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Abstract: In recent years, permanent magnet synchronous motors (PMSMs) have been widely used
in industry. Position-sensorless control has the advantages of reducing costs and improving relia-
bility, and is becoming one of the most promising technologies for permanent magnet synchronous
motors. This article reviews the main position-sensorless technologies. The advantages and disad-
vantages of model-based and saliency-based techniques were summarized and compared. Finally,
the developmental trends and research directions of position-sensorless technology were discussed.

Keywords: permanent magnet synchronous motor (PMSM); sensorless control; model-based method;
saliency-based method

1. Introduction

Due to global warming and the energy crisis, new energy vehicles with fewer emis-
sions, less pollution, and higher energy conversion efficiency are increasingly favored by
governments and enterprises worldwide [1–4]. Permanent magnet synchronous motors
(PMSMs) have been widely used in the industry due to the advantages of high power
density, high efficiency, and a rapid control response [5–11].

A PMSM drive system is a typical nonlinear control system. To obtain good control
performance, field-oriented control (FOC) [12–17], direct torque control (DTC) [18–25],
sliding mode control (SMO) [26–33], and model predictive control (MPC) [34–44] have
been used to improve the control performance of PMSMs. In [21], a novel DTC control
strategy was proposed, which used the torque error square minimization technique to
determine the duty cycle, thereby reducing the ripple size of the PMSM. As for the design
of the observer, the work of [29] studied the main problems and developmental trends of
the observer. As an efficient control strategy, MPC is used more and more widely. The
authors of [35] proposed a sensorless control MPCC control scheme which enhanced the
robustness of the system and improved the accuracy of estimating the rotor’s position.

However, these control methods need accurate information on the rotor’s position
and speed, and the acquisition of the rotor’s position signals relies on mechanical sensors.
Installing mechanical sensors not only increase the manufacturing costs and complexity of
the system but also reduce the operating reliability of the system under extreme conditions.
To solve this issue, sensorless control schemes have been invented. Sensorless control
technology uses specific algorithms to estimate the rotor’s position and speed by detecting
relevant signals in the motor’s windings. This control scheme has gradually become a
trend in the development of PMSM control systems.

Over the past few decades, researchers have developed sensorless control techniques
for a wide range of speeds from zero to high speed. Figure 1 shows the classification of
sensorless technology approaches. Depending on the operating speed, sensorless control
schemes can be divided into two categories: model-based methods [45–111] and saliency-
based methods [112–167]. When the motor operates in the medium- to high-speed range, a
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model-based approach is used. These mainly include two schemes: back-EMF estimation
and flux linkage estimation. However, when the motor is running at low or zero speeds,
due to factors such as modeling uncertainty and the nonlinearity of the inverter, the
signal-to-noise ratio of the useful signal is very low and it is difficult to extract, so the
model-based method does not work well at low speeds. People usually use the method
of high frequency signal injection to obtain information on the rotor’s position. High-
frequency signals mainly include rotating high-frequency voltage signals and pulsating
high-frequency voltage signals.
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Due to the increasing application of position-sensorless control, this article intro-
duces the most advanced position-sensorless control technologies of permanent magnet
synchronous motors from the perspective of technological development. The main contribu-
tion is that it summarizes the research status of different methods, as well as the problems
and plans for improvement of each method. Essentially, we explored and researched
position-sensorless control methods. The feasibility, versatility, and effectiveness of these
methods were analyzed and summarized. We also explored the future development and
research directions of position-sensorless sensing.

The rest of this article is organized as follows. The Section 2 introduces the drive
system of permanent magnet synchronous motors and the basic principles of sensorless
control. In the Section 3, various sensorless control methods are introduced. The Section 4
discusses the developmental trends and research direction of position-sensorless sensing.
The fifth section is the conclusion of this article.

2. The Composition of PMSM Drive Systems Based on Sensorless Control
2.1. Structure and Mathematical Model of PMSM Systems

Figure 2 shows the structure of a typical PMSM drive system, which mainly includes
the current loop and hardware facilities. The hardware facilities include inverter, permanent
magnet synchronous motor, power supply and various sensors, while the current loop
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is composed of two PI controllers. The operation of the permanent magnet synchronous
motor requires an accurate position of the rotor and usually requires position sensors (such
as photoelectric encoders and Hall sensors) to obtain accurate information on the rotor’s
position, and then accurately control the motion state of the motor. The position-sensorless
method can eliminate the position sensor, estimate the rotor’s position and speed through
a specific algorithm, and enhance the stability of the system.
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In a typical control block diagram, information on the rotor’s position and speed are
obtained by sensors, information on the angle is used for transformation of the coordinates,
and information on the speed is used for the speed loop PI controller. The precise operation
of the motor is inseparable from accurate information on the rotor’s position and speed.

