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Abstract: This paper presents the novel design of a constant-current/constant-voltage charging
control strategy for a battery cell. The proposed control system represents an extension of the
conventional constant-current/constant-voltage charging based on the so-called cascade control
system arrangement with the adaptation of the battery charging current based on the open-circuit
voltage parameter estimation. The proposed control strategy features two feedback controllers of the
proportional-integral type responsible for: (i) controlling the battery open-circuit voltage towards its
fully charged state, and (ii) simultaneously limiting the battery terminal voltage to avoid the battery
terminal voltage constraint violation. The open-circuit voltage on-line estimation is implemented by
using the system reference adaptive model approach to estimate the linear time-invariant battery
equivalent circuit model parameters, whose asymptotic convergence is guaranteed according to
Lyapunov stability theory. The proposed concept of the battery charging control is verified by means
of simulations using the experimentally obtained model of a lithium iron phosphate battery cell, and
it is also compared to other charging methods with respect to charging speed-up potential compared
to conventional charging. The proposed method, which can be easily extended to conventional
chargers, results in 23.9% faster charging compared to conventional charging, thus representing an
inexpensive and straightforward upgrade to conventional battery charging systems.

Keywords: lithium iron phosphate battery cell; constant-current/constant voltage charging; parameter
estimation; system reference adaptive model; Lyapunov stability theory

1. Introduction

The Introduction section briefly outlines the motivation for the presented work on
a battery charging adaptive control system design, followed by a thorough review of
the state-of-the-art and the perceived gap in the research at present. Finally, the pro-
posed solution to adaptive charging control is outlined along with the structure of the
proposed contribution.

1.1. Motivation

About 20% of the world’s production of fossil fuels is consumed by the transportation
sector, corresponding directly to its proportional share of greenhouse gas emissions [1].
Transportation sector electrification and its integration within the smart electricity grid
paradigm [2] have been suggested to increase its energy efficiency and make it more
environmentally friendly and less dependent on oil reserves [3]. However, this also entails
equipping vehicles with suitably sized battery energy storage systems, whose status during
charging and discharging needs to be carefully monitored to ensure its long service life [4].
Moreover, road transport and energy sector integration measures need to account for
specific fleet electrification levels (especially for plug-in hybrid or fully electrified vehicles)
and the related charging infrastructure costs [5] and estimated capacity [6].
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In addition to road transport, battery energy storage technologies are also making
inroads into other sectors, as well. Recent studies in the railway transportation sector
have included battery-hybridized locomotives [7] and battery-electric locomotives [8], both
offering distinct advantages over the conventional diesel electric freight haul locomotives.
However, in the latter case wayside charging may be required to follow the optimal battery
state-of-charge (SoC) profile throughout the journey [9], which emphasizes the need for
effective and timely battery charging using suitable charging control strategies. Other
examples of possible battery use in transport include a hybrid powertrain-based articulated
forestry tractor (skidder) for log pulling [10], fuel-cell plus battery hybrid electric heavy-
duty truck used for yard logistics and the transportation of goods within maritime ports [11],
and a battery plus fuel-cell hybrid propulsion unit for light aircraft [12].

Moreover, the battery hybridization of power sources is not limited to the transporta-
tion sector alone, and many different stationary applications can be found in the renewable
energy applications, primarily in conjunction with photovoltaic energy sources [13] and
wind turbines [14] to cover for the inherent intermittency of the power production within
such power systems. The stationary application of battery energy storage can in fact achieve
significant savings in fuel (energy) compared to the conventional power-plant, primarily
through load leveling when it would be disadvantageous to use other power sources
within a microgrid [15]. Precise energy management is needed to achieve dynamic power
allocations between different power sources and the continuity of power delivery under
varied dynamic disturbance scenarios [16]. Thus, the hybrid power source power allocation
strategy needs to be tested under different realistic operating conditions, especially when
vehicular implementation is considered [17].

The battery energy storage system for mobile (vehicular) applications needs to be
compact and lightweight, and characterized by inherent robustness and high operational
safety margins, especially in terms of temperature stability (i.e., virtual lack of temperature
runaway). At present, lithium iron phosphate (LiFePO4) batteries offer a good trade off
regarding power and energy density and operational safety for a moderate energy storage-
specific cost (i.e., cost per kilowatt-hour) [18], along with their maturity and high durability
(battery cycle life) [19]. With reference [20] reporting over 2000 charging/discharging cycles
characterized by average discharge depths of 80% per cycle, their ability to withstand many
demanding charging/discharging cycles makes LiFePO4 batteries good candidates for the
demanding tasks of the future electrified transport [19].

1.2. State-of-the-Art Methods in Battery Charging

Traditionally, the constant-current/constant-voltage (CCCV) charging technique [21]
is typically used for battery recharging from the depleted (low SoC) state [22]. Other
conventional charging techniques, such as pulse charging [23] and the so-called “trickle”
charging [24], are typically used for battery charge maintenance and the compensation of
inherent self-discharge once the battery has been fully recharged. During CCCV charging,
battery current and voltage are effectively constrained by means of a feedback control,
thus effectively limiting battery heat losses (that would otherwise result in undesirable
thermal stresses [25]) and preventing over-voltages that might otherwise accelerate battery
aging. There is a wide range of CCCV charging techniques presented in the literature,
such as switching between battery current and voltage control modes depending on the
battery terminal voltage conditions and utilization of the so-called cascade control ap-
proach [26] with or without adaptations with respect to the battery operating point [27].
The main advantage of the cascade control approach is in its inherent ability to limit the
battery current by means of a superimposed battery voltage controller current limit, while
the voltage controller gradually increases the battery terminal voltage towards its final
fully-charged state [28]. This makes the cascade control system easily adaptable to dif-
ferent battery chemistries characterized by different charging currents and fully-charged
voltage values.
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More recently, pulse charging has been proposed as an attractive alternative to CCCV
charging due to its relative simplicity, charging efficiency, and charging time reduction and
lessened battery degradation [29]. Namely, pulsed charging can achieve higher charging
rates by providing a time interval between current pulses for battery recuperation and
active material mass transfer, thus resulting in more effective electrochemical reactions on
the electrodes [30]. Thus, pulsed charging has also been used to supplement the CCCV
charging technique in the critical mid-SoC region (20% < SoC < 80%) to speed up the overall
battery charging process [30]. However, pulse charging also requires pulse amplitude,
duration (duty cycle), and frequency optimization [31] to achieve a high charging efficiency
(low charging losses) and to mitigate battery aging effects, i.e., maintaining favorable
battery state-of-health (SoH). These interventions may include the utilization of pulse
width modulation (PWM) and pulse amplitude modulation (PAM) techniques [31] and
even the introduction of negative current pulses [32], which has certain benefits when rapid
charging is concerned [33]. Namely, using bipolar current pulses (positive charging pulses
with interspersed short-duration discharging current pulses) has been shown to reduce
electrode plating [23]. The latter intervention, however, requires a bidirectional DC/DC
power converter, which generally results in the higher cost of the overall battery charger
system compared to a simpler unidirectional DC/DC power converter, which can be used
for both unipolar pulsed and CCCV charging methods.

