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Abstract: Electric vehicles are able to provide immediate power through the vehicle-to-grid function,
and they can adjust their charging power level when in the grid-to-vehicle mode. This allows them to
provide ancillary services such as frequency control. Their batteries differ from conventional energy
storage systems in that the owner’s energy requirement constraint must be met when the vehicles
participate in a frequency control system. An optimization problem was defined by considering both
the owner satisfaction and frequency control performance. The main contribution of the proposed
paper, compared to the literature, are (1) to keep the total available energy stored in the batteries
connected to a charging station in an optimal region that favors the frequency regulation capability
of the station and the proposed QoS and (2) to consider the optimal region bounded by the efficiency
thresholds of the charger to allow for maximum regulation power. The problem is expressed as a
multi-criteria optimization problem with time-dependent references. The paper presents an energy
management strategy for frequency control, describes a concept of an optimal time-dependent state
of charge for electric vehicle charging demands, and considers the power dependence of the electric
vehicle charger efficiency. Finally, the simulation results are presented via Matlab/Simulink to prove
the effectiveness of the proposed algorithm.

Keywords: electric vehicles; smart charging; frequency regulation; maximum regulation power

1. Introduction

Electric vehicles (EVs) can help improve the quality of the power grid by participating
in ancillary services such as valley filling, reactive power compensations, voltage drops,
and frequency regulation. The massive integration of vehicle-to-grid (V2G) functionality in
the EVs’ charger will make EVs flexible with connected energy resources. In addition, the
fast response of EVs and the high-power density of lithium batteries make EVs suitable for
frequency regulation [1–3].

The problem of charging EVs with a frequency control service has been the subject of
several studies. The EV charging problem, which considers frequency regulation with a
control theory has been, for example, addressed in [4–11]. Others, such as [1,12–16] use the
optimization approach to find the optimal charging power. Other methods based on fuzzy
logic, deep reinforcement learning, and priority models have been used in [17–20].

To solve the problem of frequency-controlled EV charging, several considerations
must be taken into account. The objective of keeping the operational capacity limit in
the optimal region—where the up-regulation power is at the maximum and the down-
regulation power is also at the maximum—is considered in [14,16], whereas [13,15] did not
consider this aspect. Furthermore, refs. [14,15] considered a constant value for the upward
power control, as well as for the downward power control of the EV. Therefore, they did
not take into account the dependence of the regulation capacity on the up and down state
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in the charge of the battery (SoC). In addition, addressing the expectations of EV owners’ is
a major challenge in this area. In [13,14,16,21], the user satisfaction was taken into account,
while this point was completely ignored in [22,23]. Ignoring this aspect could discourage
EV owners from participating in ancillary services.

Many studies have considered a large number of EVs participating in ancillary services.
In [14], the study was conducted with a large number of EVs, equal to 100,000, while [1]
assumes the use of 1000 EVs in the simulation, and [6] sets the total number of EVs involved
in the simulation of the frequency control algorithm to 500. The focus of this paper is to
investigate the feasibility of providing a frequency control service with a small number
of EVs. Therefore, in all simulations, the maximum number of EVs is 20. In addition,
refs. [14,16] used an assigned symmetric disturbance signal that simplified the problem of
achieving the SoC objective and maintained the problem of the control capacity. Moreover,
refs. [6,14] considered an equally likely distribution of the number of EVs in each SoC
category (low, medium, and high).

Most of the research using the [14,16] optimization approach set a strict equality con-
straint in their optimization models. Equalities are harder to satisfy exactly, and they are not
compatible with all solvers. One modeling trick is to reformulate each equality as two in-
equalities, but this increases the number of constraints and thus the size of the problem [12].
Accordingly, only inequality constraints are used in the proposed optimization model.

In control theory, the perturbation is distributed uniformly among the EVs. In the
case of a small disturbance and a high number of controlled EVs, each EV with small
power fluctuations will participate in frequency regulation to maintain the SoC without
considering the poor efficiency of the charger in low-power regions. However, according
to [22], the charger is designed to operate more efficiently closer to the maximum power
levels. In the same context, refs. [13,22] study the effect of charger efficiency on the tracking
accuracy of the spurious signal and assume that, without considering the dependence of
charger efficiency on power, the tracking error increases.

