
Citation: Yu, M.; Luo, Q.; Wang, H.;

Lai, Y. Electric Logistics Vehicle Path

Planning Based on the Fusion of the

Improved A-Star Algorithm and

Dynamic Window Approach. World

Electr. Veh. J. 2023, 14, 213. https://

doi.org/10.3390/wevj14080213

Academic Editor: Zonghai Chen

Received: 19 July 2023

Revised: 2 August 2023

Accepted: 8 August 2023

Published: 10 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Electric Logistics Vehicle Path Planning Based on the Fusion
of the Improved A-Star Algorithm and Dynamic
Window Approach
Mengxue Yu, Qiang Luo *, Haibao Wang and Yushu Lai

Department of Mechanical Engineering, Chongqing Three Gorges University, Chongqing 404100, China
* Correspondence: qluo@sanxiau.edu.cn; Tel.: +86-1831-502-2609

Abstract: The study of path-planning algorithms is crucial for an electric logistics vehicle to reach its
target point quickly and safely. In light of this, this work suggests a novel path-planning technique
based on the improved A-star (A*) fusion dynamic window approach (DWA). First, compared to the
A* algorithm, the upgraded A* algorithm not only avoids the obstruction border but also removes
unnecessary nodes and minimizes turning angles. Then, the DWA algorithm is fused with the
enhanced A* algorithm to achieve dynamic obstacle avoidance. In addition to RVIZ of ROS, MATLAB
simulates and verifies the upgraded A* algorithm and the A* fused DWA. The MATLAB simulation
results demonstrate that the approach based on the enhanced A* algorithm combined with DWA not
only shortens the path by 4.56% when compared to the A* algorithm but also smooths the path and
has dynamic obstacle-avoidance capabilities. The path length is cut by 8.99% and the search time
is cut by 16.26% when compared to the DWA. The findings demonstrate that the enhanced method
in this study successfully addresses the issues that the A* algorithm’s path is not smooth, dynamic
obstacle avoidance cannot be performed, and DWA cannot be both globally optimal.

Keywords: electric logistics vehicle; path planning; improved A* algorithm; dynamic window
approach; dynamic obstacle avoidance

1. Introduction

With the wide application of electric logistics vehicles and the rapid development of
automatic navigation technology, dynamic obstacle-avoidance algorithms play a crucial
role in realizing the navigation of electric logistics vehicles. In practical application sce-
narios, electric logistics vehicles need to be able to identify and avoid obstacles instantly
and accurately to ensure safe delivery of goods to their destinations [1]. With existing
technologies, safety can only be guaranteed in static obstacle environments or predefined
specific environments. Due to this technical limitation, a challenging element of navi-
gation is dynamic obstacle avoidance. Dynamic obstacle avoidance is necessary for the
autonomous operation of electric logistics vehicles in real situations with dynamic and
unpredictable factors like pedestrians and other logistics vehicles [2–4]. To achieve efficient
dynamic obstacle-avoidance capabilities, researchers have proposed various algorithms,
among which the A* algorithm and DWA are two commonly used approaches.

Path-planning issues frequently use the A* algorithm, a heuristic search technique [5,6].
By analyzing the nodes’ cost functions, it determines the optimum route to the destina-
tion [7]. The A* algorithm, however, has several drawbacks when it comes to dealing with
dynamic obstacle-avoidance issues. First, the A* algorithm must take into account global
path planning while doing a search, which increases computing complexity. Second, the A*
algorithm lacks real-time performance and cannot handle immediate changes in dynamic
obstacles. To address the limitations of the A* algorithm, researchers have introduced DWA
as a real-time path-planning and dynamic obstacle-avoidance method [8,9]. DWA selects
the best travel path by evaluating the trajectory within the motion window based on the

World Electr. Veh. J. 2023, 14, 213. https://doi.org/10.3390/wevj14080213 https://www.mdpi.com/journal/wevj

https://doi.org/10.3390/wevj14080213
https://doi.org/10.3390/wevj14080213
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/wevj
https://www.mdpi.com
https://doi.org/10.3390/wevj14080213
https://www.mdpi.com/journal/wevj
https://www.mdpi.com/article/10.3390/wevj14080213?type=check_update&version=3


World Electr. Veh. J. 2023, 14, 213 2 of 17

vehicle motion model and environment-aware information. This motion window-based
approach has real-time and low computational complexity for dynamic obstacle-avoidance
problems, but suffers from local optimality, resulting in low efficiency.