In order to improve upon the conventional CCCV charging performance, a fuzzy logic-
based controller was proposed in [34], which achieved an improved charging speed with
respect to conventional charging. In order to explicitly take into account the battery voltage
and temperature constraints, model predictive control (MPC)-based charging was proposed
in [35], while a genetic algorithm (GA) was used in [36] for the off-line optimization of
the charging rate within the multi-stage constant-current (MCC) charging approach (see
also [37]), while keeping the battery temperature increase within prescribed limits. Other
off-line optimization studies, conducted in [38] and [39], respectively, utilized dynamic
programming (DP) and multi-objective optimization to formulate the predefined battery
charging profile that minimizes the overall heat losses. The main disadvantage of such
off-line optimization approaches is in their limited ability to account for battery parameter
variations occurring in real-life operations. Hence, the on-line estimation of battery SoC was
used in conjunction with the conventional charging control in [40] to speed up the charging
process through prolonging the constant-current charging period, while maintaining the
battery temperature within predefined limits. The utilization of least mean squares (LMS)
to estimate the battery open-circuit voltage (OCV) was successfully employed to speed
up the charging process in [41], wherein the OCV vs. SoC characteristic was used to
generate the semi-optimal charging profile. A detailed overview of different charging
methods can be found in [42], while [43] outlines about fifty fast-charging strategies with
their cost-benefit analyses, along with providing general recommendations regarding
future electric vehicle fast-charging applications. In the latter case of fast-charging systems,
many challenges are still present at the battery cell level, such as the above-mentioned
electrode plating, along with dendrite formation and, in the more extreme cases, thermal
decomposition and electrolyte oxidation, which all contribute to accelerated aging and
battery SoH degradation [44]. These effects can be modeled using electrothermal and
impedance models, which, in the latter case, exhibits a notable increase with the SoH
decline [45].

1.3. Research Gap and the Proposed Solution

During the charging process, batteries typically exhibit notable terminal voltage non-
linear behavior, especially in a highly discharged state and near the fully charged state [46].
In order to facilitate the high quality of battery SoC tracking, measurements of the battery
terminal voltage and current were used in conjunction with a suitable battery equivalent
circuit-based dynamic model within a state estimator, such as Kalman filter [47]. Due
to the nonlinear character of the internal battery model, the so-called extended Kalman



World Electr. Veh. J. 2023, 14, 155 4 of 24

filter [48] or unscented Kalman filter [49] are typically used for that purpose. Reference [50]
recently demonstrated that using an SoC estimator has good potential for charging speed
improvement when compared to the conventional CCCV charging strategy, wherein the
adaptation to temperature-related battery model parameter variations can also be em-
ployed [40]. These approaches, however, still require a rather complex battery model
typically comprising multi-dimensional parameter maps (in the form of look-up tables),
which may also require online updating [51]. This can be overcome by using an online
parameter estimator that updates the battery equivalent circuit model in real-time, and, in
turn, offers the ability to track both the battery SoC and SoH, as indicated in [52]. Note that,
however, the state estimation based on multi-dimensional static maps for all parameters of
the battery equivalent circuit model may be rather complex to implement and would also
be quite computationally demanding, whereas the online update of those parameter maps
would introduce additional complexities into the overall SoC estimation algorithm.

The utilization of a reliable parameter estimator to obtain the precise online informa-
tion about the battery OCV would provide indirect information about the battery SoC,
which would enable indirect battery SoC control, and thus possibly achieve notable charg-
ing speed-up compared to conventional CCCV charging [28]. The main advantage of
such an approach would be in the absence of the utilization of the possibly quite com-
plex nonlinear battery model to determine the battery SoC. Namely, only the battery
OCV vs. SoC characteristic would need to be known a priori to determine the fully
charged battery voltage target, and the additional OCV-based feedback would be used to
achieve a fully charged battery state within such an extension of the conventional (CCCV)
charging system.

Having the previously mentioned aspects of battery charging and SoC/SoH estimation
in mind, the hypothesis of this work is that, by utilizing a battery model parameter online
estimator, precise information about the actual battery SoC can be provided, which can be
used to augment the conventional charging strategy and improve its effectiveness in terms
of faster and more precise recharging. To this end, this paper presents an extension of the
conventional CCCV strategy using a superimposed (supervisory) control level based on
the battery OCV estimation using a Lyapunov stability-based system reference adaptive
model (SRAM) approach [53], wherein the parameters of the battery equivalent circuit
model are estimated in real-time, aided by an appropriate small-magnitude excitation
signal; thus, the estimated battery OCV is used as feedback signal instead of the battery
terminal voltage used in the conventional CCCV charging approach. In this way, the
conventional CCCV charging system is augmented in a straightforward manner with an
indirect state-of-charge monitoring capability, while retaining the battery charging current
and terminal voltage limitations. The main contributions of the paper are: (i) a systematic
design of the equivalent circuit model parameter estimator using the SRAM technique and
Lyapunov stability criterion for proof of estimated parameter convergence, (ii) establishing
an indirect battery SoC feedback based on a priori known OCV(SoC) characteristic, and (iii)
expanding the overall CCCV control strategy with an additional degree of freedom when
controlling the battery SoC during charging. The effectiveness of the proposed augmented
charging control system is verified by means of simulations using a realistic model of the
LiFePO4 cell presented in [50].