To better control the operation of the motor, the mathematical model of the permanent
magnet synchronous motor can be written as[

ud
uq

]
= R

[
id
iq

]
+

d
dt

[
ψd
ψq

]
+ ωe

[
−ψq
ψd

]
(1)

where ud, id and ψd represent the voltage, current, and magnetic flux on the d-axis, re-
spectively; iq, uq and ψq represent the current, voltage, and magnetic flux on the q-axis,
respectively; ωe is the electrical angular velocity; and R is the stator resistance. ψq and ψd
can be expressed as [

ψd
ψq

]
=

[
Ld
Lq

][
id
iq

]
+

[
ψ f
0

]
(2)

where Ld and Ld are the stator inductance of the dq axis, and ψf is the permanent magnet
flux linkage.

The electromagnetic torque equation of the motor is expressed as shown in Equation (3),
and the mechanical equation can be expressed as Equation (4).

Te =
3
2

pniq
[(

Ld − Lq
)
id + ψ f

]
(3)
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J
dωm

dt
= Te − TL − Bωm (4)

where pn is the number of pole pairs, J is the rotational inertia, B is the damping coefficient,
ωm is the mechanical angular velocity, and Te and TL are the electromagnetic torque and
the load torque, respectively.

It is worth noting that these equations and parameters are significant for sensorless
control because information on the rotor’s position is included in some parameters.

2.2. Analysis of the Sensorless Control Principle

To achieve a high-performance PMSM control system, it is generally necessary to
obtain accurate information on the rotor’s position and speed from the position sensor, but
when the working conditions of the motor are harsh, the mechanical sensor may cause
errors or even damage, and the sensorless control method can avoid the shortcomings
of the mechanical sensor. Sensorless control technology detects the electrical signal in
the motor’s winding and uses the corresponding algorithm to extract the rotor’s position
and speed.

In the model-based sensorless control methods, the back-EMF or flux linkage contains
information on the rotor’s position and speed. The following analysis extracts the rotor’s
position from the back-EMF.

If we rewrite the voltage equation of the PMSM, the voltage equation of the motor in
the stationary coordinate system is[

uα

uβ

]
=

[
R + pLd ωe(Ld − Lq)
−ωe(Ld − Lq) R + pLd

][
iα

iβ

]
+

[
Eα

Eβ

]
(5)

where uα and iα represent the voltage and current on the α-axis, respectively; uβand iβ

represent the voltage and current on the β-axis, respectively; Ldand Lq are the inductance
components of the dq axis; p is the differential operator; and Eα and Eβ are the extended
back-EMF. Eα and Eβ can be expressed as[

Eα

Eβ

]
= [(Ld − Lq)(ωeid − piq)+ωeψ f ]

[
− sin θe

cos θe

]
(6)

where θe is the electrical angle.
It can be seen from Equation (6) that the information on the rotor’s position θe is

included in the extended back-EMF. Therefore, only by obtaining the back-EMF accurately
can the information on the speed and position of the motor be calculated. In general, to
obtain an accurate back-EMF, the sliding mode observer method or the model reference
adaptive method can be used. Taking the sliding mode observer as an example, by de-
signing the control law of the sliding mode observer, the error can be zero. At this time,
the state variable of the observer reaches the sliding mode’s surface. According to the
equivalent control principle of sliding mode control, the level of control at this time can be
regarded as an equivalent level of control, that is, the estimated back-EMF is equal to the
actual back-EMF.

After obtaining the accurate counter electromotive force, the information on the rotor’s
position, angle, and speed can be obtained after some technical processing. Among these
technologies, the arctangent method and the phase-locked loop method are the most mature.
Among them, the arctangent method usually requires angle compensation, because the use
of a low-pass filter will cause a phase delay, which will directly affect the accuracy of the
estimated position of the rotor. Compared with the arctangent method, the phase-locked
loop method has no phase delay problem. These two methods can obtain the estimated
position angle, and by differentiating the position angle θe, the rotor’s speed can be obtained.
At this time, the information on the rotor’s position and the rotational speed of the motor
are known quantities, and the motor can realize high-performance control.
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However, when the motor is running at zero speed or low speed, the model-based
method is not available. To obtain accurate information on the rotor’s position at zero
speed and low speed, the high-frequency signal injection method is an effective method.