For the aforementioned issues, numerous improved algorithms have been put forth
by both domestic and international researchers. There are four main solutions based
on dynamic obstacle avoidance; the first is a variant of the A* algorithm. Tsatcha et al.
proposed an innovative dynamic routing method utilizing hexagonal lattices and the
Iterative Deepening A* (IDA*) algorithm, along with a front-end-to-front-end strategy using
dynamic graphs, which enhances data accessibility [10]. This approach reduces memory
usage but may result in higher search time. Huang et al. introduced a unique search
approach, Lifelong Planning A* (LPA*), which is a modified version of the A* algorithm [11].
This method dynamically adjusts to changing traffic conditions and utilizes previous search
outcomes to find the shortest path between a moving object and its destination. The
second is to use Artificial Potential Field (APF) [12,13]. In an improved APF that Zang et al.
presented, the distance parameter between the vehicle and the target point is introduced to
address the issue of unreachable targets in APF [14]. The repulsive potential field function
of the obstacle is optimized for the problem of unreachable targets in APF. Then comes the
use of DWA for obstacle avoidance, in an attempt to address the issues of poor stability
and excessive energy consumption of vehicle DWA, Lai et al. suggested a new enhanced
DWA that employs the function of distance as the weight of the target guidance coefficient
and suggests a new assessment function to maximize the azimuth angle [15]. Yang et al.’s
enhanced A and DWA proposal increased automatic parking for tracked cars’ accuracy
and speed [16]. Within a small deviation range, the place-to-park position has been greatly
optimized. Finally, using a prediction model, in unstructured situations with stationary
and moving impediments, Brito et al.’s method for local motion planning was developed.
They calculated a local trajectory based on an improved backward horizon approach that
avoids obstacles while reducing tracking errors given a reference path and speed [17]. A
four-wheeled MECANUM omnidirectional electric vehicle’s motion control in a dynamic
environment was researched by Azizi et al. [18]. The Kane approach was used to extract the
differential equations of motion for the electric car and transform them into discrete state
space form. A nonlinear model predictive control (NMPC) technique is created to stabilize
the electric vehicle at the intended position and direction based on the mathematical model
that is deduced from it. These methods address local dynamic obstacle avoidance from
different perspectives, but these methods have a common constraint that they do not
consider global path planning, and the use of APF or DWA may fall into local optimality,
leading to long search time and low efficiency in the path planning of electric logistics
vehicles. In addition, the prediction model cannot solve the problems that occur during
actual operation in time [19,20].

To overcome the issues with the A* algorithm and DWA and enhance the impact of
dynamic obstacle avoidance, this research suggests an enhanced A* fusion DWA algorithm.
This study proposes an innovative approach for path planning by combining the enhanced
A* algorithm with DWA. The upgraded A* algorithm improves obstacle avoidance and
reduces unnecessary nodes and turning angles. Subsequently, the DWA algorithm is
integrated with the enhanced A* algorithm to enable dynamic obstacle avoidance. The
fundamentals of the enhanced A* algorithm are introduced in Section 2. Section 3 combines
DWA with the enhanced A* algorithm. In MATLAB and ROS, simulation verification and
result analysis are carried out in Section 4 of this study to confirm the viability and efficacy
of the enhanced path planning method. The key research findings of this paper’s analysis
are summarized, along with predictions for future study trends.

2. Improved the A* Algorithm
2.1. A* Algorithm

In this study, we opt for the raster map approach [20]. Path planning and graph search
issues frequently use the A* algorithm, a heuristic search algorithm. It is effective and
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precise in determining the shortest route between the starting location and the desired
node. The fundamental idea behind the A* algorithm is to choose the next node to be
expanded by analyzing the nodes’ cost functions to incrementally find the best path [21,22].
In Equation (1), its expression is displayed:

f (n) = g(n) + h(n) (1)

where f (n) represents the anticipated cost from the starting point through n intermediate
nodes to the target node m, and n represents the current searched node. The cost function
consists of two components, the actual path length g(n) that has been traveled and the
heuristically estimated remaining path length h(n). h(n) is often chosen to be calculated by
Euclidean distance or Manhattan distance, and its corresponding expressions are shown in
Equations (2) and (3):

hEuclidean =
√
(xnode − xgoal)2 + (ynode − ygoal)2 (2)

hManhattan = |xnode − xgoal |+ |ynode − ygoal | (3)

where hEuclidean represents the Euclidean distance, hManhattan represents the Manhattan
distance, xnode and ynode represent the horizontal and vertical coordinates of the node, and
xgoal and ygoal represent the horizontal and vertical coordinates of the target point.