Charger efficiency constraint: To our best knowledge, none of the existing work takes
into account the dependence of charger efficiency on power. Almost all studies assume
a constant charger efficiency in the range [0.8, 1]. Some of them do not use a discharge
efficiency or assume a perfect charger with unit efficiency.

In an EV charging management, the available energy provides information about the
accumulation of energy to charge the EV. Thus, the energy provides a kind of future energy-
usage possibility, such as the maximum charging and discharging rates, as well as the
energy remaining to reach full capacity or full discharge. However, energy cannot convey
long-term knowledge about the state of the EV or its history, but it does provide short-term
information. Combining two heterogeneous physical quantities, such as energy and power,
in the same objective function provides a global vision of the charging management of the
EV fleet in both the long and short term, as well as in its past, present, and future. This
model allows solving the optimization planning problem as a moment problem. Thus, the
scheduling problem, whose solution is hard in terms of computational time and memory
consumption, will be replaced by an instantaneous dispatching problem, whose solution is
simple and fast. The added value in this model allows us to reduce the execution time; thus,
we can tackle real-time problems such as frequency regulation for the coordinated charging
of electric vehicles, as well as reducing the time step as much as the desired accuracy.

The main contribution of this paper, compared to the previously investigated literature,
is to propose an optimal EV fleet charging management system that takes into account
the power dependence of charger efficiencies, and which extends our previous work [20]
(which is significantly improved upon) to the case of bidirectional charging. In detail, the
contributions highlighting the proposed strategy are to

• Maximize the regulatory reserve by using an EV charging algorithm based on preven-
tive actions, replacing the planning problem with one on the fly;

• Avoid the use of hard constraints, as well as reducing the number of decision variables
and the number of constraints to reduce computation time and memory usage;
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• Take into account the efficiency of the charger and its dependence on power and
therefore maximizing charging efficiency;

• Take into account the SoC and temperature dependence of regulation capacity and
keeping the total regulation capacity in the optimal zone;

• Control the bi-directional charging of EVs (V2G), taking into account both the power
demand of the grid operator and the satisfaction of the SoC target of the EVs’ users.

The remaining sections of the paper are structured as follows: In Section 2, the op-
timization problem modeling is detailed. The simulation results of the control strategy
are presented in Section 3. Finally, in Section 4, the paper conclusion and future works
are discussed.

2. Optimization Problem Modeling

In this paper, we formulate the EV charging problem as a power dispatch problem
and consider two distinct cases:

• Case 1 (namely P1): the standard power dispatch problem with a frequency distur-
bance. In this context, the main goal is to charge EVs, but the idea is to also keep a
regulation capability of up and down, i.e., to keep EVs in an optimal region to be able
to better face the second case;

• Case 2 (namely P2): the frequency regulation problem with a power request from or to
the power grid. The main goal, then, becomes to answer this power demand emerging
from the power grid, while trying to consider EVs charging expectations.

In P1, the problem is expressed as a general quadratic optimization problem, where
the objective function aggregates two criteria:

F1 = w1C2
1 + w2C2

2 (1)

The criterion C1 computes the sum of gaps between an energy target and the energy in
EV batteries at each time step. This target is determined by considering the optimal region
to obtain the best regulation capability (up and down) as depicted on Figure 1.

C1 = (Ei−1 +
NEV

∑
j=1

Pj
i ∆t)− Ere f

i (2)

where Ei is calculated by the given Equation (3):

Ei =
NEV

∑
j=1

SoCj
i · E

j
batt · SoH j (3)

Ere f
i is tracked to maintain the regulation capacity at the maximal value and is com-

puted (considering Figure 1 optimal region) as follows:

Ere f
i =

NEV

∑
j=1

SoCre f
i · E

j
batt · SoH j (4)

As shown by the example of Figure 1, the best tradeoff between charging and discharg-
ing capability is at a SoC of 0.5 with a maximal charging power of 80 kW and a discharging
power of −80 kW. The optimal region is defined between a SoC of 0.4 and a SoC of 0.6,
where both charging and discharging powers stay high. In these conditions, EVs can be
managed in a flexible way to 1. charge their batteries and 2. answer a power demand from
or to the grid. In order to give a priority to the charging of EVs, the optimal SoC (SoCre f

i )

may be set over 0.5. In our benchmark, we set SoCre f
i to 0.6.
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Figure 1. Optimal capability region for charging or discharging lithium−ion batteries, depending on
their SoC.

