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Abstract: A reliable aging-prediction method is significant for lithium-ion batteries (LIBs) to prolong
the service life and increase the efficiency of operation. In this paper, an improved Gaussian-process
regression (GPR) is proposed to predict the degradation rate of LIBs under coupled aging stress to
simulate working conditions. The complicated degradation processes at different ranges of the state
of charge (SOC) under different discharge rates were analyzed. A composed kernel function was
conducted to optimize the hyperparameter. The inputs for the kernel function of GPR were improved
by coupling the constant and variant characteristics. Moreover, previous aging information was
employed as a characteristic to improve the reliability of the prediction. Experiments were conducted
on a lithium–cobalt battery at three different SOC ranges under three discharge rates to verify the
performance of the proposed method. Some tips to slow the aging process based on the coupled
stress were discovered. Results show that the proposed method accurately estimated the degradation
rate with a maximum estimation root-mean-square error of 0.14% and regression coefficient of 0.9851.
Because of the proposed method’s superiority to the exponential equation and GPR by fitting all cells
under a different operating mode, it is better for reflecting the true degradation in actual EV.

Keywords: lithium-ion battery; degradation rate; Gaussian-process regression; coupled aging stress

1. Introduction

As a green energy source with high energy and power densities, a long life, and
a low self-discharge rate, lithium-ion batteries (LIBs) are indispensable components of
electric vehicles (EVs) [1–4]. In the battery-management system (BMS) of EVs, as the
basis of evaluating battery performance, the state of health (SOH) plays a significant role
in the reasonable use and replacement with LIBs for the control unit [5–8]. Because of
the complicated internal electro-chemical processes, LIBs are regarded as an intensively
non-linear time-varying system. That makes it a challenge to estimate the SOH accurately.
In order to explore the degradation mechanism of LIBs at work, the effect of aging stress
has been studied in different operating modes.

The capacity degradation of LIBs during operation is mainly caused by loss of lithium
inventory (LLI), loss of active material (LAM), and incremental changes in resistance [9,10].
These are affected by the charging rate, discharge rate, cut-off voltage of the charge and
discharge, temperature, the depth of discharge (DOD) and the SOC range, etc. [11–13].
Ref. [14] demonstrated that the solid electrolyte interface (SEI) can be extensively reinforced
by carrying the formation cycles at elevated temperatures. Under these conditions, de-
composition of the ionic liquid present in the electrolyte favored the formation of a thicker
and more protective layer. The influence of temperature on the degradation mechanism
was investigated by analyzing the incremental-capacity (IC) curves in [15]. A joint grey
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relational-analysis-based SOH estimation method considering temperature effects was
proposed to explore the degradation mechanism of LIBs at different temperatures and a
generic temperature regressive model was developed. The long-term effects of charging
current rates and cut-off voltages on capacity degradation and resistance increase were
compared in [16]. When the charging stress exceeded the critical value, battery-degradation
speed was greatly accelerated. Therefore, the charging current and cut-off voltage needed
to be reduced to retard battery degradation when the battery degraded to a certain extent.
A higher SOC indicated higher terminal voltage, which led to a greater electric-potential
difference between the anode and cathode. The side-reaction rate to LAM was higher
because of the higher SOC range, resulting in a higher aging rate for the LIBs [17]. Degra-
dation mechanisms for cycle aging at high and low temperatures as well as increased
cycling degradation at a high SOC were calculated separately in [18]. Comparing the CC
(constant current) and CC-CV (constant voltage) tests at low temperatures, the additional
CV charging at a higher SOC led to a strong increase in capacity loss, which was even more
pronounced at the higher current rate. A degradation mechanism in 26 Ah commercial
Li-ion battery cells comprising graphite as the negative electrode and a mixed metal oxide
of LiMn2O4 (LMO) and LiNi1/3Mn1/3Co1/3O2 (NMC) as the positive electrode were inves-
tigated, and it was found that the cycle life was shorter for the cell cycled in the higher SOC
range, which was correlated to the increased cell resistance and thickness of the SEI layer in
the graphite electrode and the manganese dissolution from the positive electrode [19]. The
research in [20] showed that cells cycled with high cut-off voltages and a wide SOC range
(20% to 95%) were severely affected by material degradation and electrode shift, whereas
a high cut-off voltage and a narrow SOC range (65% to 95%) caused greater electrode
degradation but negligible cell unbalance.