2.2. Improvement of Heuristic Function

First, the distance formula h(n) of the heuristic function is improved, from Equation
(1), g(n) is constant and the algorithm’s performance is significantly impacted by the value
of h(n), the smaller the h(n), the slower the search speed, but the accuracy of the search to
the optimal path is higher, on the contrary, the larger the h(n), the faster the search speed,
but there is a certain chance of not searching the optimal path. Therefore, in this paper,
based on the Euclidean distance and Manhattan distance, we propose the weighted average
distance, as shown in Figure 1, and the corresponding expression is shown in Equation (4):

hWA = (hEuclidean + β · hManhattan)/2 (4)

where hWA is the improved weighted average distance formula in this paper, and β is
the balance coefficient, which is used to reasonably allocate the advantageous proportion
between the Euclidean distance and the Manhattan distance, and β can be reasonably
adjusted in raster maps with different scales and different obstacle densities.

β ranges from 0 to 1. β can be appropriately enlarged when wanting to arrive at
the target point quickly, but it may not be able to find the optimal path and β can be
appropriately reduced when wanting to find the optimal path. β can be appropriately
reduced, but the search time may be too long, so it is necessary to appropriately adjust the
size of β according to the map environment to ensure that the algorithm’s final results are
well optimized.

Second, the heuristic function formula f (n) to improve the A* algorithm itself does
not consider the influence of obstacles, but in the actual operation process, obstacles play
a greater impact, the more obstacles, the need to increase the proportion of h(n), so the
heuristic function in the improvement of the distance formula based on the addition of the
obstacle rate P. The equation for the obstacle P is shown in Equation (5),the improvement
formula as shown in Equation (6):

P =
No

|xT − xN ||yT − yN |
(5)

f (n) = g(n) + eP · haverage(n) (6)
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where xT and yT are the horizontal and vertical coordinates of the target node, and xN and
yN are the horizontal and vertical coordinates of the current node, P is a proportion of the
number of obstacle grids to the number of all raster maps, No is the number of obstacles in
the raster map, and so forth.

x

y

Start node

Target node

Figure 1. Schematic of the three distance formulas.

2.3. Three Optimizations of the Path

(1) First path optimization: avoiding obstacle boundaries;
For the optimized path diagram shown in Figure 2a.The obstacle’s up and down nodes

are deleted when it is in the parent node’s left and right directions, and its left and right
nodes are deleted when it is in the parent node’s up and down directions. This method
can avoid the obstacle boundary perfectly, and the primary path optimization is shown in
Figure 2b.

(2) Second path optimization: remove redundant nodes in the path;
Start from the starting point to connect with other nodes in turn, if the three nodes

are in the same line, delete the second redundant node; find out whether there are any
impediments at the point where the two nodes link if they are not in a straight line, if
there are obstacles do not change the node, if there is no obstacle to change the node, the
secondary path optimization diagram is shown in Figure 2c.

(3) Third path optimization: reduce the turning angle.
To establish whether the distance between the connecting line and the obstruction

is larger than the predetermined safety distance, segmentation between the two nodes is
assessed, if greater than that point can be selected, if less than then stop selection. Three
times the path optimization is seen in Figure 2d.
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(a) (b)

(c) (d)

Figure 2. (a) Diagram of an unoptimized approach; (b) Primary path optimization diagram; (c) Sec-
ondary path optimization diagram; (d) Tertiary path optimization diagram.