2. Materials and Methods

This section presents the battery dynamic model and battery charging control system
design based on the cascade control system structure, including battery terminal voltage
control and current limiting features, and the indirect battery state-of-charge estimation
based on a battery model parameter SRAM estimator with guaranteed convergence accord-
ing to the Lyapunov stability theory. The battery charging cascade control system design
was based on the damping optimum criterion.
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2.1. Battery Cell-Equivalent Circuit Dynamic Model

A battery cell can be modeled by its equivalent electrical circuit model comprising a
voltage source corresponding to the battery open-circuit voltage Uoc, electrolyte polarization
effects modeled by an equivalent parallel RC circuit (with resistance Rp and capacitance Cp
parameters), and an equivalent series resistance Rb [54]. The abovementioned results in the
following linear time-invariant (LTI) model between voltage ub and current ib, described by
the following Laplace s-domain formulation:

ub(s) = us(s) + up(s) + Uoc(s) = ib(s)Rb +
Rpib(s)
τps + 1

+ Uoc(s), (1)

where us is the series resistance voltage drop, up is the polarization voltage drop, and τp = RpCp
is the polarization dynamics equivalent time constant.

All parameters of the above model may depend on the battery temperature ϑb, battery
current ib, and its state of charge ξ, which is defined in the following manner:

ξ =
1

Qb

∫
ibdt, (2)

where Qb is the battery charge capacity.
Figure 1 shows the dependences of averaged model parameters of a commercial

100 Ah LiFePO4 battery cell (see [20]) with respect to state-of-charge ξ for the case of
battery charging, which were originally recorded in [52] and further elaborated upon for
the purpose of a battery charging study conducted in [50]. Averaged profiles of battery
polarization and equivalent series resistance Rp(ξ) and Rb(ξ) are shown in Figure 1a,b,
whereas Figure 1c shows the OCV vs. SoC characteristic (Uoc(ξ) curve). Variations in
these parameters are more emphasized for boundary state-of-charge ξ values, i.e., for the
case of deeply discharged (ξ ≈ 0) and fully-charged battery cell (ξ ≈ 1). As indicated
in [52], all the aforementioned parameters show only a mild dependence on average battery
current values, while the polarization equivalent time constant is estimated to τp = 24 s (see
Figure 1d) and does not show a significant variation with the operating point [52].
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2.2. Damping Optimum Criterion

The feedback controller tuning in this work was based on the damping optimum
criterion [55], which is a pole-placement-like method of designing linear continuous-time
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control systems with a full- or reduced-order controller using the following formulation of
the closed-loop system characteristic polynomial:

Ac(s) = Dn−1
2 Dn−2

3 · · · DnTn
e sn + · · ·+ D2T2

e s2 + Tes + 1, (3)

where Te is the closed-loop system equivalent time constant and D2, D3, . . . , Dn are the
so-called characteristic ratios. In the optimal case Di = 0.5 (i = 2 . . . n), the closed-loop
system of any order n has a quasi-aperiodic step response characterized by an overshoot of
approximately 6% (resembling a second-order system with damping ratio ζ = 0.71) and the
approximate rise time (1.8–2.1)·Te. For larger Te value choices, the dominant closed-loop
modes were characterized by a slower response, which generally improved the control
system robustness and decreased the noise sensitivity.

2.3. Conventional and Adaptive Cascade Control Systems for Battery Charging

Figure 2a shows the control logic flowchart of the conventional charging control
strategy arranged in the so-called cascade control system arrangement (see e.g., [56]),
wherein the superimposed batter terminal voltage control level commands the reference of
the inner current control loop (charging power converter), and through the limiting of the
voltage controller output, it effectively limits the battery charging current. The proposed
novel control strategy (Figure 2b) is based on battery OCV feedback via the battery OCV
estimator (instead of battery terminal voltage measurement), which utilizes the dynamic
battery voltage and current measurements for the purpose of the OCV estimation. Battery
OCV estimation relies on a small-magnitude perturbation (test) signal added to the voltage
controller output, which excites the relevant dynamic modes of the battery equivalent
circuit model (Equation (1)). Both control strategies are iteratively executed (with pre-
defined fixed-sampling period T) and they both check whether the total current reference
has exceeded the predefined limit values. If the upper limit is exceeded, the current
reference is limited to the maximum continuous battery current, whereas if the current
reference has fallen below the lower limit and is thus maintained for a predefined time
interval (20 s herein), this is indicative of a fully charged battery; therefore, the charging
process is stopped.

Figure 3a shows the conventional control system structure used for CCCV battery
charging based on the inner current control loop with a battery terminal voltage-limiting
outer feedback loop, denoted herein as the CCCV-VL control strategy [50]. This type
of charging strategy represents a state-of-the-art approach to CCCV charging according
to [22], and is used herein as a benchmark case. The superimposed voltage control level
features a simple proportional–integral (PI) feedback controller [57] that provides the
current reference ibR as a sum of the maximum charging current Imax used during the
constant-current stage of the charging process and the negative-current command iblim
from the superimposed voltage-limiting controller. The voltage-limiting controller becomes
activated only when the battery terminal voltage measurement ubs exceeds the preset
battery voltage limit value ublim (dead-zone block in Figure 3a). As indicated in [50], the
battery terminal voltage-limiting value also effectively determines the battery SoC at the
end of charging, because it directly relates to the battery OCV as the charging current ib
approaches zero (see Equation (1) and the Uoc(ξ) characteristic in Figure 1c). Note that
this battery terminal voltage-limiting value is less than the maximum safe battery terminal
voltage value of 3.65 V obtained from the manufacturer’s technical specifications [20].
This is performed so that the CCCV-VL control strategy asymptotically approaches the
fully-charged state without excursions towards the maximum safe terminal voltage (and
thus to avoid possible overcharging).
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Figure 3b shows the augmented control system structure proposed in this work,
denoted herein as the CCCV-OCV control approach, wherein the inner current control loop
is commanded by two superimposed controllers aimed at speeding up the conventional
CCCV charging strategy while honoring the battery current and terminal voltage ratings so
that the prescribed battery current and maximum terminal voltage are not violated during
the charging process. The principal OCV (Uoc) PI controller commands an appropriate
current reference ibR (again limited to the maximum current value Imax during charging)
based on the estimated battery OCV value (Ûoc signal in Figure 3b). The OCV feedback
is provided herein by the SRAM estimator whose operation requires persistent excitation,
introduced through a pseudo-random binary sequence (PRBS) test signal ∆ibR (see e.g., [57])
that is superimposed to the battery overall current reference (ibR + iblim) resulting from
joint actions of dual controllers. The auxiliary battery terminal voltage-limiting controller
presently has the safety function of maintaining the battery terminal voltage below the limit
value ublim, which can be preset independently of the battery OCV target UocR. From the
standpoint of the control system design, it was assumed that the dynamics of the battery
OCV estimate with respect to the battery charging current ib could be approximated by a
first-order lag plus integral term dynamics with the equivalent time constant Tee and the
open-circuit voltage vs. state-of-charge static map Uoc(ξ), as indicated in the lowermost
portion in Figure 3b. Since the proposed modification only superimposed an additional
control level to the existing conventional CCCV control strategy without changing the
underlying control system structure, it made the modification of the charging strategy
easily retrofitted to the existing CCCV charging control system. Again, the battery limit
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voltage ublim was set to a value lower than the maximum safe terminal voltage of 3.65 V
declared in the manufacturer’s technical data [20] for safety reasons.
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2.4. Feedback Controller Tuning Rules