A transformation of Equation (1) into the stationary coordinate system can be ex-
pressed as [

uα

uβ

]
= R

[
iα

iβ

]
+

d
dt

[
ψα

ψβ

]
(7)

[
ψα

ψβ

]
=

[
L + ∆L cos 2θe
−∆L sin 2θe

−∆L sin 2θe
L − ∆L cos 2θe

][
iα
iβ

]
+ ψ f

[
cos θe
sin θe

]
(8)

where L = (Ld + Lq)/2 is the average inductance and ∆L = (Lq − Ld)/2 is half the differen-
tial inductance.

We define the inductance matrix Lαβ in the static coordinate system as

Lαβ =

[
L + ∆L cos 2θe
−∆L sin 2θe

−∆L sin 2θe
L − ∆L cos 2θe

]
(9)

It can be seen from Equation (9) that the inductance matrix contains the information
on the rotor’s position θe.

According to the different injection reference frames, the current main high-frequency
signal injection is divided into the rotation signal and the pulse vibration signal.

The high-frequency signal injection method is very suitable for controlling a low-
speed motor because of its simple implementation and does not depend on the internal
parameters of the motor. However, in the process of signal processing, the use of LPF will
reduce the response bandwidth of the whole system, so that the dynamic performance of
the system is insufficient, and the precision of control is not high. In addition, because
the signal injection needs to consume part of the DC bus voltage, as the motor’s speed
increases, its performance will also decrease.

Through a brief introduction and analysis of sensorless technologies, it was found that
they have many problems. Through in-depth studies of sensorless technologies, more and
more researchers have made contributions to improving the performance of motor drive
systems. The latest sensorless control methods are described in detail in the next section.

3. An Overview of the Recent Developments in Sensorless Methods of PMSM

The current sensorless control technologies of PMSM are mainly divided into two
categories, namely, model-based methods and salience-based methods. The former are
mainly used in the high-speed range of the motor, while the latter are mainly used in the
zero-speed and low-speed ranges. This section presents the latest research results regarding
these two methods in detail.

3.1. Model-Based Sensorless Methods

Most of the model-based sensorless control techniques can generally be divided into
two steps. The first step is estimating the back-EMF or flux linkage, and the second
step is observing the position or velocity. The techniques used for estimating the back
electromotive force and flux linkage in the first step are relatively mature and can be divided
into open-loop methods and closed-loop methods. In the second step, the law needs to be
constructed so that the error is zero. When the estimated error of back-EMF and flux linkage
tends to zero, the estimated values of back-EMF and flux linkage are equal to their actual
values, and then the position and speed of the motor’s rotor can be calculated. To improve
the performance of estimation, researchers have invented techniques such as the sliding
mode observer (SMO) [26–33,45–52], the model reference adaptive system (MRAS) [53–66],
the extended Kalman filter (EKF) [67–85], and the state observer (SO) [100–111]. These
techniques are described in detail below.
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3.1.1. Sliding Mode Observer

Sliding mode control is a control strategy of variable-structure control systems. The
difference between this control strategy and the conventional control strategy is the discon-
tinuity of control, that is, the discrete switch control of the sliding mode observer will cause
chattering. To reduce chattering, different improvement schemes have been proposed.

The traditional SMO uses the sign function as the switch function, and some re-
searchers have made modifications to the switch function. For example, the sign function
can be replaced by the sigmoid function [48], or the super-twisting function [27,45], and the
hyperbolic tangent function [30] can be used instead of the sign function. Experiments have
shown that these functions can effectively reduce chattering as the switching functions.

In addition to their contribution to reducing the chattering problem, researchers
have also improved the performance of the SMO in other ways. For example, when the
motor has been running for a long time, the motor’s parameters (the stator’s resistance,
the stator’s inductance, etc.) may change, which will cause a mismatch between the set
value and the actual value, affecting the accuracy of the estimation and even affecting the
stability of the system. To solve this kind of problem, in [45], a second-order sliding mode
observer for estimating the online stator’s resistance was proposed. Through estimating
the online stator’s resistance, the change in resistance due to a change in temperature can
be considered, which improves the robustness of the system.