3. Improved A* Algorithm to Fuse DWA
3.1. Dynamic Window Approach

To plan the trajectory of e-logistics vehicles, DWA, a route planning algorithm, is
typically used. DWA combines the dynamic window approach with robot motion dynamics
models and selects the best trajectory within the feasible window [23,24]. The kinematic
equations are shown in Equation (7). It enables electric logistics vehicles to generate real-
time safe and efficient paths in dynamic and unknown environments. This method has
been widely applied in the field of electric logistics vehicles and mobile robot navigation,
addressing to some extent the issue of high computational complexity in traditional path-
planning algorithms in dynamic environments. Figure 3a and Figure 3b depict the velocity
sampling space and the electric logistics vehicle motion model, respectively.

xt+1 = xt + vx∆t cos(θt)− vy∆t sin(θt)
yt+1 = yt + vx∆t sin(θt)− vy∆t cos(θt)

θt+1 = θt + w∆t
(7)

(1) Speed limit of electric logistics vehicles as in Equation (8):

Vm =
{
(v, w)|v = [vmin, vmax]

w ∈ [wmin, wmax]} (8)

where Vm denotes the speed of electric logistics vehicle, vmin, vmax denotes the minimum
and maximum linear speed, and wmin, wmax denotes the minimum and maximum angu-
lar speed.

(2) Electric logistics vehicles of their own conditions constraints as in Equation (9):

Vd = {(v, w)|v ∈ [vc − v̇b∆t, vc + v̇a]
w ∈ [wc − ẇb∆t, wc + ẇa∆t]} (9)
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where ∆t denotes the time interval vc, wc denotes the current velocity of the electric logistics
vehicle. v̇a and ẇa the maximum acceleration, v̇b and ẇa are the maximum deceleration.

(3) Electric logistics vehicle safety distance constraint as in Equation (10):

Va =
{
(v, w)|v ≤ (2dist(v, w)v̇b)

1/2, w ≤ (2dist(v, w)ẇb)
1/2} (10)

where dist(v, w) indicates when the electric logistics vehicle speed is (v, w), the speed of the
electric logistics vehicle operating trajectory is projected to be the nearest safety distance
from the obstacles [25].

(4) The following is a definition of the DWA evaluation function as in Equation (11):

G(v, w) = σ[αhead(v, w) + βdist(v, w) + γvel(v, w)] (11)

where head(v, w) denotes the difference between the azimuth of the current electric logistics
vehicle and the azimuth of the final target point. At speed (v, w), dist(v, w) represents the
distance between the expected trajectory of the electric logistics vehicle and the closest
barrier. vel(v, w) is used to calculate the electric logistics vehicle’s current velocity, θ is
the smoothing coefficient and α, β, γ are the weighting coefficients of the corresponding
functions.

(a) (b)

Figure 3. (a) Motion trajectory analysis diagram of electric logistics vehicle; (b) Speed sampling space.

Typically, the values for the three coefficients α, β and γ are in the interval of 0 to 1. α
represents the weight of heading score. If you want to have a shorter path and reach the
target point faster, you can increase the weight of the heading score, but you may enter the
dead end of the obstacles and cannot reach the target point. If you want to try to avoid the
obstacles in the direction of the line connecting the start point and the endpoint, you can
reduce the weight of the heading score, but the search time may be too long, so you need to
modify it according to the actual map situation.

(5) Setting of the DWA initial position formula as in Equation (12):

Sangle = arctan
ynode − ystart

xnode − xstart
(12)

where xnode and ynode represent the horizontal and vertical coordinates of the first selected
node, while xstart and ystart represent the coordinates of the starting point. Sangle denotes
the angle between the starting point and the next node. The setup of the initial position
formula allows the electric logistics vehicle to pre-rotate to an appropriate angle, facilitating
its operation, reducing the time required for path planning, and ensuring more accurate
navigation.

When improving DWA, the initial angle is an important consideration. The initial
angle in DWA is usually the current orientation of the electric logistics vehicle. In certain
specific application scenarios, the handling of the initial angle can significantly affect the
effectiveness of path planning. Before using the DWA algorithm, perform calibration of the
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initial angle. Rotate the electric logistics vehicle to align the radar with the mapping, and
then calibrate the initial angle of the electric logistics vehicle using Formula (12), ensuring
the accuracy of the initial orientation to avoid path-planning issues caused by incorrect
initial orientation.