Besides the research on the electrochemical principle of different operations, there is a
large number of studies on the relationship between the single stress of temperature, the
rate of charging and discharging, the SOC range and DOD, etc., and the degradation rate of
LIBs. In the actual working condition, every stress is coupled with each other. For example,
a high discharging rate will accelerate the degradation rate, as will high temperature, but
the effect of these two stresses is greater than the sum of each because these stresses are
not independent but coupled with each other. Instead of remaining unchanged in actual
working conditions, aging stresses are mutually related to each other. For double aging
stresses, if one is outside of the working threshold, the other one is the major factor for
degradation. Otherwise, they couple with each other to affect the degradation of LIBs.

A Gaussian process (GP) is a stochastic process that is, in general, a collection of
random variables indexed by time or space. The inference of continuous variables leads to
Gaussian-process regression (GPR), where the prior GP model is updated with training
data to obtain a posterior GP distribution. GPR is good at solving high-dimensional, small-
sample regression classification because of simple training models, flexible nonparametric
inference, and hyper-parameter adaptive acquisition. Nevertheless, GPR is less effective
for problems with larger training sets because there is a large number of matrix-inversion
operations to increase the calculation amount and execution time.

In this paper, the coupled stress of the SOC range and discharge rate is studied
to analyze the degradation mechanism of LIBs at a normal temperature. An improved
Gaussian-process-regression (GPR) method is proposed to ameliorate the prediction of the
degradation rate. The remainder of this paper is organized as follows. In Section 2, aging
regimens are introduced and the degradation mechanisms are analyzed. Section 3 describes
the exponential equation and the proposed method to predict the degradation rate under
coupled aging stress. The performances of the proposed method and exponential equation
are discussed in Section 4. Conclusions are presented in the final section.
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2. Experiments
2.1. Aging Protocols

All experiments were performed on a MACCOR Series 4000 battery-test bench with
eight channels, as shown in Figure 1. The current range was −10 to 10 A with an accuracy
of ±0.05% full scale, and the voltage range was 0 to 5 V with accuracy of 1 mV. The
temperature chamber was from HONGZHAN-PLB150, and had a temperature range of
−20 to 120 ◦C with a fluctuation of±0.5 ◦C and a deviation of±2 ◦C. Commercial high-rate
charge/discharge 18650 cylindrical cells (1.5 Ah, ICR18650HB4, LG) containing LiCoO2 as
the positive electrode and graphite as the negative electrode were used in this study. The
manufacturer specifications for the cells are presented in Table 1.
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Figure 1. Battery-test equipment.

Table 1. Cell specifications (ICR18650HB4).

Item Nominal Capacity Nominal Voltage
Standard
Charging
Current

Standard
Discharging

Current

Maximum
Charging
Current

Maximum
Discharging

Current

Specification 1.5 Ah 3.65 V 750 mA (0.5 C) 300 mA (0.2 C) 6 A (4 C) 30 A (20 C)

Considering the most common battery-operation scenarios, the wide SOC range was
set to be 15–90% (75% DOD) with a middle SOC of 52.5%, and it was divided into three
equal ranges (25% DOD), with middle SOCs of 27.5%, 52.5%, and 72.5%. In order to
investigate the degradation effects of coupled stress, cells were cycled in four different SOC
ranges: 15–40%, 40–65%, 65–90%, and 15–90% at three different discharge rates: 2 C, 6 C,
and 10 C, where 1 C is 1.5 A. The end of the test was set for when cells cycled in the narrow
SOC range (15–40%, 40–65%, and 65–90%) reached 1500 partial cycles and cells cycled in
the wide SOC range (15–90%) reached 700 partial cycles.