In terms of improving the robustness of the system [27–29,47–50], some have proposed
an adaptive algorithm for online adjustment of the sliding mode’s coefficients [27]. The
proposed adaptive algorithm can reduce the error in estimating the position and improve
the estimated accuracy of sensorless technologies. In [29], a novel compound discrete-time
sliding mode observer based on the stator’s flux state was designed, which could simul-
taneously estimate the disturbance of the flux parameter, the error in the rotor’s position,
and the load torque. The influence of the disturbance of the flux linkage parameter on the
estimation error was eliminated, and the robustness of the system was greatly improved.
In addition, some people have studied the parameter uncertainty of PI control [50] and
proposed a model-free speed controller based on a hyperlocal model, which has strong
control over the uncertainty of the motor’s parameters. A new method was developed
in [47] to linearize the nonlinear model of a PMSM near the operating point using DO
to estimate the load torque and back-EMF. The operating point was updated using DO,
and a state feedback controller (SFC) was designed, similar to the gain-scheduled method.
Experiments showed that this method enhanced the robustness and dynamic performance
of the system. Figure 3 shows a control block diagram of the method.

World Electr. Veh. J. 2023, 14, x FOR PEER REVIEW 7 of 21 
 

SVPWM

PMSM

Anti-parkProposed 

Controller

SMODO Park Clark

i

i


* 0di =



*

r

 

Figure 3. Block diagram of a sensorless control system based on a disturbance observer [47]. 

3.1.2. Model Reference Adaptive Systems 

Model reference adaptive systems (MRAS) are types of adaptive systems. They in-

clude three parts, namely, the adjustable model, the reference model, and the adaptive 

rate. A block diagram of the structure of a MRAS is shown in Figure 4.  

Reference 

model

Adjustable 

model

Parameter 

adaptive rate

u

x

x

+

_
E

 

Figure 4. Control block diagram of a model reference adaptive system. 

In addition to being used in sensorless control, the model reference adaptive system 

can also be applied to the identification of parameters to enhance the robustness of the 

system. In [54], a sensorless control strategy using an MRAS observer was proposed. The 

proposed MRAS observer could automatically adjust the PI according to the magnitude 

of the current error variable, and the accuracy of the estimated resistance was greatly im-

proved, which enhanced the robustness of the system. Moreover, the author proposed a 

voltage compensation method based on a disturbance observer that was, in turn, based 

on the voltage distortion problem of the voltage source inverter, which improved the per-

formance of the system. The disadvantage was that the system includes two observers, 

the design is relatively complicated, and the required computing power of the hardware 

is relatively high. Other researchers have used the MRSA observer to estimate the stator’s 

resistance [55,56]. Regarding the voltage distortion problem of the voltage source inverter 

[60,62,64,77], ref. [60] proposed a MRAS-based adaptive second-order active flux linkage 

observer (ASO-AFO) and a MRAS-based VSI nonlinear compensation method. The 

Figure 3. Block diagram of a sensorless control system based on a disturbance observer [47].



World Electr. Veh. J. 2023, 14, 212 7 of 21

3.1.2. Model Reference Adaptive Systems

Model reference adaptive systems (MRAS) are types of adaptive systems. They include
three parts, namely, the adjustable model, the reference model, and the adaptive rate. A
block diagram of the structure of a MRAS is shown in Figure 4.
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In addition to being used in sensorless control, the model reference adaptive system
can also be applied to the identification of parameters to enhance the robustness of the
system. In [54], a sensorless control strategy using an MRAS observer was proposed. The
proposed MRAS observer could automatically adjust the PI according to the magnitude
of the current error variable, and the accuracy of the estimated resistance was greatly
improved, which enhanced the robustness of the system. Moreover, the author proposed a
voltage compensation method based on a disturbance observer that was, in turn, based
on the voltage distortion problem of the voltage source inverter, which improved the
performance of the system. The disadvantage was that the system includes two observers,
the design is relatively complicated, and the required computing power of the hardware
is relatively high. Other researchers have used the MRSA observer to estimate the sta-
tor’s resistance [55,56]. Regarding the voltage distortion problem of the voltage source
inverter [60,62,64,77], ref. [60] proposed a MRAS-based adaptive second-order active flux
linkage observer (ASO-AFO) and a MRAS-based VSI nonlinear compensation method.
The nonlinearity of the voltage source inverter will lead to harmonic components of the
current, which will cause noise, power loss, and additional heating problems. In the study
by [60], the root mean square (RMS) value of the cross-product was selected as the objective
function, and the voltage was compensated by minimizing the objective function.