For the purpose of designing the battery terminal voltage-limiting controller, the
open-circuit voltage Uoc and polarization voltage up dynamics were treated as slow “distur-
bances”, so that “fast” battery terminal voltage dynamic variations were primarily affected
by the series resistance voltage drop [28]. The fast dynamics of the inner current control
loop (approximated by a fast first-order lag term with its equivalent time constant Tei) and
the voltage sensor (with its lag Tfm) are lumped together and represented by the equivalent
first-order lag term with the time constant TΣu = Tei + Tfm:

Gpar(s) =
1

TΣus + 1
, (4)

the equivalent time constant TΣu may also incorporate the time discretization (sampling)
related lag inherent to the use of a discrete time (digital) controller [58].

Based on the abovementioned approximation, the damping optimum criterion yields
the following expression for the parameters of the battery terminal voltage-limiting
PI controller:

Tcl = Tel

(
1 − D2lTel

TΣu

)
, (5)
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Kcl =
1

Rb

(
TΣu

D2lTel
− 1
)

, (6)

with the following feasibility condition imposed upon the equivalent time constant Tel [50]:

Tel <
TΣu
D2l

, (7)

and robust voltage-limiting controller behavior assured by including the maximum antici-
pated value of the battery series resistance Rb in expression (6), i.e., Rb = max(Rb(ξ)).

In the design of the battery OCV PI controller, it was assumed that the estimator
response was characterized by a distinct lag Tee, which could be added to the inner current
control loop lag Tei, similar to the terminal voltage-limiting controller design presented
above (see Equation (4)). The overall lag in the OCV controller design would then be
Tee + Tei. Moreover, it was also assumed that the nonlinear OCV vs. SoC characteristic
Uoc(ξ) was continuously differentiable over its domain of definition, so that its gradient
(equivalent gain) in the vicinity of the battery SoC operating point ξ0 can be expressed as
follows:

Kξ =
∂Uoc(ξ)

∂ξ

∣∣∣∣
ξ=ξ0

. (8)

Based on these assumptions, the damping optimum criterion yields the following
results obtained for the case of open-circuit voltage (OCV) PI controller tuning:

Tcu = Teu ≥ Tee + Tei
D2uD3u

, (9)

Kcu =
Qb

D2uTeuKξ
, (10)

where setting the gain parameter Kξ in Equation (10) to its maximum value, i.e., Kξ = max(Kξ(ξ)),
assures a robust charging system closed-loop operation under the superimposed (supervi-
sory) open-circuit voltage control.

As indicated above, the charging control approach was derived herein with the aim of
the robust tuning of reduced-order PI controllers with respect to inevitable variations in the
closed-loop dynamics due to battery parameter model variations, while retaining relatively
straightforward controller tuning rules. Assuming ample excitation in the battery current
reference, and a consequently accurate estimation of the battery open-circuit voltage, the
superimposed OCV control loop should be characterized by the well-damped closed-loop
behavior provided, so that the parameter estimator lag Tee parameter and OCV gradient
parameter (gain Kξ) used in the open-circuit voltage PI controller design were chosen to be
sufficiently large (see discussion regarding damping optimum criterion equivalent time
constant choice in the previous subsection). Similarly, the series resistance parameter Rb in
the battery terminal voltage controller design should also be set to the maximum anticipated
value in order to facilitate the robust tuning of the dominant closed-loop dynamics (see
subsequent subsections). The less-dominant dynamics (i.e., the very slow OCV variations
and polarization voltage dynamics) were treated herein as a slow-disturbance term in the
battery terminal voltage measurement, which was effectively dealt with by the integral
action of the terminal voltage PI controller.

Note also that the actions of the individual controller would affect the overall control
system in a different manner. Namely, the inner voltage limiting controller ought to be
characterized by its rapid action and wide bandwidth due to its equivalent time constant
Tel being rather small. On the other hand, the SRAM estimator-based superimposed
feedback loop ought to be characterized by slow control action (narrow bandwidth) due
to the equivalent time constant of the OCV feedback loop Teu being rather large, owing to
relatively large SRAM-based parameter estimator lag Tee (see next section).
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2.5. Parameter Estimator Design Based on the Lyapunov Stability Theory

The battery model parameter estimator design was based on the SRAM identification
procedure for linear time-invariant process models [53,57]. It utilizes the system model
reference for the minimization of the parameter estimation error, while guaranteeing the
global asymptotic convergence of the estimated process parameters. The design of the
Lyapunov-based SRAM estimator is based on the battery equivalent circuit model (1),
rewritten in the following form:

ub(s)− Uoc(s) =
b∗1 s + b∗0
s + a0

ib(s), (11)

which can then be rewritten as:

U0[ubn(s)− Uocn(s)] = I0
b∗1 s + b∗0
s + a0

ibn(s), (12)

where ubn, Uocn, and ibn represent the normalized battery terminal voltage, battery OCV, and
battery current, respectively, and U0 and I0 are battery voltage and current normalization
factors, respectively.