The experiment included four steps, as shown in Figure 2: (1) activation to obtain the
actual battery capacity, (2) adjustment to make the battery work in the special SOC range,
(3) a partial-cycle test to obtain the effect of coupled aging stress, and (4) a battery-capacity
test to obtain the capacity after the partial-cycle test.
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(1) Activation

According to the electric-vehicle-battery test-procedure manual, the cells should be
activated before the aging-cycle tests. (1). The battery cell was discharged at a constant
current of 0.5 C to 2.5 V, where C is the rated capacity of the battery cell in ampere hours,
and then took an hour to rest. (2). The battery cell was charged at a constant current of
0.5 C to 4.2 V followed by a constant voltage charge until the charge current dropped below
0.05 C, which allowed the battery cell to be fully charged. This fully charged battery cell
was given 1 h of rest. (3). The battery cell was discharged at a constant current of 1 C until
the battery voltage fell to 2.5 V and the discharge capacity was measured. The activation
eliminated the film generated in the productive process to improve the internal activity.
This process was repeated three times to obtain the actual battery capacity by taking the
average value of three successive capacities. The battery capacity was considered stable
when the differences of these three successive capacities were within 2%.

(2) Adjustment

After the activation or capacity test, the SOC range of the battery should be adjusted
to the appropriate starting point. (1). The cell was be fully charged at a constant current
of 0.5 C to 4.2 V followed by a constant voltage charge until the charge current dropped
below 0.05 C and then took an hour rest. (2). The cell was discharged at 0.2 C for the
corresponding time listed in Table 2.

Table 2. Configuration for SOC adjustment.

SOC Range Start Point DOD (%) Discharge Capacity (Ah) Discharge Time (min)

15~40% 40% 60 0.9 180
40~65% 65% 35 0.525 105
65~90% 90% 10 0.15 30
15~90% 90% 10 0.15 30

(3) Battery Partial-Cycle Test

The aging-cycle tests began with a discharge rate corresponding to the end of the
SOC range, followed by a rest (20 min for narrow SOC range, 40 min for wide SOC range).
Then, the battery cell was charged with 1 C back to the SOC starting point, followed by
an appropriate rest. After we repeated the aging-cycle tests 100 times for the narrow SOC
range and 50 times for the wide SOC range, the battery cell was rested for 10 h, and then
the capacity tests were carried out.
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(4) Battery-Capacity Test

The capacity tests began with a 0.5 C constant current discharge of the battery cell
to 2.5 V, followed by an hour of rest. Then, the cells were charged with a 0.5 C constant
current charge to 4.2 V, followed by a constant voltage charge until the charge current
dropped below 0.05 C. The fully charged battery cell was given an hour to rest. After that,
the capacity of the battery cell was assessed by a 1 C constant discharge to 2.5 V.

The final degradation rates of the 12 cells and the role of each cell are presented in
Table 3. Nine cells were marked with a “

√
” symbol to identify the parameters of the aging

model, and three cells of the narrow SOC range were marked with a “?” symbol to verify
the performance of the proposed model.

Table 3. Final degradation rates (%).

15–40% Role 40–65% Role 65–90% Role 15–90% Role

2 C 2.057
√

3.147 ? 4.372
√

7.086
√

6 C 2.108
√

3.483
√

5.494 ? 8.753
√

10 C 2.12
√

4.302 ? 6.585
√

10.149
√

2.2. Experimental Results

The degradation rates of the 12 cells are illustrated in Figure 3 and listed in Table 4.
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Figure 3. Details of the degradation rate under different operating modes. (a) SOC range of 15–40%;
(b) SOC range of 40–65%; (c) SOC range of 65–90%; (d) SOC range of 15–90%.