In addition to using the MRAS observer alone for estimation of the motor’s parameters,
some researchers have developed a new method combining artificial intelligence algorithms
and MRAS observers [58]. They used the gray wolf algorithm (GWO) to adapt the speed
obtained by the MRAS. The proportional–integral (PI) controller parameters of the law
were optimized, which enhanced the robustness of the system and improved the accuracy
of estimating the rotor’s position and speed.

3.1.3. Extended Kalman Filter

The extended Kalman filter is an adaptive system and is also a nonlinear random ob-
server. The parameters or disturbance of the permanent magnet synchronous motor can be
estimated online, so the observer’s parameters can be adjusted in real time, and the system
can be controlled in real time, which improves the performance of the control system.

The EKF can be used for online estimation of the parameters of permanent magnet
synchronous motors. The design of the EKF is divided into two steps. The first step is to
predict the state vector, and the second step is to correct the predicted state vector. It is
worth noting that near zero speed, as the stator’s voltage becomes smaller, the state vector’s
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estimation error will increase, and the system will lose its controlling ability, so the EKF is
not available at low speeds.

In addition to using the EKF to estimate the information on the rotor’s position
and speed, most people have used the EKF for online parameter estimation [74,75,77,82].
In [77], two EKF-based online parameter identification schemes were proposed, and a
general formulation for online parameter estimation was proposed, which can be applied
to any electrical parameter. There was an obvious improvement in identifying the stator’s
resistance, and it took the influence of noise on the system into account, improving the
robustness of the system. Figure 5 shows a structural block diagram of a double extended
Kalman filter. In addition to online estimation of the stator’s resistance and inductance, the
estimation of the rotor’s flux linkage has also been studied [78]. In addition, some have
combined the EKF and adaptive linear active disturbance rejection control [75] to form a
degree-of-freedom control strategy, which performed well in terms of dynamic response
and antidisturbance performance. However, the shortcomings are also obvious, such as the
complex structure, the large amount of calculation, and the relatively expensive cost.

World Electr. Veh. J. 2023, 14, x FOR PEER REVIEW 8 of 21 
 

nonlinearity of the voltage source inverter will lead to harmonic components of the cur-

rent, which will cause noise, power loss, and additional heating problems. In the study by 

[60], the root mean square (RMS) value of the cross-product was selected as the objective 

function, and the voltage was compensated by minimizing the objective function. 

In addition to using the MRAS observer alone for estimation of the motor’s parame-

ters, some researchers have developed a new method combining artificial intelligence al-

gorithms and MRAS observers [58]. They used the gray wolf algorithm (GWO) to adapt 

the speed obtained by the MRAS. The proportional–integral (PI) controller parameters of 

the law were optimized, which enhanced the robustness of the system and improved the 

accuracy of estimating the rotor’s position and speed. 

3.1.3. Extended Kalman Filter 

The extended Kalman filter is an adaptive system and is also a nonlinear random 

observer. The parameters or disturbance of the permanent magnet synchronous motor 

can be estimated online, so the observer’s parameters can be adjusted in real time, and the 

system can be controlled in real time, which improves the performance of the control sys-

tem. 

The EKF can be used for online estimation of the parameters of permanent magnet 

synchronous motors. The design of the EKF is divided into two steps. The first step is to 

predict the state vector, and the second step is to correct the predicted state vector. It is 

worth noting that near zero speed, as the stator’s voltage becomes smaller, the state vec-

tor’s estimation error will increase, and the system will lose its controlling ability, so the 

EKF is not available at low speeds. 

In addition to using the EKF to estimate the information on the rotor’s position and 

speed, most people have used the EKF for online parameter estimation [74,75,77,82]. In 

[77], two EKF-based online parameter identification schemes were proposed, and a gen-

eral formulation for online parameter estimation was proposed, which can be applied to 

any electrical parameter. There was an obvious improvement in identifying the stator’s 

resistance, and it took the influence of noise on the system into account, improving the 

robustness of the system. Figure 5 shows a structural block diagram of a double extended 

Kalman filter. In addition to online estimation of the stator’s resistance and inductance, 

the estimation of the rotor’s flux linkage has also been studied [78]. In addition, some have 

combined the EKF and adaptive linear active disturbance rejection control [75] to form a 

degree-of-freedom control strategy, which performed well in terms of dynamic response 

and antidisturbance performance. However, the shortcomings are also obvious, such as 

the complex structure, the large amount of calculation, and the relatively expensive cost. 