The abovementioned model can be refashioned as follows for the SRAM estimator design:

ubn(s) =
b1s + b0

s + a0
ibn(s) + Uocn(s), (13)

the following definitions of model coefficients b1, b0, and a0:

b1 = Rb
I0

U0
, b0 =

Rb + Rp

τp

I0

U0
, a0 =

1
τp

. (14)

Based on the above reformulation of the battery equivalent circuit model, its time-
domain representation is:

dubn
dt

+ a0ubn = b1
dibn
dt

+ b0ibn + w, (15)

where the slowly varying OCV-related dynamic term can be modeled as a generalized
disturbance variable w:

w =
dUocn

dt
+ a0Uocn, (16)

This forms the basis for the SRAM-based estimator of battery equivalent circuit model
parameters, which utilizes the copy of the abovementioned process model:

dubn
dt

+ a0mubn = b1m
dibn
dt

+ b0mibn + wm, (17)

whose parameters a0m, b1m, b0m, and wm are updated online, as shown in Figure 4a.
For the purpose of designing the Lyapunov SRAM parameter estimator for the above-

mentioned stable process model (a0 > 0 is assumed), the time derivative of the process
model input (battery current ib) needs to be calculated. This can be achieved by utilizing
a simple first-order state-variable filter (see [57]) of the normalized battery current ibn, as
shown in Figure 4a. The same type of filter was applied to the normalized battery voltage
ubn in order to match the time lag of the filtered current signal ibf and its time derivative
dibf/dt, thus resulting in the final dynamic model with an estimated battery voltage ubm
regarded as the output and the filtered current ibf regarded as the input of the from the
adaptive model within the SRAM estimator:

dubm
dt

+ a0mubm = b1m
dib f

dt
+ b0mib f + wm, (18)
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which corresponds to the normalized battery model (17) with filtered input and output
variables, i.e., battery current and voltage:

dub f

dt
+ a0ub f = b1

dib f

dt
+ b0ib f + w, (19)
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Based on the above adaptive model and battery process dynamics definitions (18) and
(19), the model prediction error and its time derivative are defined as:

em = ub f − ubm, (20)

.
em =

dub f

dt
− dubm

dt
= −a0ub f + b1

dib f

dt
+ b0ib f + w + a0mubm − b1m

dib f

dt
− b0mib f − wm, (21)

which yields the following prediction error dynamics model:

.
em = −a0em + b̃1

dib f

dt
+ b̃0ib f + w̃ − ã0ubm, (22)

where the parameter estimation errors b̃1, b̃0, ã0, and w̃ in Equation (22) are given as follows:

b̃1 = b1 − b1m, b̃0 = b0 − b0m, ã0 = a0 − a0m, w̃ = w − wm. (23)
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To derive the model adaptation law, an appropriate Lyapunov function candidate
needs to be chosen, which must satisfy the positive definiteness criterion over the whole
domain of the definition in order to guarantee the asymptotic convergence of the parameter
estimates. A typical Lyapunov function candidate for this type of parameter estimation
problem would be in the following quadratic form [53]:

V =
1
2

e2
m +

1
2K1

b̃2
1 +

1
2K2

b̃2
0 +

1
2K3

ã2
0 +

1
2K4

w̃2, (24)

whose time derivative reads as follows:

.
V = em

.
em +

1
K1

.

b̃1b̃1 +
1

K2

.

b̃0b̃0 +
1

K3

.
ã0 ã0 +

1
K4

.
w̃w̃. (25)

After inserting the model prediction error and its time derivative from Equations (20)
and (22) into Equation (25) and rearranging them, the following final form of the Lyapunov
function time derivative is obtained:

.
V = −a0e2

m + b̃1

em
dib f

dt
+

.

b̃1

K1

+ b̃0

emib f +

.

b̃0

K2

+ ã0

(
emubm −

.
ã0

K3

)
+ w̃

(
em −

.
w̃
K4

)
. (26)

For a stable-dynamics battery process model (characterized by a0 > 0), the first term on
the right-hand side of Equation (26) is always negative; therefore, the estimator convergence
would be satisfied if and only if the remaining dynamic terms multiplying the parameter
estimator errors on the right-hand side of Equation (26) are zero, namely, if [53]:

em
dib f

dt
+

.

b̃1

K1
= 0, emib f +

.

b̃0

K2
= 0, emubm −

.
ã0

K3
= 0, em −

.
w̃
K4

= 0. (27)

Since the actual process model parameters b1, b0, a0, and w are assumed to be constant

or very slowly varying, i.e.,
.

b̃1 = −
.
b1m,

.

b̃0 = −
.
b0m,

.
ã0 = − .

a0m, and
.

w̃ = − .
wm are valid,

the model adaptation law is given in the following final form (also shown in Figure 4a):

b1m(t) = b1m(0) + K1

∫ t

0
em(τ)

dib f

dt
(τ)dτ, (28)

b0m(t) = b0m(0) + K2

∫ t

0
em(τ)ib f (τ)dτ, (29)

a0m(t) = a0m(0)− K3

∫ t

0
em(τ)ubm(τ)dτ, (30)

wm(t) = wm(0) + K4

∫ t

0
em(τ)dτ, (31)

which is globally asymptotically stable for K1 > 0, K2 > 0, K3 > 0 and K4 > 0 [53], and whose
convergence is assured under ample and persistent excitation conditions [57].

The physical parameters of the battery transfer function model (i.e., series resistance
Rb, polarization resistance Rp, and polarization time constant τp) are subsequently recon-
structed, as shown in Figure 4b, based on the following relationships derived from (14):

R̂b(t) = b1m(t) ·
U0

I0
, (32)

R̂p(t) =
(

b0m(t)
a0m(t)

− b1m(t)
)
· U0

I0
, (33)
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τ̂p(t) =
1

a0m(t)
. (34)

Based on the estimation of the generalized disturbance wm and parameter a0m within the
adaptive model, the OCV estimate Ûoc is reconstructed in the open-loop manner (Figure 4b)
and is used (after de-normalization) as OCV feedback within the CCCV-OCV strategy:

Ûocn(t) =
∫ t

0

[
wm(τ)− a0m(τ)Ûocn(τ)

]
dτ, (35)

Ûoc(t) = U0 · Ûocn(t). (36)

The battery model parameter reconstruction in Figure 4b using the SRAM-based
adaptive model in Figure 4a included sign removal from the parameter estimates (a0m, b1m,
b0m, and wm) because these parameters were all positive-valued within the battery model,
as well as the lower value saturation of parameter a0m because it could not take a zero
value (a0m > 0). Finally, the reconstructed physical parameters of the battery model were
low-pass filtered by means of first-order filters (all with the time constant Tfp) to obtain
smooth (noise-free) parameter estimates.