The three cells cycled with an SOC range of 15–40% under different discharge rates
are shown in Figure 3a. After 1500 partial cycles, the degradation rates of cells discharged
with 2 C, 6 C, and 10 C were 2.057%, 2.108%, and 2.12%, respectively. The degradation
trends of the three cells were similar. This reveals that the discharge rate had little influence
on cells degrading in the low SOC range. Figure 3b displays the degradation rates of
cells cycled in moderate SOC, which ranged from 40% to 65%. After 1500 partial cycles,
the degradation rates of cells discharged with 2 C, 6 C, and 10 C were 3.147%, 3.483%,
and 4.302%, respectively. The cell with 6 C degraded 0.336% more than the one with 2 C,
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whereas the cell with 10 C degraded 0.819% more than the one with 6 C. The curves reveal
that the discharge rate had more effect than the SOC range on the cell in the moderate SOC
range. The degradation rate of the cell with 10 C accelerated from the beginning because of
the creation of SEI. The degradation rates of the cells discharged with 2 C, 6 C, and 10 C
in the high SOC range of 65–90% were 4.372%, 5.494%, and 6.595%, respectively, which
is shown in Figure 3c. The cell with 6 C degraded 1.122% more than the one with 2 C,
whereas the cell with 10 C degraded 1.101% more than the one with 6 C. The degradation
trends of all three cells flattened after a rapid change because of the increased LAM and SEI
based on the high voltage. The dominant aging stress should have been the discharging
rate for the cell in the high SOC range. The three cells cycled with a wide SOC range of
15–90% under different discharge rates are shown in Figure 3d. After 650 partial cycles, the
degradation rates of cells discharged with 2 C, 6 C, and 10 C were 6.989%, 10.951%, and
18.753%, respectively. The curve of the cell with 10 C rose quickly after 500 cycles because
of the sudden collapse of the cathode active material. When a LIB is cycled in a wide
SOC range with a high discharge rate, the frequent deep intercalation and deintercalation
of lithium ions induces great mechanical stress in the electrode active material particles,
increasing the damage to the crystal structure of the electrode material. The durability and
stability of the cathode deteriorate with the gradual decline of the cathode active material,
inducing the sudden collapse of the cathode active material. Therefore, discharge rate
became the major influencer after 500 cycles, and the cell became damaged between cycles
650 and 700. In addition, we should be aware of the regularities of cells cycled with the
same discharging rate in different SOC ranges. The degradation rate of a high SOC range
(65–90%) is higher than that of a moderate SOC range (40–65%) with the same discharge
rate, whereas the degradation rate of a moderate SOC range is higher than that of a low
SOC range (15–40%) with the same discharge rate.

Table 4. Degradation rates (%).

Cycle 15~40
@2 C

15~40
@6 C

15~40
@10 C

40~65
@2 C

40~65
@6 C

40~65
@10 C

65~90
@2 C

65~90
@6 C

65~90
@10 C Cycle 15~90

@2 C
15~90
@6 C

15~90
@10 C

100 0.51 0.19 0.44 0.52 0.30 0.48 0.66 1.08 1.42 50 1.22 2.16 3.20
200 0.73 0.43 0.58 0.72 0.67 0.81 1.18 1.64 2.01 100 2.03 2.94 3.54
300 0.63 0.61 0.68 0.92 1.05 2.01 1.44 2.16 2.79 150 2.98 4.35 4.38
400 0.83 0.85 0.85 1.19 1.21 2.13 1.86 2.29 3.35 200 3.33 5.00 5.17
500 1.00 0.99 0.95 1.34 1.45 2.18 1.84 2.95 3.72 250 3.86 5.69 6.10
600 1.03 1.05 1.06 1.53 1.98 2.57 2.27 3.06 4.12 300 4.29 6.28 6.95
700 1.34 1.11 1.21 1.83 2.06 2.85 2.39 3.20 4.54 350 4.74 6.86 7.48
800 1.44 1.23 1.30 2.06 2.28 2.91 2.53 3.44 4.84 400 4.95 7.22 8.49
900 1.56 1.40 1.41 2.22 2.37 3.01 2.95 3.52 4.60 450 4.98 8.14 9.00

1000 1.58 1.53 1.58 2.35 2.55 3.23 3.23 4.01 4.98 500 7.09 8.75 11.33
1100 1.63 1.65 1.62 2.48 2.67 3.38 3.52 4.37 5.24 550 6.93 9.62 12.89
1200 1.72 1.76 1.80 2.59 2.81 3.57 3.82 4.69 5.59 600 6.73 10.68 13.76
1300 1.84 1.90 1.85 2.78 3.03 3.77 4.06 5.03 6.03 650 6.99 10.95 18.75
1400 1.93 2.05 2.02 2.97 3.28 4.01 4.26 5.28 6.33 700 7.51 11.30
1500 2.06 2.11 2.12 3.15 3.48 4.30 4.37 5.49 6.60