At the global EV fleet level, the global strategy has to consider various subtleties to
deal with conflicting objectives, such that the SoC of EVs is maximized at the end of the
day. The total available energy stays in an optimal region and obtains the best response for
a frequency regulation demand, as is illustrated on Figure 2.

Figure 2. An illustration of two conflicting objectives.

A frequency deviation and its duration are unpredictable when considering the plan-
ning horizon of a day. Then, the EV fleet must be able, at any moment, to face any
disturbances in the power grid, but must be able of taking into account two opposing
criteria for each EV:

• To charge its battery in order to obtain a high SoC to meet the EV owner needs (>0.7);
• To keep the SoC within an optimal range to improve the capability of the fleet to

answer a frequency control request (>0.4 and <0.6).

This strategy allows a better power management for the EV fleet charging and a quick
response to the power request in case of a frequency deviation.

Then, the purpose of the criterion C2 is to keep the EV charging, such that the total
power approaches Pre f

i ; thus, the total available energy stored in the EVs increases gradually
to the maximal capacity of the EVs’ battery by the end of the day (cf. Figure 3). The strategy
of increasing the EVs’ SoC at the end of the day is fully justified because of high-power
demands during the peak period between 6 PM and 10 PM. Thus, there is a necessity to
discharge EVs for the relief of the power grid.

C2 = (
NEV

∑
j=1

Pj
i )− Pre f

i (5)
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Pre f
i is defined as the average power that must be used to reach Esaturation at the end of

the day, with a total station opening time of top hours. The detailed expression of Pre f
i is

given in the following equations:

Esaturation =
NEV

∑
j=1

SoClimit · Ej
batt · SoH j (6)

Eremain
i = Esaturation − Ei (7)

Pre f
i =

Eremain
i
top

(8)

Figure 3. Example of a reference energy and actual energy in the scope of a day.

P1 aims to prepare the EV fleet to respond to any power request by keeping the average
SoC of the EV fleet in the optimal region and by charging the EVs that have a higher priority.
However, the main goal of P2 is to minimize the error between the requested power and
the used charging power, as well as to maximize the charging efficiency of the fleet.

When there is a power request, P2 is activated and the optimization problem is
expressed as a multi-criteria minimization:

F2 = w3C2
3 + w4C4 (9)

The purpose of criterion C3 is to offer the best answer to the power request by mini-
mizing the tracking error, i.e., P− Prequest:

C3 = (
NEV

∑
j=1

Pj
i )− Prequest

i (10)

Criterion C4 take into account the chargers’ efficiency to minimize the losses related to
this component.

C4 =
NEV

∑
j=1

Pj
i (1− η(Pj

i )) (11)

P1 and P2 have a different objective function, but they are subjected to the same set of
constraints related to physical limits or operational constraints.

The amount of power used to charge or discharge a battery that is bounded is defined
in (12):

Pj
i ≤ Cj

i

Pj
i ≥ Dj

i

(12)
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The definition of Cj
i and Dj

i is given by the following equations:

Cj
i = sj

i · α
j,ub
i · Pj,max+

i

Dj
i = sj

i · α
j,lb
i · P

j,max−
i

(13)

Pj,max+
i = min(Pj

chpt+, Pj
Charger+, Pj

i,Bat+)

Pj,max−
i = max(Pj

chpt−, Pj
Charger−, Pj

i,Bat−)
(14)

sj
i , α

j,ub
i , and α

j,ub
i are defined in the Equations (15)–(17) as follows:

sj
i =

{
1, pluged-in
0, pluged-out

(15)

α
j,ub
i =

{
1, SoCj

i < 0.9

0, SoCj
i ≥ 0.9

(16)

α
j,lb
i =

{
1, SoCj

i ≥ 0.2

0, SoCj
i < 0.2

(17)