Parameter prediction

State correction 

Parameter correction

State prediction 

State filter

Parameter filter

ky1ku −

1kx −

1kp −

| 1k kp −

| 1k kx −

kx

kp

 

Figure 5. Control block diagram of double extended Kalman filter. Figure 5. Control block diagram of double extended Kalman filter.

From the content above, we can see that many researchers have used the extended
Kalman filter and model reference adaptive systems for online parameter estimation.
Table 1 shows a comparison of the online parameter identification methods.

Table 1. Comparison of online parameter identification methods for PMSMs.

Methods Accuracy Complexity Advantage Disadvantage

MRAS Medium Medium Wide speed range Sensitive to noise

RLS Medium Medium
Easy to implement,
the small amount of

calculation
Low accuracy

EKF High High Less impact of
measurement noise

Complex
computation

Neural
network High High High accuracy Complex

computation

3.1.4. State Observer

Many scholars have used the state observer (SO) for the sensorless control of the
PMSM drive system, mainly to enhance the robustness of the system. The most widely
used state observer is the extended state observer (ESO) [102–111]. The ESO is an important
part of active disturbance rejection control. It has high precision and is independent of the
controlled object model.
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The ESO is usually used to estimate the total disturbance [105,108], which generally
includes the rotor’s flux, load torque, and unmodeled nonlinear disturbances. In [105], the
ESO was combined with sliding mode speed control (SMSC), and the control law of SMSC
was updated in real time by the estimated total disturbance, which greatly improved the
accuracy and robustness to disturbance of the system.

3.2. Saliency-Based Sensorless Methods

The model-based methods above are only suitable for motors running at medium
and high speeds. When the motor is running at low speeds, the model-based methods are
not available due to the low signal-to-noise ratio. Therefore, in the low-speed range, the
sensorless control method should use a significance-based method. The saliency-based
methods mainly utilize the position-dependent inductance signal in the stator’s winding to
realize this, e.g., Equation (9).

The saliency-based methods mainly include two categories. One includes the high-
frequency signal (HF) injection methods, and the other includes the fundamental pulsewidth
modulation (PWM) excitation (FPE)-based methods. Among them, the high-frequency
signal injection method is divided into rotation signal injection and pulse vibration signal
injection. These methods are described in detail below.

3.2.1. Rotating Signal Injection

The injected high-frequency voltage signal can be expressed as

Uin =

[
uαh
uβh

]
= Uin

[
cos(ωht)
sin(ωht)

]
(10)

where ωh is the frequency of the injected high-frequency signal and Uin is the amplitude of
the high-frequency signal.

After injecting a high-frequency voltage signal, the corresponding equation of the
current is [

iαh
iβh

]
=

[
Isp sin(ωht) + Isn sin(−ωht + 2θe)

−Isp cos(ωht)− Isn cos(−ωht + 2θe)

]
(11)

where Isp and Isn are the positive and negative terms of the high-frequency response
current, respectively.

Formula (11) can be transformed to the stationary coordinate system as follows:[
idh
iqh

]
=

[
Isp sin(2ωht) + Isn sin(2θe)

−Isp cos(2ωht)− Isn cos(2θe)

]
(12)

After obtaining Formula (12), only a low-pass filter is needed to extract the information
on the rotor’s position.

Figure 6 is a basic block diagram of the rotating high-frequency signal injection
method. There are two typical methods based on rotating high-frequency signal injection,
namely, the negative-sequence current method [118–124] and the zero-sequence voltage
method [125–127]. Both methods are described below.

The phase of the negative-phase-sequence’s high-frequency current component con-
tains information on the rotor’s position, but to obtain accurate information on the rotor’s
position, signals such as low-order harmonic currents and the positive-phase-sequence’s
high-frequency currents must be filtered out. The band-pass filter can remove harmonic
currents, and the synchronous shafting high-pass filter can remove the positive-phase-
sequence’s high-frequency current. A new method of extracting the rotor’s position was
proposed in [118], which extracts the information on the rotor’s position from the relation-
ship between the injected voltage and the induced current, and can also be calculated by
using the induced current envelope using an all-pass filter. In this method, there is no time
delay and the dynamic performance is improved.
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The zero-sequence voltage method was used in [126] for sensorless control of a PMSM.
Unlike the conventional high-frequency injection method, the proposed method works on
an estimated reference frame with twice the estimated electrical angular velocity of the rotor
during anticlockwise rotation. This method is more robust in terms of signal demodulation
and produces a carrier response amplitude that is independent of the injection frequency.