There were also some interesting patterns under different operation modes. The
degradation rate of the low SOC range was slower than that of the moderate SOC range,
and that of the high SOC range was the fast. Furthermore, the aging trend of the low SOC
range was appropriately linear, whereas the trend line of the high SOC range flattened
after a rapid change, as the higher slope was accompanied by a faster discharge rate. By
analyzing the degradation mechanistic, the aging in the low SOC range was determined to
be mainly due to the LLI, whereas the aging in the moderate SOC range was mainly due to
the LLI, with a slight LAM. Moreover, the degradation in the high SOC range was induced
by the LLI and LAM of both positive and negative electrodes. In the case of ensuring
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power and energy, the cells should be working in the low SOC range as much as possible
to prolong their lives.

In the wide SOC range, there would have been a significant amount of heat because
of the high discharge rate of 6 C and 10 C. With the long discharge time, the two cells
of 6 C and 10 C had similar degradation trends with the aging dominant stress of tem-
perature. Heat radiation is important for cells with long-term high discharge rates. The
discharge rate should be limited for degraded cells in order to avoid the sudden collapse of
weak electrodes.

3. Methodology

For the complex electrochemical reaction inside the LIBs, the electrochemical parame-
ters of LIBs coupled with aging stress, such as solid-phase diffusion coefficients, solution-
phase conductivity, solution-phase diffusion coefficient, and the electrochemical-reaction
rate, obey the Arrhenius law [21,22]. Therefore, the exponential equation was selected to
fit the relationship of the degradation rate at first. In order to address the deficiency issue
of predicting the degradation on different aging stages, GPR was employed because of its
ability to solve high-dimensional, nonlinear, and small-sample regression problems based
on probability theory. The input and the kernel function of GPR should be selected based
on the degradation properties of the cells. Therefore, the single aging stress and single
kernel function are too simple to satisfy the demand of the complex degradation of LIBs. A
composed kernel function was proposed to improve the prediction of GPR with optimized
input characteristics.

3.1. Exponential Equation

A first principle of a one-dimensional model involving solvent diffusion and kinetics
for capacity fade in a lithium-ion battery is presented in [23]. The variation of the rate
constant of the SEI-film-formation reaction and the solvent diffusivity were found to
follow an Arrhenius-type relationship. Therefore, we transformed the Arrhenius law into
Equation (1) to fit the degradation data shown in Table 4.

Qloss =
A

1000

(
Ec

100

)b
(1)

where Qloss is the degradation rate, Ec represents the equivalent cycles to discharge the
equivalent capacity, and A and b are the undetermined parameters for different dis-
charge modes.

The exponential-fitting coefficients for different operating modes are listed in Table 5.
The value of b varies between 0.62 and 0.68, so it was set to 0.65 to simplify the computation.
The value of A was different because of the discharge rate, SOC range, and DOD, so it
should be obtained from a function of single aging press of the discharge rate (Cdis), the
mid-value of the SOC range (SOCm) with DOD to indicate different SOC ranges, a double
aging press of the mid-value of SOC range (SOCm) coupled with the discharge rate (Cdis),
and DOD coupled with the discharge rate (Cdis), as in Equation (2).

A = k1SOCm + k2DOD + k3Cdis + k4SOCmCdis + k5DODCdis (2)

where k1, k2, k3, k4, and k5 are the coefficients of each aging press. They can be calculated
by recursive least square (RLS) and are listed in in Table 6.
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Table 5. Parameters for the exponential equation.

2 C 6 C 10 C

A b A b A b
15~40% 7.476 0.62 7.06 0.65 6.703 0.66
40~65% 11.39 0.67
65~90% 15.14 0.64 24.11 0.64
15~90% 21.34 0.65 30.32 0.66 35.22 0.65

Table 6. Parameters of the k series.