3.2. Improved A* Algorithm Fused with Dynamic Window Approach

The A* algorithm is a global path-planning algorithm, which is often used for path
planning of electric logistics vehicles under known maps, and the improved A* algorithm
is a solution to the problems of the A* algorithm, which makes the algorithm more effective.
However, the A* algorithm cannot achieve dynamic obstacle avoidance, so it needs to join
the local path-planning algorithm [26]. The dynamic windowing approach can successfully
avoid local obstacles, but it is simple to settle for the local optimum and is unable to
produce the global optimum path. To achieve accurate destination and dynamic obstacle
avoidance, the global path-planning algorithm A* is paired with the local path-planning
algorithm dynamic window approach. The pseudo-code is shown in Algorithms 1 and 2.
The following are the precise steps for implementation:

1. First, we obtain the map information and convert the map into a raster(1) MAP =[
0 0 1 ... 0

]
, 0 denotes the doable area, while 1 denotes the area with obstacles;

2. Set the start point (xstart, ystart), target point (xtarget, ytarget) and the obstacle repre-
sentation, with the start point position marked as ∆ and the target position marked
as o;

3. For path planning, use the A* algorithm with an enhanced heuristic function to obtain
the global planning path Optimalpath = {Xi|i = 0, 1, 2, ..., n};

4. Based on improving the A * algorithm, further optimize the path three times, the first
time to achieve the path optimization of avoiding obstacle boundaries, and the path
Optimalpath1 = {Oi|i = 0, 1, 2, ..., m}; the second time to achieve the path optimization
of removing redundant nodes, and the path Optimalpath2 = {Pi|i = 0, 1, 2, ..., n}; the
third implementation of the path optimization to reduce the turning angle, to obtain
the optimized final path NewOptimalpath0 = {Wi|i = 0, 1, 2, ..., o};

5. Set unknown static obstacles and unknown dynamic obstacles Obsdj =
[
0 0 1 ... 0

]
,

put the newly generated temporary obstacles into CLOSED and display them on
the map;

6. Initialize the initial values of the maximum and minimum values, acceleration, and
evaluation function weights of the DWA algorithm’s electric logistics vehicle;

7. Run the DWA algorithm for speed sampling and search the predicted trajectory
Prepath = {PTi|i = 0, 1, 2, ..., k}, calculate the evaluation function according to the
predicted trajectory, and select the optimal path according to the evaluation function
Bestpath = {BTi|i = 0, 1, 2, ..., j};

8. The electric logistics vehicle proceeds to the end of the optimal path Bestpath and
determines whether the current node is the target point. If the current node is not the
target point, steps (7) and (8) are repeated until the electric logistics vehicle reaches
the target point. Figure 4 depicts the path-planning flowchart of the enhanced A*
fusion DWA algorithm.
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Algorithm 1: Improved A* Algorithm

Data: Get the grid MAP = [0 0 1 ... 0], current period t, initial the start
point (xstart, ystart) , selected node (xt, yt) and target point (xtarget, ytarget)

Result: Optimal path NewOptimalpath0 = {Wi|i = 0, 1, 2, ..., o}
1 OpenList← Empty priority queue with start as the only element
2 g(n)← |xt − xstart|+ |yt − ystart|
3 hWA(n)← (hEuclidean + β · hManhattan)/2
4 f (n)← g(n) + eP · hWA(n)
5 while (xt, yt) 6= (xtarget, ytarget) do
6 if ft+1(n)< ft(n) then
7 OpenList← (xt+1, yt+1);
8 else
9 OpenList← (xt, yt);

10 end
11 t← t + 1;
12 end
13 Optimalpath = {Xi|i = 0, 1, 2, ..., n} ← Path after first optimization
14 Optimalpath2 = {Pi|i = 0, 1, 2, ..., n} ← Path after second optimization
15 NewOptimalpath0 = {Wi|i = 0, 1, 2, ..., o} ← Path after third optimization

Algorithm 2: Improved A* Algorithm Integrated with DWA
Data: Get the optimized path NewOptimalpath0 = {Wi|i = 0, 1, 2, ..., o}, current

period d, initial the route destination (xd, yd), target point (xtarget, ytarget),
unknown obstacles Obsdj =

[
0 0 1 ... 0

]
, maximum speed vmax,

minimum velocity vmin, acceleration a and weighting factors α, β, γ
Result: Optimized final path Bestpath = {BTi|i = 0, 1, 2, ..., j}