3. Simulation Results

The proposed concept of an adaptive SRAM-based estimator and its application to
battery charging control were verified by means of simulations using the existing nonlinear
model of a LiFePO4 battery cell implemented within the MATLAB/Simulink environment.

3.1. Control System Robustness Analysis

Figure 5a shows the OCV vs. SoC curve gradient Kξ (see Equation (8)) for the particular
LiFePO4 battery cell (cf. Figure 1c), which was used in the linearization of the OCV control
loop based on the SRAM parameter estimator. Clearly, the OCV vs. SoC gradient value
adopts on a wide range of values, thus affecting the overall closed-loop dynamics of the
OCV control loop. Figure 5b,c show the root locus plots of the OCV control loop without a
voltage-limiting controller being activated for the maximum and minimum values of OCV
vs. SoC curve gradient Kξ , respectively, with the open-circuit voltage PI controller tuned
with the maximum Kξ gradient value to facilitate robust closed-loop behavior, as indicated
in Section 3.3. The comparative root locus plots show that the resulting closed-loop systems
are characterized by well-damped closed-loop behavior, with the poles of the linearized
closed-loop system being characterized by favorable damping ratios (ζ ≈ 0.5 or higher),
even in the case of the notable mismatch of the parameter estimator equivalent lag Tee (±50
of the nominal value). Finally, the stability of the closed-loop system with both OCV and
voltage-limiting PI controllers was also analyzed by means of comparative root locus plots,
which are shown in Figure 5d for the case of the robust tuning of both controllers (with
maximum values of Kξ and Rb parameters) and no variations in the parameter estimator
equivalent lag Tee from the nominal value. The root locus plots in Figure 5d indicate
that the introduction of the auxiliary voltage-limiting control loop does not significantly
affect the overall closed-loop system stability. Thus, it may be surmised that the proposed
dual-controller closed-loop system is quite robust to process parameter variations.
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3.2. Illustration of Parameter Estimator Convergence

The adaptive SRAM-based estimator of battery model parameters was tested first
using the linear time-invariant (LTI) model in Equation (1), whose parameters are listed in
Table 1. A pseudo-random binary sequence (PRBS) plus DC offset test signal (current ib)
was fed to the battery LTI model and used to provide the SRAM-based parameter estimator
with ample excitation. A PRBS signal with the amplitude of a 20 A peak-to-peak, sampling
period TPRBS = 8 s, depth of 6 bits (sequence length 26 = 64 distinct states before repetition),
and a DC offset of 70 A was used herein, similar to the case of online parameter estimation
during charging control.

Table 1. Parameters of linear time-invariant battery model used for parameter estimator validation.

Parameter Value

Battery model series resistance Rb 0.7 mΩ
Battery model polarization resistance Rp 1.0 mΩ
Battery model polarization time constant τp 24 s
Battery model open-circuit voltage Uoc 3.2 V

The battery model simulation responses (current ib and terminal voltage ub) from the
idle state (initial polarization voltage up(0) = 0 V) are shown in Figure 6a. These results
show that there is an initial lag in the battery terminal voltage response due to polarization
voltage dynamics (τp = 24 s), after which the battery voltage establishes a stable limit-cycle
due to periodic excitation by the PRBS test signal. Figure 6b shows the comparative results
of battery model parameter estimation using the SRAM approach, where the first-order
state-variable filter was used to extract the current time derivative and match the battery
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voltage lag (Figure 4a) has the time constant Tf = 1 s. Filtering of the estimated parameters
was also performed by first-order low-pass filters with the time constant Tfp = 1 s (see
Figure 4b) to smooth out the parameter estimates. The estimated parameter traces of Rb, Rp,
and τp showed good accuracy values for the final estimate (they were initially mismatched
with respect to actual values by 10%) with rapid initial convergence, and subsequently
slower convergence when reaching the actual values. Top-right plot in Figure 6b shows
the response of the OCV estimate from the initial state (set to zero within the parameter
estimator). The speed of convergence of the OCV, which represents an unknown offset
parameter within the SRAM model, depends on the choice of the update gains K1, . . . K4.
These are obviously a trade-off between the response speed of the OCV estimate and the
parameter estimator response damping. The middle case (K1 = 5·10−3, K2 = K3 = 10−6,
K4 = 5·10−4) was used in the subsequent tuning of the parameter estimator within the
adaptive charging control system. Based on the properties of the OCV estimate response in
Figure 6b, the equivalent estimator lag (time constant Tee) was approximately estimated
to Tee ≈ 1 min (60 s), and this value was used in OCV PI controller tuning according to
Equations (9) and (10).
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3.3. Charging Control Strategy Results

The proposed adaptive model-based battery charging control system (CCCV-OCV)
was verified against the conventional CCCV-VL control strategy [50] by means of simu-
lations using the existing model of a LiFePO4 battery cell [20] implemented within the
MATLAB/Simulink environment, with key parameters of both simulation scenarios listed
in Table 2, whereas the parameters of the control and estimation strategies used in the
comparative simulation analysis are listed in Table 3. The presented simulation scenario
corresponded to battery cell recharging from the initial deeply discharged state (character-
ized by battery SoC of 20 %) to a fully-charged state (with battery SoC target set to 100%).
This represents a kind of “ideal” case study (see e.g., [30]), which is intended to illustrate
the advantages of the adaptive charging scheme (CCCV-OCV) proposed herein. Naturally,
in real-life applications related to EV battery charging, the goal would be to recharge the
battery up to 80–90% to avoid a constant-voltage operating regime characterized by low
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charging-current values and relatively long durations with respect to additional charge
gain compared to the constant-current charging regime [32]. It should also be noted that
the battery terminal voltage-limiting values ublim for CCCV-VL and CCCV-OCV control
strategies were not chosen to be the same. This discrepancy was the direct consequence
of the CCCV-OCV strategy having an additional degree of freedom in controlling the
battery terminal voltage through the additional OCV estimation-based feedback control
action. More precisely, the battery terminal voltage limit ublim and the OCV target UocR
were effectively decoupled within the CCCV-OCV control strategy, whereas, in the case
of the CCCV-VL control strategy, the same battery terminal voltage limit also served as
indirect OCV target (which was only valid when battery current approached zero). Of
course, the battery limit voltage values for both the CCCV-VL and CCCV-OCV control
strategies were set to lower values (ublim = 3.4 V in the former case and ublim = 3.5 V in
the latter case) compared to the maximum safe terminal voltage of 3.65 V listed in the
manufacturer’s technical data [20], which would also be performed in actual applications
for safety reasons.