Parameter k1 k2 k3 k4 k5

Value 10.12 17.71 −12.97 23.27 24.27

3.2. Gaussian-Process Regression

The Gaussian process is a kind of stochastic process that quantitatively describes the
dynamic relationship of random events in time series, with the random process satisfying
normal distribution. The probability density of a one-dimensional Gaussian process can be
represented as in Equation (3) [24].

N
(

x|µ, δ2
)
=

1√
2πδ2

exp

(
− (x− µ)2

2δ2

)
(3)

where µ is the mean value, and δ2 is the covariance.
If the mean-vector-and-covariance matrix is multidimensional, the Gaussian process

can be determined in Equation (4) [24].

f (x) ∼ GP
(
m(x), k

(
x, x′

))
(4)

where m(x) = E[ f (x)] is the mean function, and k(x, x′) = E[(m(x)− f (x))(m(x′)− f (x′))]
is the covariance function, which is also called the kernel function. It can quantify the relevance
between two random variables: x and x′.

Gaussian-process regression is defined as in Equation (5).

y = f (x) + ε (5)

where x is the input variable, y is the output, and ε is the white noise, with a mean of 0 and
variance of σ2

n . The prior distribution of observations can be expressed as Equation (6).
Meanwhile, the joint prior distribution of the training-set output and testing-set output is
shown in Equation (7) [24].

y ∼ N
(

0, K(X,X) + σ2
nIn

)
(6)

[
y
f∗

]
= N

(
0,
[

K(X,X) + σ2
nIn K(X,X∗)

K(X,X∗)T K(X∗,X∗)

])
(7)

where y is the output vector of the training-input vector X, f∗ is the output vector of the
testing-input vector X∗, K(X,X) is the symmetric positive definite matrix (kernel matrix),
and In is the identity matrix.

Based on Bayesian theory, the posteriori distribution can be derived from the prior
distribution as in Equation (8) [24].

f∗|X, y, X∗ ∼ N
(

f∗|f∗, cov(f∗)
)

(8)
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where
f∗ = K(X,X∗)T

[
K(X,X) + σ2

nIn

]−1
y (9)

cov(f∗) = K(X∗,X∗)−K(X,X∗)T
[
K(X,X) + σ2

nIn

]−1
K(X,X∗) (10)

If the hyperparameter set of the kernel function is θ, the maximum posterior estimation
can be expressed as in Equation (11).

p( θ|y, X) =
p(y|X, θ)p(θ)

p(y|X) (11)

The optimal solution of θ should be transformed to a negative logarithmic-likelihood
function as in Equation (12) because of the lack of prior information of θ. Equation (13) is the
partial derivative of θ [24]. A penalty term of complexity is employed as 1

2 log
∣∣K(X,X) + σ2

nIn
∣∣

in Equation (12) to avoid potential overfitting.

L(θ) = − log p(y|X, θ) = − 1
2

yT
(

K(X,X) + σ2
nIn

)−1
y− 1

2
log
∣∣∣K(X,X) + σ2

nIn

∣∣∣− n
2

log 2π (12)


∂L(θ)

∂θ = 1
2 tr
[(

ααT − C−1) ∂C
∂θ

]
α =

[
K(X,X) + σ2

nIn
]−1y

C = K(X,X) + σ2
nIn

(13)

3.3. Improved Gaussian-Process Regression

There are various forms of kernel functions for different subjects, such as the squared-
exponential (SE) function, the rational-quadratic (RQ) function, the Matern function, the
linear (LIN) function, etc. The SE function, RQ function, and Matern function are good at
describing local properties, and the LIN function is skilled at expressing global features.
The degradation of LIBs is too complicated for a single kernel function, so a new kernel
function combining the Matern function and LIN function was created to optimize the
hyperparameter. The root-mean-square error (RMSE) of each function, calculated with
Equation (14), is represented in Table 7. The initial hyperparameters were set to 0 and
the conjugate gradient was employed to optimize the hyperparameter of different kernel
functions.

