# Research on the SSIDM Modeling Mechanism for Equivalent Driver’s Behavior

^{1}

^{2}

## Abstract

**:**

## 1. Introduction

## 2. Behavior Switching Scenario Mining

#### 2.1. Natural Driving Data Collection

#### 2.2. Behavior Scenario Mining

_{n}is the width of the ego vehicle, W is lane width, L

_{l}and L

_{r}are the distance from the coordinate origin to the left and right lane lines, v

_{n}is the ego vehicle speed, D

_{i}is the width of each vehicle identified in the ego lane, $\mathsf{\Delta}{x}_{i}$ and $\mathsf{\Delta}{y}_{i}$ are the relative longitudinal and lateral distances between each vehicle identified in the ego lane and the ego vehicle, $\mathsf{\Delta}{x}_{n-1}$ is the relative longitudinal distance of the following target, $\mathsf{\Delta}{x}_{\mathrm{max}}$ and $\mathsf{\Delta}{x}_{\mathrm{min}}$ are the relative longitudinal distance thresholds between the ego vehicle and the following target, ${v}_{n-1}$ is the following target speed.

## 3. IDM Parameter Identification

#### 3.1. IDM Modeling Mechanism

#### 3.2. Model Parameter Identification

## 4. Construction of SSIDM

#### 4.1. Modeling Mechanism of SSIDM

^{−1}, the car-following distance exceeds 150 m, which is separated from the car-following relationship and is also consistent with the actual high-speed driving situation.

#### 4.2. Solution of Switching Boundary Conditions

#### 4.3. Model Unified Expression

- (1)
- When the target lane has no front and rear vehicle constraints.

- (2)
- When the target lane has front or rear vehicle constraints.