Table 2. Key parameters of the considered simulation scenarios.

Parameter Value

Inner current control-loop lag Tei 20 ms
Current/voltage sensor time constant Tfm 5 ms
LiFePO4 battery cell charge capacity Qb 100 Ah
Battery charging current upper limit Imax 70 A
Battery charging turn-off current Imin 5 A
Initial battery state of charge ξ0 20 %
Target battery state of charge ξR 100 %
CCCV-VL battery limit voltage value ublim 3.4 V
CCCV-OCV open-circuit voltage target value UocR 3.4 V
CCCV-OCV battery limit voltage value ublim 3.5 V

Table 3. Key parameters of the control strategies under investigation.

Parameter Value

Voltage-limiting PI controller proportional gain Kcl 157.8
Voltage-limiting PI controller integral time constant Tcl 5.4 ms
OCV PI controller proportional gain Kcu 16,325
OCV PI controller integral time constant Tcu 44.1 s
SRAM parameter estimator gain K1 5·10−3

SRAM parameter estimator gain K2 10−6

SRAM parameter estimator gain K3 10−6

SRAM parameter estimator gain K4 5·10−4

SRAM parameter estimator pre-filtering time constant Tf 1 s
SRAM parameter estimator post-filtering time constant Tpf 5 s
Voltage normalization parameter U0 3.2 V
Current normalization parameter I0 100 A
Control strategy sampling period T 4 ms

As stated above, the CCCV-VL control strategy results from [50] were used as the
benchmark, and these results are shown in Figure 7 for the case of the battery terminal
voltage limit ublim set to 3.4 V, which corresponds to the fully-charged battery OCV, i.e.,
Uoc(ξ = 100%). The state-of-charge simulation trace in the top plot in Figure 7 shows that
the battery SoC practically reaches the fully charged state at the end of the charging process
(ξ ≈ 99.6%), where the small error of final SoC is attributed to the end-of-charging condition,
i.e., battery current value dropping below the lower threshold Imin = 5 A (upper middle plot
in Figure 7). The battery charging current simulation traces show that the constant-current
regime characterized by the upper current limit Imax = 70 A is maintained only during the
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first 21.5 min. The remainder of the charging process (ending at t = 97.7 min) is conducted
in the constant voltage regime (lower middle plot in Figure 7), with the battery terminal
voltage limited to ublim = 3.4 V. The OCV trace also confirmed that the battery asymptotically
approached the fully charged state with the final reached value Uoc = 3.38 V.
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Figure 8 shows the simulation results of the proposed CCCV-OCV control strategy
with an adaptive model-based online estimation of the battery open-circuit voltage us-
ing a PRBS test signal ∆ibR with the peak-to-peak amplitude of 20 A, sampling period
TPRBS = 8 s, and 6-bit depth. The CCCV-OCV control strategy was characterized by the
battery OCV target UocR = 3.4 V and terminal voltage limit ublim = 3.5 V, thus allowing
for an additional degree of freedom during the recharging process. The OCV estimate
provided by the SRAM approach can follow the actual OCV value quite accurately after
the initial response transient, and results in the close matching of the target OCV (UocR) at
the end of the charging process. Moreover, the proposed adaptive charging CCCV-OCV
strategy results in an effective speed-up of the charging process when compared to the
CCCV-VL benchmark case due to the constant-current regime being maintained for longer
than 62.6 min. This, in turn, results in the final battery SoC (99.9%) being reached within
74.3 min (top plot in Figure 8), which corresponds to approximately 23.9% speed-up of
the overall charging process, with the battery terminal voltage limit ublim = 3.5 V being
maintained only in the final phase of the charging process (11.7 min overall). These results
clearly indicate that, by using the proposed dual-controller structure, along with the adap-
tive OCV estimator, a more effective battery charging process can be facilitated compared
to the conventional CCCV-VL approach.

The above results clearly illustrate the main advantages of the CCCV-OCV control
strategy over the conventional CCCV-VL control strategy in terms of additional control
action flexibility (adjustment of battery terminal voltage) to prolong the constant-current
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regime due to the decoupling of the battery OCV target and battery terminal voltage limit,
which the CCCV-VL strategy does not possess.
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4. Discussion of Obtained Results and Comparison with Other Methods

The presented simulation results in Figures 7 and 8 show that both the benchmark
control strategy (CCCV-VL) and proposed adaptive control strategy based on the battery
OCV estimation (CCCV-OCV) can accurately recharge the battery to within less than 0.4%
of the fully charged battery SoC. The adaptive CCCV-OCV charging strategy was able to
achieve a 23.9% speed-up when compared to the CCCV-VL strategy benchmark case when
recharging from 20% SoC to the fully charged battery state (100% SoC). The CCCV-OCV
strategy was able to achieve this due to the accurate following of the actual battery OCV in
real time, thus adapting the charging current and achieving a prolonged operation in the
constant current regime (about a three-times-longer constant-current regime compared to
the conventional CCCV-VL charging strategy).