To avoid overloading the transformers, a maximal power limits the sum of power that
is dispatched to EVs for each time slot:

NEV

∑
j=1

Pj
i ≤ Ptotal (18)

The SoC of EVs is dynamically evaluated through the following equations:

In charging mode: Pj
i ≥ 0

SoCj
i+1 = SoCj

i +
η(Pj

i )Pj
i · ∆t

Ej
batt · SoH j

In discharging mode: Pj
i < 0

SoCj
i+1 = SoCj

i +
(Pj

i /η(Pj
i )) · ∆t

Ej
batt · SoH j

(19)

For the sake of simplicity, the joule heat generation is considered as evenly distributed.
As a consequence, the temperature in battery cells is also considered well distributed. Then,
for the estimation of the temperature, a first-order equation is used:

T j
i+1 = T j

i +
1

mjCj
p
(Pj

joule,i + Pj
convective,i) (20)

To compute the joule power, a linear approximation is used:

Pj
joule,i = kj × Pj

i ∀i, ∀j (21)

The Newton law is applied for computation of the convective power:

Pj
convective,i =

T j
i − Tout

i

Rj
th_out

i = 1, ..., N (22)



World Electr. Veh. J. 2023, 14, 152 7 of 13

The presented results were obtained with the MATLAB optimization toolbox when
using f mincon with an Intel Core i7 CPU @ 2.70GHz.

3. Simulations and Results

The parameters used for the simulations are summarized in Table 1. The default
full-rate power for the charging stations was 22 kW.

Table 1. EV parameters used for simulations

Parameters Value

Sampling time 5 min
Maximum number of EVs 20
Battery capacity 60 kWh
Starting SoC [0.1, 0.6]
Desired SoC [0.3, 0.9]
Maximum/minimum SoC 0.9/0.2

3.1. Impacts of the Charger Efficiency

The charger efficiency can have a significant impact on the amount of energy put in
batteries. Approximating the efficiency with a constant value may lead to a low accuracy
in the results, as shown in Figure 4, with variations ranging from 0.72 to 0.96 percent. The
fixed arrival and departure times (see Table 2), with a constant number of EVs, were used
to focus on the tracking errors related to the proposed strategy.

Figure 4. EV charger efficiency.

Table 2. Simulation parameters of EVs in Section 3.1.

Parameters Time (h)

Arrival times 8 h
Departure times 18 h

Figure 5 shows the results obtained on a scenario with a frequency regulation between
8:00 to 18:00. In this case, P2 was used, and multiple charging and discharging decisions
were applied, thus increasing the energy transfers between the power grid and the EVs. By
using efficiency as a function of power (see Figure 4), the tracking error is much smaller
compared to a fixed efficiency (around the kilowatt threshold). In the first case with a
constant efficiency, the tracking error is at the order of magnitude of kW when compared to
the varying efficiency scenario where it falls down to the order of magnitude of W.
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Figure 5. Frequency regulation (FR) signal, and the impact of charger efficiency response errors.

3.2. Impacts of the Number of EVs

Figure 6 shows a comparison of two scenarios for the same power request (the param-
eters are summarized in Table 3. In the first case (blue line), the number of EVs is constant,
whereas in the more realistic second case (yellow line), it varies with all arrivals between
8:00 to 10:00 and with the departures between 15:00 and 18:00. In the first case, tracking
errors are low, whereas in the second case, it becomes more significant as the number of
EVs is low. This is due to the low-regulation capacity when fewer EVs are available at the
charging station. As shown in Figure 6, the tracking error is close to zero when the number
of EVs is greater than ten. Then, the EVs offer a high-regulation reserve. In such a scenario,
the charging station cannot ensure a regulation request with a low number of EVs and
another energy storage solution should be considered to compensate for the lack of EVs in
certain periods of the day.

Table 3. Simulation parameters of the EVs in Section 3.2.