## 5. Model Validation

#### 5.1. SSIDM Identification

#### 5.2. Comparison of Results

## 6. Conclusions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Miao, L.; Wang, F. Review on Research and Applications of V2X Key Technologies. Chin. J. Automot. Eng.
**2020**, 10, 1–12. [Google Scholar] - Cao, X. Motion Control and Decision Planning for Car Following and Lane Changing of Autonomous Vehicle. Ph.D. Dissertation/thesis, Jilin University, Changchun, China, 2022. [Google Scholar]
- Zhu, M.; Wang, X.; Tarko, A.; Fang, S. Modeling Car-following Behavior on Urban Expressways in Shanghai: A Naturalistic Driving Study. Transp. Res. Part C Emerg. Technol.
**2018**, 93, 425–445. [Google Scholar] [CrossRef] - Wang, X.; Sun, P.; Zhang, X.; Zhang, K. Calibrating Car-following Models on Freeway Based on Naturalistic Driving Data. China J. Highw. Transp.
**2020**, 33, 132–142. [Google Scholar] - Treiber, M.; Hennecke, A.; Helbing, D. Congested Traffic States in Empirical Observations and Microscopic Simulations. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top.
**2000**, 62, 1805–1824. [Google Scholar] [CrossRef] - Péter, T.; Háry, A.; Szauter, F.; Szabó, K.; Vadvári, T.; Lakatos, I. Mathematical Description of the Universal IDM-some Comments and Application. Acta. Polytech. Hung.
**2023**, 20, 99–115. [Google Scholar] [CrossRef] - Qin, P.; Pei, S.; Yang, C.; Meng, Q.; Wan, Q. Influence of Road Geometrics on Car-following of the Intelligent Driver Model. J. Transp. Syst. Eng. Inf. Technol.
**2017**, 17, 77–84. [Google Scholar] - Yi, Z.; Lu, W.; Xu, L.; Qu, X.; Ran, B. Intelligent Back-looking Distance Driver Model and Stability Analysis for Connected and Automated Vehicles. J. Cent. South Univ. (Sci. Technol.)
**2020**, 27, 3499–3512. [Google Scholar] [CrossRef] - Sharath, M.; Velaga, N. Enhanced Intelligent Driver Model for Two-dimensional Motion Planning in Mixed Traffic. Transp. Res. Part C Emerg. Technol.
**2020**, 120, 102780. [Google Scholar] [CrossRef] - Li, Y.; Lu, X.; Ren, C.; Zhao, H. Fusion Modeling Method of Car-Following Characteristics. IEEE Access
**2019**, 7, 162778–162785. [Google Scholar] [CrossRef] - Yang, L.; Zhang, C.; Qiu, X.; Wu, Y.; Li, S.; Wang, H. Car-following Behavior and Model of Chinese Drivers under Snow and Ice Conditions. J. Transp. Syst. Eng. Inf. Technol.
**2020**, 20, 145–155. [Google Scholar] - Jin, P.; Yang, D.; Ran, B. Reducing the Error Accumulation in Car-Following Models Calibrated with Vehicle Trajectory Data. IEEE Trans. Intell. Transp. Syst.
**2014**, 15, 148–157. [Google Scholar] [CrossRef] - Chang, X.; Li, H.; Rong, J.; Qin, L.; Yang, Y. Analysis on Fundamental Diagram Model for Mixed Traffic Flow with Connected Vehicle Platoons. J. Southeast Univ. Nat. Sci. Ed.
**2020**, 50, 782–788. [Google Scholar] - Hu, X.; Zheng, M.; Zhao, J.; Long, B.; Dai, G. Stability Analysis of Mixed Traffic Flow Considering Personal Space under the Connected and Automated Environment. Appl. Sci.
**2023**, 13, 3231. [Google Scholar] [CrossRef] - Péter, T.; Szauter, F.; Rózsás, Z.; Lakatos, I. Integrated Application of Network Traffic and Intelligent Driver Models in the Test Laboratory Analysis of Autonomous Vehicles and Electric Vehicles. Int. J. Heavy Veh. Syst.
**2020**, 27, 227–245. [Google Scholar] [CrossRef] - Bouadi, M.; Jia, B.; Jiang, R.; Li, X.; Gao, Z. Stochastic Factors and String Stability of Traffic Flow: Analytical Investigation and Numerical Study Based on Car-following Models. Transp. Res. B-Methodol.
**2022**, 165, 1–33. [Google Scholar] [CrossRef] - Wang, Z.; Zhou, X.; Wang, J. An Algebraic Evaluation Framework for a Class of Car-Following Models. IEEE Trans. Intell. Transp. Syst.
**2022**, 23, 1–11. [Google Scholar] [CrossRef] - Qu, D.; Wang, S.; Liu, H.; Meng, Y. A Car-following Model Based on Trajectory Data for Connected and Automated Vehicles to Predict Trajectory of Human-driven Vehicles. Sustainability
**2022**, 14, 7045. [Google Scholar] [CrossRef] - Yuan, W.; Fu, R.; Guo, Y.; Peng, J.; Ma, Y. Drivers Lane Changing Intention Identification Based on Visual Characteristics. China J. Highw. Transp.
**2013**, 26, 132–138. [Google Scholar] - Fu, R.; Zhang, H.; Liu, W.; Zhang, H. Review on Driver Intention Recognition. J. Chang’an Univ. Nat. Sci. Ed.
**2022**, 42, 33–60. [Google Scholar] - Zhu, N.; Gao, Z.; Hu, H.; Lu, Y.; Zhao, W. Research on Personalized Lane Change Triggering Based on Traffic Risk Assessment. Automot. Eng.
**2021**, 43, 1314–1321. [Google Scholar] - Chen, H.; Wang, J. A Decision-making Method for Lane Changes of Automated Vehicles on Freeways Based on Drivers Dissatisfaction. China J. Highw. Transp.
**2019**, 32, 1–9+45. [Google Scholar] - Wang, J.; Gao, C.; Zhu, Z.; Yan, X. Multi-lane Changing Model with Coupling Driving Intention and Inclination. Promet
**2017**, 29, 185–192. [Google Scholar] [CrossRef] - Ji, X.; Fei, C.; He, X.; Liu, Y.; Liu, Y. Intention Recognition and Trajectory Prediction for Vehicles Using LSTM Network. China J. Highw. Transp.
**2019**, 32, 34–42. [Google Scholar] - Guo, Y.; Zhang, H.; Wang, C.; Sun, Q.; Li, W. Driver Lane Change Intention Recognition in the Connected Environment. Phys. A
**2021**, 575, 126057. [Google Scholar] [CrossRef] - Zhao, J.; Zhao, Z.; Qu, Y.; Xie, D.; Sun, H. Vehicle Lane Change Intention Recognition Driven by Trajectory Data. J. Transp. Syst. Eng. Inf. Technol.
**2022**, 22, 63–71. [Google Scholar] - Makridis, M.; Leclercq, L.; Ciuffo, B.; Fontaras, G.; Mattas, K. Formalizing the Heterogeneity of the Vehicle-driver System to Reproduce Traffic Oscillations. Transp. Res. C-Emerg.
**2020**, 120, 102803. [Google Scholar] [CrossRef] - Adavikottu, A.; Velaga, N.; Mishra, S. Modelling the Effect of Aggressive Driver Behavior on Longitudinal Performance Measures During Car-following. Transp. Res. F-Traffic
**2023**, 92, 176–200. [Google Scholar] [CrossRef] - Antin, J.; Wotring, B.; Perez, M.; Glaser, D. Investigating Lane Change Behaviors and Difficulties for Senior Drivers Using Naturalistic Driving Data. J. Saf. Res.
**2020**, 74, 81–87. [Google Scholar] [CrossRef] - Li, X.; Oviedo-Trespalacios, O.; Afghari, A.; Kaye, S.; Yan, X. Yield or Not to Yield? An Inquiry into Drivers’ Behaviour When a Fully Automated Vehicle Indicates a Lane-changing Intention. Transp. Res. F-Traffic
**2023**, 95, 405–417. [Google Scholar] [CrossRef]