3.2.2. Pulsating Signal Injection

The pulsating signal injection method is another effective saliency-based sensorless
control scheme. According to the different injected signals, these methods can be divided
into two categories: pulsating sinusoidal injection [128–135] and pulsating square wave
injection [143–156].

Unlike the rotating HF voltage injection method, the pulsating HF voltage injection
method can only inject HF signals on the d-axis of the estimated synchronous rotating
coordinate system. To estimate the rotor’s position accurately, an estimated synchronous
rotation coordinate system of the rotor is established.

Similar to the rotation signal, the injected pulsating high-frequency signal can be
expressed as

Uin =

[
ud̂h
uq̂h

]
= Uin

[
sin(ωht)

0

]
(13)

where Uin is the amplitude of the HF signal, and the symbol “ˆ” indicates the components
of the estimated rotor’s frame of reference.

The response current equation is

[
iαh
iβh

]
=

 cos(θe) cos(∆θe)
Ld

+ sin(θe) sin(∆θe)
Lq

sin(θe) cos(∆θe)
Ld

− cos(θe) sin(∆θe)
Lq

∫ Uindt (14)

where ∆θe = θe − θ̂e is the position’s error. When the position’s error tends to zero,
Equation (14) can be written as[

iαh
iβh

]
=

1
Ld

[
cos(θe)
sin(θe)

]
·
∫

Uindt. (15)

After obtaining Formula (15), the information on the position can be obtained after
demodulation of the signal.
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Figure 7 is a block diagram of heartbeat signal injection.
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To improve the accuracy, some researchers injected two kinds of HF pulsation signals
with different frequencies [135]. In [131], the author proposed a new pulsating sinusoidal
signal injection method, using three HF pulsation signals with different frequencies and
amplitudes. The voltage is injected into the ABC frame. This method demodulates the three
frequency components in the response current signal and then combines them together to
directly calculate the rotor’s position, which reduces the influence of the system’s delay
and improves the accuracy of the estimation.

Compared with the pulsating sinusoidal signal, the pulsating square wave signal has
a high injection frequency, which is beneficial for the separation and extraction of high-
frequency signals. The square-wave injection voltage at different frequencies was evaluated
in [93], and the results showed that designing an appropriate frequency of the injection
voltage could significantly improve the performance of the system. Some researchers also
proposed an improved HF square wave voltage injection method, which is more robust to
voltage errors [156].

In practical applications, researchers have also considered the inverter’s dead zone [145],
cross-saturation [131,132,147,152], the second harmonic [134,138], and variations in the
machine’s parameters [135–137,140,146] to improve the accuracy of estimation.

3.2.3. FPE-Based Methods

In addition to injecting high-frequency signals, the abovementioned high-frequency
signal injection methods also require an observer to process the signals to obtain the
accurate position of the rotor, which increases the complexity and cost of the system. To
solve this problem, a control method based on FPE has been proposed.

FPE-based methods can be mainly divided into three categories, namely indirect flux
detection by in-line reactance measurement (INFORM) [158–160], the zero-sequence current
derivative (ZSCD) measurement method [161–163], and the zero-voltage vector injection
method (ZVVI) [164–167].

INFORM works by applying a voltage vector in different directions and then mea-
suring the resulting of response the current. The authors of [159] improved INFORM to
reduce the current’s harmonics and switching losses. The working principle of ZSCD is as
follows. The test signal is injected into the system, the zero-sequence current derivative
of the inductor can be obtained, and the information on the rotor’s position and speed
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can be obtained. The ZSCD method is simple and has excellent performance, but it needs
to be connected to the neutral point, which limits the development of the ZSCD. ZVVI
combines the derived calculations of the current and zero-voltage vector injection, which
is effective for sensorless control of a PMSM during zero-speed and low-speed operation.
These control methods are worthy of further study.

To compare the differences of several methods more intuitively, Table 2 gives the
advantages and disadvantages of various methods.

Table 2. Comparison of Saliency-Based Methods.

Method Advantages Disadvantages

Rotating signal
injection

Does not require information on
the initial location, good

robustness

Only applicable to salient pole
motors

Pulsating sinusoidal
injection

Low injection frequency. The
influence of the inverter;s

nonlinearity is small.