Parameters Time (h)

Arrival times N (9, 0.5)
Departure times N (17, 0.5)

3.3. Impact of Long Frequency Drops and the Maximum Charging Rate

A power plant shutdown or failure may lead to high-frequency drops for a long period
of time. This critical situation may lead to a blackout on the power network. The simulation
detailed in this subsection shows how EVs can play a crucial role in supporting the power
grid. Two scenarios were investigated with a fixed number of available EVs. The first one
considered a full power rate of 22 kW, whereas in the second scenario, each EV selected a
random maximal power rate from 3.2, 7.4, 11, and 22. In the charging station, the charging
points had the following ratios: 30%, 30%, 20%, and 20%, respectively.

As shown on Figure 7, the EVs were charged until 14:00—where a high-frequency
drop occurred. In both scenarios, the power request could not be met until the end, but in
both cases support was offered for most of the duration.
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Figure 6. FR signal, response error, and EV availability.

Figure 7. FR signal, response error, and EV availability.

The SoC evolution of the EVs is illustrated in Figure 8 for the first scenario and in
Figure 9 for the second one. We can see that the constraints for the minimal SoC threshold
are active at the end of the two scenarios and that the tracking errors increase from this
moment since no more energy can be taken from EVs.

In the first scenario and before some EVs reached the minimal SoC threshold, the
discharge rate was homogeneously divided between all of the EVs. After that event, the
slopes of the remaining EVs changed, i.e., the slops went up to the maximal discharge
power rate but only for a short period after which all EVs reached the minimal SoC of
0.2. In the second scenario, the maximal discharging power constraint acted to limit the
discharging rate. Some EVs were no longer able to supply the grid around 15:45 and the
tracking error became sensitive sooner than in the first scenario. However, the supply of
the grid was provided until the end, even if it was only for a small amount and even if the
decrease in the grid support was smoother.
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Figure 8. The SoC evolution of every EV in the charging station for a full power rate of 22 kW.

Figure 9. The SoC evolution of each EV in the charging station at a reduced power rate.

3.4. Discussions about EV Usage in the Frequency Regulation Market

Previous results show the good behavior of fleets of EVs in terms of participating in
frequency regulation. This is even the case with a relatively low number of EVs as the
relevant charging strategy maintains their SoC in an optimal region. The ancillary services
market is mainly divided into a primary reserve and a secondary reserve, which require
different condition to satisfy. These conditions are, in general, specific to each country, but
the most common conditions are presented in Table 4.

From the previous results and Table 4, participation with the primary reserve can be
ensured by EVs. However, a station should better contain a limited number of charging
points, but with a high-charging rate in order to be able to attain the minimum limit of
1MW. The uncertainties about the availability of EVs (arrival and departure times) and
their number are not the main issue since the major constraint is the minimum contracted
reserve. The duration of the primary reserve activation is 15 min. Since EVs charge for a
longer period, the charging station can easily interrupt the charging to satisfy the primary
reserve requirements and can resume the charging afterward. This short interruption may
not significantly reduce the satisfaction of EV owners in terms of obtaining the expected
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SoC when leaving at the departure time. In the case of a V2G support, the action may
contribute to owners while compensating the extra cycling of the battery.

Table 4. General condition of the primary and secondary reserves [24].

Primary Reserve Secondary Reserve

Dynamic of activation 50% within 15 s and 100% of the
reserve enabled within 30 s

100% of the reserve activated
within 5 min

Duration of activation Maximum of 15 min unlimited during the duration of
the contract

Minimum power 1 MW 5 MW

Power direction Negative AND Positive Negative OR Positive

The case of secondary reserve participation requires a greater capacity than for the
primary reserve, mainly because of the longer activation time. Thus, it is better to consider
charging stations with a high number of charging points, as well as high-attendance
rates with long periods of EVs availability. Depending on the spatial organization of the
power network, small charging stations that are close enough can be grouped on the same
aggregator to build a virtual station that meet the requirements for secondary reserve
participation. In this context, the mix of slow- and fast-charging points is not an issue as
demonstrated by our results.