**Figure 4.**Definition of lane-changing starting point: (

**a**) Distance from lane line. (

**b**) Offset speed.

**Figure 8.**Kernel density estimation of key parameters: (

**a**) Relative distance. (

**b**) Speed of the ego vehicle. (

**c**) Speed of the front vehicle.

**Figure 9.**Relationship between the ego vehicle speed and the relative distance of the front vehicle.

Parameter | $\tilde{\mathit{v}}$/(m·s^{−1})
| $\mathit{\sigma}$ | $\mathit{a}$/(m·s^{−2})
| $\mathit{b}$/(m·s^{−2})
| $\tilde{\mathit{s}}$/m | $\mathit{\tau}$/s |
---|---|---|---|---|---|---|

Value | 35.022 | 0.018 | 0.218 | 1.503 | 13.262 | 2.606 |

Statistic | Mean Value | Standard Deviation | |
---|---|---|---|

First type | ${v}_{n}$/(m·s^{−1}) | 28.108 | 5.491 |

$\mathsf{\Delta}{x}_{n-1}$/m | 95.569 | 48.412 | |

${v}_{n-1}$/(m·s^{−1}) | 21.602 | 3.915 | |

Second type | ${v}_{n}$/(m·s^{−1}) | 27.788 | 4.879 |

$\mathsf{\Delta}{x}_{n-1}$/m | 71.472 | 38.233 | |

${v}_{n-1}$/(m·s^{−1}) | 20.998 | 3.697 | |

Third type | ${v}_{n}$/(m·s^{−1}) | 30.424 | 4.426 |

$\mathsf{\Delta}{x}_{n-1}$/m | 91.829 | 47.457 | |

${v}_{n-1}$/(m·s^{−1}) | 21.209 | 3.581 | |

Fourth type | ${v}_{n}$/(m·s^{−1}) | 27.811 | 5.393 |

$\mathsf{\Delta}{x}_{n-1}$/m | 72.232 | 41.618 | |

${v}_{n-1}$/(m·s^{−1}) | 21.178 | 3.763 |

Fitting Function | Value | R^{2} | |
---|---|---|---|

$\mathsf{\Delta}{x}_{n-1}=k{({v}_{n})}^{a}+b$ | k | 6.2 × 10^{−3} | 0.473 |

a | 2.723 | ||

b | 26.281 | ||

$\mathsf{\Delta}{x}_{n-1}=k{a}^{{v}_{n}}+b$ | k | 6.841 | 0.401 |

a | 1.089 | ||

b | 1.837 | ||

$\mathsf{\Delta}{x}_{n-1}=d-\sqrt{{c}^{2}[(1-\frac{{({v}_{n}-a)}^{2}}{{b}^{2}})]}$ | a | 0.315 | 0.572 |

b | 34.879 | ||

c | 180.245 | ||

d | 197.179 | ||

$\mathsf{\Delta}{x}_{n-1}={\displaystyle \sum _{i=0}^{n}{a}_{i}{{v}_{n}}^{i}}$ | n | 2 | 0.431 |

a_{0} | 37.309 | ||

a_{1} | −3.589 | ||

a_{2} | 0.198 |

Model | Mean Value | Standard Deviation | |
---|---|---|---|

SSIDM | ${\omega}_{m-1}$ | 0.472 | 0.256 |

${\omega}_{m+1}$ | 0.186 | 0.149 |

Model | Second Type | Third Type | Fourth Type | Mean Value |
---|---|---|---|---|

IDM | 3.113 | 10.647 | 2.582 | 5.169 |

SSIDM | 2.962 | 3.383 | 1.238 | 2.172 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Fang, R.
Research on the SSIDM Modeling Mechanism for Equivalent Driver’s Behavior. *World Electr. Veh. J.* **2023**, *14*, 242.
https://doi.org/10.3390/wevj14090242

**AMA Style**

Fang R.
Research on the SSIDM Modeling Mechanism for Equivalent Driver’s Behavior. *World Electric Vehicle Journal*. 2023; 14(9):242.
https://doi.org/10.3390/wevj14090242

**Chicago/Turabian Style**

Fang, Rui.
2023. "Research on the SSIDM Modeling Mechanism for Equivalent Driver’s Behavior" *World Electric Vehicle Journal* 14, no. 9: 242.
https://doi.org/10.3390/wevj14090242