveness.
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