4. Conclusions

This work addresses the possibility of using EVs for the ancillary services related to
frequency regulation. This paper describes a strategy to manage EVs to be able to participate
in a frequency regulation, as well as in meeting EV owners’ expectations. This strategy is
implemented as two optimization problems. The first one addresses the normal situation
without any frequency deviation and tries to enforce a maximum-power availability. A
SoC target (0.6%) for regulation was defined for the EVs, such that the EVs in this region
can better answer any kind of frequency regulation. This criterion is combined with the
SoC target defined by EVs owners to satisfy both criteria at the same time. The second
optimization problem is used when a frequency regulation request occurs. In this scenario,
the objective is also composed of two criteria to be minimized at the same time: the tracking
error with the power request and the losses relating to charger efficiencies.

Several simulations were presented to highlight the impact of the charger efficiency,
the number of available EVs, and the duration of the frequency regulation request. Most
existing works focus on a high number of EVs, but—as we show in this paper—even with
as low as 20 EVs, good behavior can be observed in most cases. Thus, this paper discusses
the position of EV charging stations for primary and secondary reserve participation.
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Abbreviations
The following abbreviations are used in this manuscript:

w1, w2, w3, w4 Weighting factors
Ei Total available energy stored in the EVs
NEV Number of EVs
Pj

i Charging power of the j-th EV at time i
∆t Sampling time
Ere f

i Energy reference at time i
SoCj

i State of charge of the j-th EV in time step i
Ej

batt Battery capacity of the j-th EV
SoH j State of health of the j-th EV’ battery
SoCre f

i SoC reference at time i
Pre f

i Power reference at time i
Esaturation Energy threshold of the charging station
SoClimit Maximum SoC limit
Eremain

i Remaining energy before reaching
Esaturation time i
top Station opening hours
Prequest

i Power request at time i
η Charger efficiency
Cj

i , Dj
i Power upper/lower bound of the j-th EV during time step i

sj
i] State of the j-th EV at time i

α
j,ub
i , α

j,lb
i Binary variables depending on the SoC of the j-th EV at time i

Pj,max+
i , Pj,max−

i Maximal authorized charging/discharging rate for j-th EV at time step i
Pj

chpt+, Pj
chpt− Maximum charging/discharging power of the charging point of the j-th EV

Pj
charger+, Pj

charger− Maximum power of the j-th charger in charging or discharging mode

Pj
Bat+,i, Pj

Bat−,i Maximum accepted/delivered battery’s power of the j-th EV at time i
depending on the SoC and the battery’s temperature

Ptotal Maximum transformer power of the charging station
mj Mass of the j-th EV battery
Cj

p Specific heat coefficient of the j-th EV battery
T j

i Temperature of the j-th EV battery at time i
Pj

joule,i Power dissipated by the joule effect of the j-th EV battery at time i

Pj
convective,i

Power heat transfer between the battery and the outside of the j-th EV battery
at time i

kj Thermal factor depending on the thermal inertia of the j-th EV battery
Tout

i Outside temperature at time i
Rj

th_out Heat convection coefficient between the j-th EV battery and outside

References
1. Amamra, S.A.; Marco, J. Vehicle-to-Grid Aggregator to Support Power Grid and Reduce Electric Vehicle Charging Cost. IEEE

Access 2019, 7, 178528–178538. [CrossRef]
2. Tchagang, A.; Yoo, Y. V2B/V2G on Energy Cost and Battery Degradation under Different Driving Scenarios, Peak Shaving, and

Frequency Regulations. World Electr. Veh. J. 2020, 11, 14. [CrossRef]
3. Calearo, L.; Marinelli, M. Profitability of frequency regulation by electric vehicles in Denmark and Japan considering battery

degradation costs. World Electr. Veh. J. 2020, 11, 48. [CrossRef]
4. Liu, H.; Hu, Z.; Song, Y.; Lin, J. Decentralized vehicle-to-grid control for primary frequency regulation considering charging

demands. IEEE Trans. Power Syst. 2013, 28, 3480–3489. [CrossRef]
5. Xu, X.; Zhang, C.; Gu, L. Decentralized primary frequency regulation control strategy for vehicle-to-grid. In Proceedings of the

2016 3rd International Conference on Systems and Informatics (ICSAI), Shanghai, China, 19–21 November 2016; pp. 217–222.
6. Liu, H.; Qi, J.; Wang, J.; Li, P.; Li, C.; Wei, H. EV dispatch control for supplementary frequency regulation considering the

expectation of EV owners. IEEE Trans. Smart Grid 2018, 9, 3763–3772. [CrossRef]
7. Izadkhast, S.; Garcia-Gonzalez, P.; Frías, P. An aggregate model of plug-in electric vehicles for primary frequency control. IEEE