RMSE =

√
1
N

n

∑
i=1

(
Dri − Dr′i

)2 (14)

where Dri is the reference degradation rate, and Dr′i is the estimated degradation rate.

Table 7. RMSE of different functions.

Kernel SE RQ Matern LIN SE + LIN RQ + LIN Matern + LIN

RMSE (10−4) 2.3423 1.7526 1.5954 2.4156 1.8215 1.7235 1.2312

According to Table 7, the RMSE of SE, RQ, and Matern was reduced through the
combination with LIN, as the Matern + LIN function had the minimum RMSE. LIBs
have different decay rates in the degradation process, as the value of the Matern function
decreases more quickly if the distance is greater. Meanwhile, the LIN function can enhance
the predictive power because the degradation trend is approximately linear as a whole.
Therefore, Matern + LIN was selected as the kernel function for LIB degradation.

The mid-value of the SOC range, the DOD, the rate of discharge, and the discharge
cycle played the role of characteristics as the input of the GPR. Nevertheless, the invariance
of nearly all inputs except the discharge cycle led to poor hyperparameter optimization. In
order to avoid potential overfitting by unchanged input parameters, we coupled the invari-
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ant characteristics with the variant characteristic to preserve both pieces of characteristic
information at the same time. Furthermore, the previous information regarding the degra-
dation was employed as an input to improve the prediction accuracy. As a consequence,
the inputs of the improved GPR model were the mid-value SOC range (SOCm) coupled
with the discharge cycle (Ec), the DOD coupled with the discharge cycle (Ec), the discharge
rate (Cdis) coupled with the discharge cycle (Ec), and the previous loss capacity (Qloss), as
shown in Figure 4.
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4. Results and Discussion

As shown in Table 3, the cells cycled in the 45~65% SOC at a discharge rate of 2 C
(cell 1), in the 45~65% SOC at a discharge rate of 10 C (cell 2), and the 65~90% SOC at
discharge rate of 6 C (cell 3) were employed to verify the performance of the proposed
method. The A, calculated with Equation (2) and shown in Table 6, was 10.8, 15.06, and
18.98 for cell 1, cell 2, and cell 3, respectively. The exponential-fitting curves with the
calculated A and a b of 0.65 are indicated in Figure 5 and the performance is listed in
Table 8, where the regression coefficient (R2) represents the goodness of fit, which can be
calculated by Equation (15).

R2 = 1−

n
∑

i=1

(
Dri − Dr′i

)2

n
∑

i=1

(
Dri − Dri

)2
(15)

where Dri is the average value of Dri. The closeness of R2 to 1 indicates the fitting precision
of the model.

Table 8. Comparation of different methods.

40~65%@2 C (Cell 1) 40~65%@10 C (Cell 2) 65~90%@6 C (Cell 3) Average
RMSE R2 RMSE R2 RMSE R2 RMSE R2

Exponential equation 0.09% 0.9895 0.22% 0.9650 0.17% 0.9858 0.16% 0.9801
GPR 0.15% 0.9698 0.20% 0.9715 0.17% 0.9862 0.17% 0.9758

Improved GPR 0.03% 0.9985 0.14% 0.9851 0.08% 0.9964 0.08% 0.9933
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In Figure 5, the best exponential-fitting curve was for cell 1, which cycled in the
45~65% SOC at a discharge rate of 2 C. Its goodness of fit was 0.9895, with an RMSE of
0.09%. The exponential-fitting curve for cell 2 cycled in the 45~65% SOC at a discharge rate
of 10 C behaved well in the latter part but unsatisfactorily in the first part. The reference
degradation rates were obviously greater than the fitting value because the high discharge
rate gave rise to the generation of the SEI. After a few cycles, the SEI was established and
tended toward steadiness. As a result, the goodness of fit was 0.965, with an RMSE of 0.17%.
Meanwhile, the exponential-fitting curve for cell 3, which cycled in the 65~90% range at a
discharge rate of 6 C, shows good fitness in the first and the end stages but slightly worse
fitness in the middle segment. This phenomenon was mostly due to the increased LAM
and SEI. As the discharge rate of 6 C was less than 10 C, the estimation speed of SEI was
slower. The coupled effect of LAM and SEI was plenty, but there was a slight difference
between the fitting curve and the reference data. As a consequence, the goodness of fit was
0.9858 but the RMSE was 0.22%. Furthermore, the degradation rate of cell 3 was fastest
because coupled aging stress is more effective on battery degradation.