However, to fully assess the benefits of the adaptive CCCV-OCV charging strategy
proposed herein, it would also need to be compared with other charging strategies from
the available literature, as suggested in [50]. Table 4 summarizes the relative speed-ups
of the charging processes for different charging techniques with respect to the traditional
CCCV technique. The CCCV-OCV control strategy proposed herein can easily surpass
the charging performance of the fuzzy logic-based charging strategy [34], the MPC-based
charging strategy [35], and, to some extent, the MCC charging strategy from [37]. Although
the CCCV-OCV method is less effective when compared to offline optimization-based
strategies presented in [36] and [37], these strategies usually require significant numerical
processing power to conduct online optimizations. By comparing the proposed CCCV-
OCV control strategy to the two similar control strategies presented in [41] and [50], it
was evident that it did not achieve the same charging speed-up as in the case of the MCC
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strategy with the LMS-based OCV estimation [41], which relies on extensive an offline
optimization of the charging current profile. Even though this would not have been an issue
during the real-time implementation of the offline optimized charging current profile, such
offline optimizations would have to be repeated whenever a different battery is used within
such a charging system. A more faithful comparison of the proposed CCCV-OCV strategy
would occur with respect to the case of a conventional CCCV control strategy augmented
by an SoC estimate-based charging control (the so-called CCCV-SoC approach) presented
in [50] and briefly outlined in Appendix A. Both the CCCV-OCV and CCCV-SoC control
strategies presented the following perceived advantages, which may make them suitable
for real-time applications: (i) they can be retrofitted to a conventional charging system
in a straightforward manner, (ii) they can provide additional feedback about the battery
charge level, and (iii) they utilize the inherent ability of the conventional charging system
to limit the battery terminal voltage, where the terminal voltage limit can be adjusted so as
to facilitate a greater level of flexibility for the charging process.

Figure 9 shows the comparative charging responses of the CCCV-VL, CCCV-SoC,
and CCCV-OCV control strategies. The performance of the CCCV-OCV control strategy
was very similar to the CCCV-SoC charging strategy from [50], because the CCCV-OCV
approach proposed herein was similarly aimed at the straightforward retrofitting of the
conventional CCCV charging system using a modular approach, i.e., the introduction of
a supervisory (external) battery OCV feedback loop. The main benefit of the proposed
CCCV-OCV approach was in its reliance on battery OCV estimation only, rather than the
complete nonlinear battery electrical circuit model used within the EKF-based SoC estimator
in [50]. Thus, the proposed CCCV-OCV control strategy possesses both the straightforward
implementation of the CCCV-SoC control strategy in the form of the cascade control system,
and the relative simplicity of the parameter estimator-based supervisory control loop that
relies on the well-established OCV vs. SoC relationship.
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Table 4. Comparison of different charging strategies in terms of speed-up.

Charging Method and Reference Speed-Up vs. Conventional Charging

Fuzzy logic charging controller [34] 13.2%
MCC charging with offline optimization [37] 19.1% to 29.7%
MPC with moving horizon estimation [35] 17.5%
GA-based offline optimization [36] 39.7%
MCC charging with LMS estimator of OCV [41] 39.3%
EKF-based SoC estimation plus CCCV (CCCV-SoC) [50] 25.0%
SRAM-based OCV estimation plus CCCV (CCCV-OCV) 23.9%

5. Conclusions

This paper + presented the design of a constant-current/constant-voltage charging
control strategy for a battery cell using the so-called cascade control system arrangement
with the adaptation of the battery charging current based on the open-circuit voltage (OCV)
parameter estimation. The control strategy featured two feedback loops aimed at controlling
the battery open-circuit voltage (OCV) parameter towards the target value corresponding to
a 100% battery SoC, while simultaneously honoring the predefined battery terminal voltage
constraint. The former requirement was realized by using the so-called system reference
adaptive model (SRAM) parameter estimator designed according to the Lyapunov stability
theory. Since the proposed modification superimposed an additional control level to the
existing conventional control strategy, it could be retrofitted to the existing CCCV charging
systems in a straightforward manner. The proposed dual-controller voltage control system
design was based on the damping optimum criterion, yielding straightforward analytical
controller-tuning rules.

The proposed CCCV-OCV charging control strategy was verified against the con-
ventional CCCV-VL charging control system using a battery terminal voltage-limiting
controller by means of simulations using the experimentally identified model of a lithium
iron phosphate (LiFePO4) battery cell. The simulation results sho that the CCCV-OCV con-
trol strategy has a distinct advantage over the more traditional CCCV-VL charging strategy
due to the former having an additional degree of freedom through its simultaneous control
of battery OCV and independent battery terminal voltage limitation. The CCCV-OCV
strategy was able to: (i) maintain a constant-current charging regime three-fold longer
compared to the conventional charging strategy and (ii) reduce the charging duration by
about 23.9% compared to the conventional (CCCV-VL) strategy. The latter result is in
agreement with the previous findings related to the utilization of a state estimator-based su-
perimposed feedback loop with the conventional charging system from [50]. The proposed
CCCV-OCV control strategy was apparently less effective in terms of charging speed-up,
when compared to offline optimization-based battery charging systems. However, its
modular design and straightforward tuning makes it suitable for retrofitting conventional
CCCV control systems. The proposed CCCV-OCV control strategy was also shown to be
robust to variations in the OCV vs. SoC curve gradient (process model gain) and parameter
estimator equivalent lag.

Future studies will be directed towards the practical implementation of the proposed
charging control strategy, with emphasis on the applicability to other battery chemistries,
and its subsequent experimental verification of the dedicated battery testing experimental
setup that is under development, at present, which will be suitable for testing state-of-the-
art battery cells, such as those based on LiFePO4 and lithium-titanate (LTO) chemistries.
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Appendix A

Figure A1a shows the control system structure utilizing the estimated battery state-of-
charge value provided by the nonlinear state estimator in the form of an extended Kalman
filter (EKF), whose block diagram representation is shown in Figure A1b. Both the state
estimator-based control strategy (denoted CCCV-SoC herein) and the EKF-based state
estimator are described in detail in [50]. The auxiliary battery terminal voltage-limiting
controller in Figure A1a performs the same function as in the cases of CCCV-VL and
CCCV-OCV control strategies, i.e., the CCCV-OCV and CCCV-SoC strategies represent
straightforward extensions of conventional (CCCV-VL) control strategies by means of an
additional feedback loop, which conditions (adapts) the battery charging current reference.
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7. Cipek, M.; Pavković, D.; Kljaić, Z.; Mlinarić, T.J. Assessment of Battery-Hybrid Diesel-electric Locomotive Fuel Savings and
Emission Reduction Potentials based on a Realistic Mountainous Rail Route. Energy 2019, 173, 1154–1171. [CrossRef]
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