1 while (xd, yd) 6= (xtarget, ytarget) do
2 Prepath = {PTi|i = 0, 1, 2, ..., k} ← Search for predicted trajectories
3 Bestpath = {BTi|i = 0, 1, 2, ..., j} ← Selection of the optimal path
4 d← d + 1;
5 end

4. Simulation Experiment Verification and Analysis

To verify the efficacy of the enhanced A* algorithm has been improved A* fusion DWA
algorithm, simulations were conducted in MATLAB2020b and RVIZ of ROS, respectively,
with the parameters listed in Table 1. After simulation experiments are concluded, the
obtained experimental results are analyzed.

Table 1. A* algorithm: key parameter settings.

Parameters Values

Maximum speed 2 m/s
Maximum rotation speed 20 rad/s

Maximum rotational acceleration 50 rad/s2

Time to simulate trajectory forward 3 s
Weighting of heading scores 0.05

Distance score weighting 0.2
Speed score weighting 0.5

To evaluate the performance of the enhanced A* algorithm, the A* algorithm, the
improved A* algorithm in the literature [5], the A* algorithm with improved heuristic
function without optimized folds in this paper, and the A* algorithm with improved
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heuristic function with optimized folds in this paper are simulated and verified in MATLAB
2020b for 20 × 20 map scene 1, 20 × 20 map scene 2, and 50 × 50 map scene, and the
experimental. The results are analyzed.

The simulation results in Figure 5 and Table 2 demonstrate that the improved A*
algorithm presented in this paper has been optimized further than the A* algorithm and
the improved algorithm presented in the literature [5]. In the 20 × 20 scene 1 raster map,
the number of turning points is decreased by 20%, the traversed nodes are decreased
by 18.51%, the path length is decreased by 8.99%, and the search duration is decreased
by 16.27%. In all four aspects, the efficacy of the enhanced algorithm was demonstrated.
In the 20 × 20 scenario 2 raster map, from Table 3 it is clear that the number of turning
points is decreased by 77.78%, the number of traversing nodes is decreased by 17.86%, the
path length is increased by 4.11%, and the search time is decreased by 21.58% due to the
bypassing of obstacle boundaries. Consequently, the improved A* path length is slightly
longer than the A* algorithm, but the number of traversing nodes, search time, and the
number of turning points are significantly decreased. Significant reductions are made to
the number of nodes traversed, the search duration, and the number of turning points. In
the 50 × 50 raster map, from Table 4 it is clear that the number of turning points, traversing
nodes, path length, and search time are reduced by 38.46%, 74.27%, 3.58%, and 75.88%,
respectively. With substantially fewer traversing nodes, shorter path lengths, shorter search
times, and fewer turning points, the improved algorithm is more efficient.

(a) (b)

(c)

Figure 5. Simulation validation of the improved A* algorithm (The figure references the 2017 article
by Cheng et al. for comparison [5]): (a) 20 × 20 map scene 1; (b) 20 × 20 map scene 2 (c) 20 × 20 map
scene 3.
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Table 2. Simulation experiment results (20 × 20 scene1).

Algorithm Name Turning Points
Number/Each

Number of Nodes
Traversed/Each Path Length/m Search Time/s

A* algorithm using Euclidean distance 5 108 27.0026 79.904031
Cheng 2017 proposed improvements to A* 8 247 27.9319 85.142965

A* algorithm with improved heuristic
function 5 172 26.0413 77.020405

A* algorithm with improved heuristic
function and optimized folds 4 88 24.8729 66.907335

Table 3. Simulation experiment results (20 × 20 scene 2).

Algorithm Name Turning Points
Number/Each

Number of Nodes
Traversed/Each Path Length/m Search Time/s

A* algorithm using Euclidean distance 9 112 23.3848 61.042
Cheng 2017 proposed improvements to A* 5 201 22.6624 109.136

A* algorithm with improved heuristic
function 5 95 25.7279 48.357

A* algorithm with improved heuristic
function and optimized folds 2 92 24.3454 47.867

Table 4. Simulation experiment results (50 × 50).