An improved GPR was proposed to try to represent the changes in the electrochemical
process of the battery under operation. Its performance was compared with the exponential
equation, as shown in Figure 6, where EE represents the exponential equation, IGPR
represents the improved IGPR, and CI represents the confidence interval. The detailed
performance of different methods is listed in Table 8.

Results show that the improved GPR was superior to the exponential equation and
GPR. Because cell 1 was cycled in the moderate SOC range at a moderate discharge rate,
the fitting curve of the improved GPR was more linear than that of the exponential fitting.
For the cells cycled at a high discharge rate, there were two turnings to indicate the
electrochemical changes according to the coupled aging stress. It fit better than that of the
exponential equation at different discharge stages, especially in the beginning.

For all three cells, the RMSE of the improved GPR was smaller than that of the other
two methods, as the R2 was closer to 1 than for the other two. For the improved GPR,
the RMSE of cell 1, cell 2, and cell 3 was 0.03%, 0.14%, and 0.08%, respectively, which is
smaller than that of exponential equation at 0.09%, 0.22%, and 0.17%, respectively, and
that of GPR at 0.15%, 0.20%, and 0.17%, respectively. The regression coefficient of the
improved GPR was 0.9985, 0.9851, and 0.9964 for the three cells, respectively, and that of
the exponential equation was 0.9895, 0.9650, 0.9858, that of GPR was, 0.9698, 0.9715, and
0.9862. The comparison indicates that the improved GPR could fit all cells under different
operating modes even with a high discharge rate under a high SOC range, whereas there
was a discrepancy in the effect of the other two methods for different operations.
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Figure 6. Comparation of the proposed method with the exponential equation and GPR. (a) Cell
cycled in the 45~65% SOC at a discharge of 2 C; (b) cell cycled in the 45~65% SOC at a discharge of
10 C; (c) cell cycled in the 65~90% SOC at a discharge of 6 C.

The average RMSE for all three cells by the improved GPR was 0.08%, which was
smaller than that of the exponential equation, at 0.16%, and that of the GPR, at 0.17%. The
average regression coefficient of the improved GPR was 0.9933, which was closer to 1 than
the exponential equation, at 0.9801, and at the GPR, at 0.9758. Furthermore, the improved
GPR reduced the uncertainty of prediction because the confidence interval was reduced
from 1.25% of the GPR to 0.4%. All of this proves that the proposed method can better track
the true degradation rate and provide accurate estimation under different operating modes.

5. Conclusions

An improve Gaussian-process regression to predict the degradation rate of LIBs is
proposed in this paper. The degradation rate of LIBs cycled in different SOC ranges at
different discharge rates was analyzed to indicate the influencing factors at different stages.
Some tips about the strategy to slow the aging process based on the coupled stress are
as follows: (1) The high SOC range for operation should be avoided as much as possible,
(2) the DOD should be limited, (3) the low SOC range should be selected for high-rate
discharge, and (4) for long-term high-rate discharge, heat dissipation is necessary.

To describe the effect of coupled aging stress, the exponential equation and Gaussian-
process regression were employed to predict the degradation rate of different operating
modes. Then, characteristics coupled with previous degradation information were em-
ployed as inputs of GPR to provide as much information as possible at the same time. A
composed kernel function was proposed to improve the prediction of GPR. The verification
results demonstrate that the proposed method provides highly accurate degradation-rate
estimation for LIBs at different operating modes, with a 0.14% RMSE and a regression coef-
ficient exceeding 0.9851. The comparison with the exponential equation and GPR showed
that the estimation results of the proposed method were closer to the reference degradation
rate. Future investigation will focus on the effect of three or more coupled degradation
stresses to analyze the aging mechanism of lithium-ion batteries in an actual EV.
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