LPF affects the system’s
bandwidth and has insufficient

dynamic performance

Pulsating square wave
injection

High injection frequency.
High-frequency signal extraction
is simple, and the influence of the

inverter’s nonlinearity is small

LPF affects the system’s
bandwidth and has insufficient
dynamic performance. It needs

information on the initial location

FPE-based methods No external signal injection
required, no high-frequency noise

High requirements of the current
signal sampling circuit

In this section, the high-speed sensorless control methods and the low-speed sensorless
control methods are summarized. They all have their own advantages and disadvantages,
and some shortcomings still need to be overcome. Table 3 [123,168–189] presents the
characteristics of various methods.

Table 3. Comparison of various sensorless methods.

Categories Speed Range Advantages Disadvantages

SMO Medium and
high speed Good robustness Chattering exists. Heavy

calculation demands

MRAS Medium and
high speed

Simple structure, easy to
implement quick response

Depends on the
motor’s parameters

EKF Medium and
high speed

Strong anti-interference
resistance to noise Heavy calculation

SO Medium and
high speed Good robustness Complex structure

Rotating signal
injection

Startup and
low speed

Easy to implement,
good robustness

High-frequency noise,
torque ripple

Pulsating signal
injection

Startup and
low speed

Suitable for salient pole
and hidden pole motors

LPF affects the
system’s bandwidth

FPE-based
methods

Startup and
low-speed No need to inject a signal High requirements for the

hardware detection circuit

4. Future Directions

According to the summary and review of the existing methods, sensorless control
methods have been developed rapidly. However, with the increasing application of sen-
sorless control systems and the increasingly complex working environment, sensorless
control must adapt to more scenarios. Some development trends mainly focus on the
following aspects.

4.1. High Dynamic Performance throughout the Full Speed Range

The dynamic performance of a PMSM directly affects the quality of the motor. A
good motor drive system must have good dynamic performance. In the future, dy-
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namic performance will attract more and more attention to adapt to high-performance
application scenarios.

4.2. Smooth Switching between Low Speed and High Speed

At present, there is no mature and reliable solution that can efficiently and stably
realize the position-sensorless control of permanent magnet synchronous motors across the
full speed range. Traditional position-sensorless control techniques are mainly divided into
two categories, namely high-speed model-based methods and low-speed saliency-based
methods, which lead to changes in the control methods when transitioning from low speeds
to medium and high speeds. A combination of these two methods constitutes a hybrid
control strategy [190–192], but the difficulty of the hybrid control strategy is how to switch
between the two methods without large fluctuations in speed. Therefore, how to smoothly
switch from low speeds to high speeds is a direction worth studying.

4.3. Sensorless Control of Ultra-High-Speed PMSMs

In some specific occasions, permanent magnet synchronous motors may require ultra-
high speed, such as centrifugal compressors, turbo generators, etc. When the motor is
running at ultra-high speed (e.g., 15,000 rpm), the mechanical position sensor is not reliable;
to solve this problem, sensorless control of the motor is required [193–195]. Moreover, the
stability of the PMSM is an important challenge when the motor operates at ultra-high
speeds. Therefore, it is necessary to study the stable control methods of permanent magnet
synchronous motors at ultra-high speed.

4.4. High Robustness under Heavy and Changing Loads

As we all know, drastic changes in the load will cause fluctuations in speed, so how to
reduce such fluctuations is the focus of research. Strong robustness to load disturbance is
an important indicator for evaluating the performance of sensorless control, and how to
maintain accurate information on the rotor’s position when the load changes drastically is
an important research direction.

4.5. High Robustness to Changes in the Motor’s Parameters

As the operation or working conditions of the motor change, the mechanical param-
eters of the motor (such as the stator’s resistance, inductance, and flux linkage, etc.) will
change, which will lead to a decrease in the performance of control and an increase in
the error of estimation. Therefore, to improve the performance of sensorless control, high
robustness to variation in the motor’s parameters is essential.

5. Conclusions

This article summarized the research status of sensorless control technology used for
permanent magnet synchronous motors, and introduces the basic principles of sensorless
control. In the high-speed range, the methods of the sliding mode observer, model reference
adaptive system, and the Kalman filter have been introduced and compared. In the low-
speed range, the methods of rotating high frequency signal injection and pulsating high
frequency signal injection have been introduced. However, the methods above still have
some limitations, such as sensorless control methods for the full speed domain, etc. To
solve these problems, some advanced control theories have been proposed, such as particle
swarm optimization algorithms and neural networks. With the development of science
and technology, ultra-high-speed sensorless control and high robustness to disturbance
will become the focus of research.
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