Algorithm Name Turning Points
Number/Each

Number of Nodes
Traversed/Each Path Length/m Search Time/s

A* algorithm using Euclidean distance 13 820 62.2548 491.858
Cheng 2017 proposed improvements to A* 12 1976 59.9827 1367.009

A* algorithm with improved heuristic
function 14 225 64.0122 118.024

A* algorithm with improved heuristic
function and optimized folds 8 211 60.0237 118.618

The DWA algorithm, the A* fusion DWA algorithm, the improved A* fusion DWA
algorithm from the literature [27] and the improved A* fusion DWA algorithm from this
paper are validated through simulations. The simulation comparison image in Figure 6
demonstrates that the improved algorithm presented in this paper not only avoids the
original obstacle boundary, but also can avoid unknown static and dynamic obstacles, and
is the shortest and smoothest one among all paths, therefore proving the effectiveness of
the improved algorithm.

From Figure 6 above, we can learn that all four algorithms can perfectly avoid the
static obstacles that appear, but the A* fusion DWA algorithm is ineffective and does not
improve compared to the DWA algorithm; the literature [27] has a considerable reduction
in both path length and search time; the improved A* fusion DWA algorithm presented
in this paper has the shortest path length and the least amount of search time. and the
improvement is significant, with a reduction in path length of 8.99%, and the search time is
reduced by 16.27%. From Tables 5 and 6, we can know that for unknown dynamic obstacles,
The A* fusion DWA algorithm and the algorithm of literature [27] to improve the A* fusion
DWA both shorten the path length, but the search time is longer, whereas this paper to
improve the A* fusion DWA algorithm not only reduces the path length but also the search
time significantly, the path length is shortened by 13.30% and the search time is reduced by
15.66%, and both simulation experiments demonstrate that this improvement is effective.
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(a) (b)

(c)

Figure 6. Comparison Chart of Path Planning using DWA (The figure references the 2020 article by
Wu et al. for comparison [27]): (a) Process for improving the A* fusion DWA algorithm; (b) Static
obstacle path-planning diagram; (c) Dynamic obstacle path-planning diagram.

Table 5. Operational data for the DWA algorithm as well as the fusion algorithm (Static obstacle
avoidance).

Algorithm Name Path Length/m Search time/s

Dynamic Window Approach 27.0026 79.904031
A* Algorithm Fusion DWA 27.9319 85.142965

Improved A* Fusion DWA proposed by Wu 2020 26.0413 77.020405
In this paper, we improve the A* algorithm to fuse DWA 24.5729 66.907335

Table 6. Operational data of the DWA algorithm as well as the fusion algorithm (dynamic obstacle
avoidance).

Algorithm Name Path Length/m Search time/s

Dynamic Window Approach 28.4446 79.300621
A* Algorithm Fusion DWA 25.4588 94.402967

Improved A* Fusion DWA proposed by Wu 2020 26.3942 88.878559
In this paper, we improve the A* algorithm to fuse DWA 24.6606 66.881723

As shown in Figure 7 above, the side plot of Figure 7 shows obstacle avoidance under
unknown static obstacles, and the right plot shows obstacle avoidance under unknown
static and dynamic obstacles. Figure 7a is the angular velocity graph of the four algorithms
of the electric logistics vehicle; from the graph, it can be seen that the angular velocity
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of the improved algorithm in this paper has the fastest convergence speed among all the
algorithms and is the most stable at the same time. Figure 7b is the linear velocity graph
of the algorithm of the electric logistics vehicle; from the graph, it can be seen that the
angular velocity of the algorithm in this paper is the fastest convergence speed among all
the algorithms. From the pose angle of Figure 7c, it can be seen that the improved algorithm
has a smooth pose and reaches the target point faster. The three angle comparison graphs
above demonstrate that the A* fusion DWA algorithm presented in this paper is effective.

(a)

(b)

(c)

Figure 7. Comparing the linear velocity, angular velocity, and attitude angle of various algorithms
(unknown static and dynamic obstacles. (The figure references the 2020 article by Wu et al. for
comparison [27]) : (a) Angular velocity diagram of four algorithms electric logistics vehicle; (b) Linear
velocity diagram of four algorithms electric logistics vehicle; (c) Attitude angle diagram of four
algorithms electric logistics vehicle.
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Simulation Verification of RVIZ in ROS

First, the simulation was verified in RVIZ in the ROS system. The same 20 × 20 map
as MATLAB was built with GAZEO, and then the map in RVIZ was obtained by slam
building as shown in the Figure 8.

Table 7 shows the main parameter settings of the A* algorithm fusing DWA.From the
three path-planning graphs in Figure 8, it can be observed that the improved A* algorithm
has fewer turning points compared to the traditional A*. Furthermore, the integration of
the improved A* algorithm with the DWA algorithm results in smoother paths and smaller
turning angles compared to the traditional A* algorithm. This evidence demonstrates the
effectiveness of the improved algorithm. Figure 9 shows the path-planning maps after
SLAM-based mapping. The left map displays the path-planning results using the original
algorithm, while the right map represents the path-planning results using the improved
algorithm. A comparison between the two maps reveals that the modified algorithm
not only avoids perfect convergence to the target point but also achieves smoother local
path planning while avoiding obstacles. The path-planning maps obtained through both
simulation and actual mapping confirm the effectiveness of the proposed algorithm in
this paper.

Table 7. A* Algorithmic Fusion DWA: key parameter settings.

Parameters Values

Initial position (−1.95, −1.95, 0)
Initial target point (13.5, 16.5, 90)
Straight line width 0.05

(a) (b) (c)

Figure 8. Three algorithms path-planning diagram: (a) A* algorithm path-planning diagram; (b) Im-
proved A* algorithm path-planning diagram; (c) Improved A* algorithm fused with DWA algorithm
path-planning diagram.
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(a) (b)

Figure 9. SLAM mapping path-planning map: (a) Unimproved algorithm path-planning map;
(b) Improved algorithm path-planning map.

The blue dots in Figure 9 indicate the location of the target points, "1" indicates the
first target point, and the black arrows represent the orientation of the electric transporter
at the target point.

5. Conclusions

In this paper, a new algorithm to improve A* fusion DWA is proposed for the problem
that the path is not smooth and cannot be dynamically avoided when the A* algorithm is
used alone for electric logistics vehicles and the problem that the global optimum cannot
be considered when the DWA algorithm is used alone.

(1) The enhanced A* algorithm is used by the global path-planning algorithm. Improv-
ing the heuristic function of the A* algorithm can reduce the number of path nodes that
require judgment, therefore decreasing the time required for electric logistics vehicles to
find the optimal route. In three-fold optimization of the path, primary path optimization
can avoid the obstacle boundary; secondary discount optimization can eliminate redundant
path nodes, and the third path optimization can reduce the path’s turning angle. The
improved A* algorithm increases the electric logistics vehicle’s operational efficacy.

(2) The DWA algorithm is utilized by the local path-planning algorithm. The improved
A* algorithm is integrated with the DWA algorithm, and the globally optimal path is first
obtained using the improved A* algorithm, then the generated path collection points are
used as sub-target points of the DWA algorithm, and finally, the DWA algorithm is executed
to search the predicted path from the speed sampling space to generate the final electric
logistics vehicle driving path.

(3) Simulation experiments are conducted in MATLAB and RVIZ of ROS, and the
simulation results show that while achieving global path optimality, path smoothing can be
allowed to achieve local dynamic obstacle avoidance. The algorithm based on the improved
A* algorithm fused with DWA not only reduces the path length by 4.56% while the path is
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smooth and can avoid dynamic obstacles compared to the A* algorithm but also reduces
the path length by 8.99% and the search time by 16.26% compared to the DWA algorithm.
Real-world operation results demonstrate that the enhanced A* fusion DWA algorithm is
effective and practicable and that the fused algorithm outperforms the A* algorithm and
the DWA algorithm.

This article combines both the A* algorithm and the DWA algorithm, which may
result in a relatively high computational load in complex environments. However, it
enhances robustness, as the A* algorithm performs well in static environments but may
encounter issues in dynamic or partially observable environments. On the other hand,
DWA is more robust in local motion planning but exhibits higher uncertainty in global
path planning. Therefore, integrating both algorithms may strengthen their robustness.
Additionally, the choice of parameters has an impact on both the computational load and
robustness of the algorithm. Thus, careful tuning of these parameters is necessary for
practical implementations to strike a balance between computational load and robustness.
Further improvements and refinements to this integrated algorithm will be pursued in the
future.
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