Trans. Power Syst. 2015, 30, 1475–1482. [CrossRef]

http://doi.org/10.1109/ACCESS.2019.2958664
http://dx.doi.org/10.3390/wevj11010014
http://dx.doi.org/10.3390/wevj11030048
http://dx.doi.org/10.1109/TPWRS.2013.2252029
http://dx.doi.org/10.1109/TSG.2016.2641481
http://dx.doi.org/10.1109/TPWRS.2014.2337373


World Electr. Veh. J. 2023, 14, 152 13 of 13

8. Liu, H.; Huang, K.; Yang, Y.; Wei, H.; Ma, S. Real-time vehicle-to-grid control for frequency regulation with high frequency
regulating signal. Prot. Control. Mod. Power Syst. 2018, 3, 13. [CrossRef]

9. Iqbal, S.; Habib, S.; Khan, N.H.; Ali, M.; Aurangzeb, M.; Ahmed, E.M. Electric Vehicles Aggregation for Frequency Control of
Microgrid under Various Operation Conditions Using an Optimal Coordinated Strategy. Sustainability 2022, 14, 3108. [CrossRef]

10. Sahu, P.C.; Prusty, R.C.; Panda, S. Frequency regulation of an electric vehicle-operated micro-grid under WOA-tuned fuzzy
cascade controller. Int. J. Ambient. Energy 2022, 43, 2900–2911. [CrossRef]

11. Hajiakbari Fini, M.; Golshan, M.E.H.; Martí, J.R. Coordinated Participation of Electric Vehicles and Generating Units in Primary
Frequency Control in the Presence of Renewables. IEEE Trans. Transp. Electrif. 2023, 9, 130–141. [CrossRef]

12. Yao, E.; Wong, V.W.S.; Schober, R. Robust Frequency Regulation Capacity Scheduling Algorithm for Electric Vehicles. IEEE Trans.
Smart Grid 2017, 8, 984–997. [CrossRef]

13. Wenzel, G.; Negrete-Pincetic, M.; Olivares, D.E.; MacDonald, J.; Callaway, D.S. Real-time charging strategies for an electric vehicle
aggregator to provide ancillary services. IEEE Trans. Smart Grid 2018, 9, 5141–5151. [CrossRef]

14. Liu, H.; Huang, K.; Wang, N.; Qi, J.; Wu, Q.; Ma, S.; Li, C. Optimal dispatch for participation of electric vehicles in frequency
regulation based on area control error and area regulation requirement. Appl. Energy 2019, 240, 46–55. [CrossRef]

15. Kaur, K.; Kumar, N.; Singh, M. Coordinated power control of electric vehicles for grid frequency support: MILP-based hierarchical
control design. IEEE Trans. Smart Grid 2019, 10, 3364–3373. [CrossRef]

16. Kaur, K.; Singh, M.; Kumar, N. Multiobjective optimization for frequency support using electric vehicles: An aggregator-based
hierarchical control mechanism. IEEE Syst. J. 2019, 13, 771–782. [CrossRef]

17. Jeong, H.; Jeong, M.; Lee, S. Vehicle-To-Grid Based Frequency Regulation Method In An Isolated Microgrid Considering Charging
Requests Of Electric Vehicles. In Proceedings of the 2019 International Conference and Exhibition on Electricity Distribution
(CIRED), Madrid, Spain, 3–6 June 2019; pp. 1–5.

18. Wang, M.; Mu, Y.; Li, F.; Jia, H.; Li, X.; Shi, Q.; Jiang, T. State Space Model of Aggregated Electric Vehicles for Frequency Regulation.
IEEE Trans. Smart Grid 2019, 11, 981–994. [CrossRef]

19. Khooban, M.H.; Gheisarnejad, M. A Novel Deep Reinforcement Learning Controller Based Type-II Fuzzy System: Frequency
Regulation in Microgrids. IEEE Trans. Emerg. Top. Comput. Intell. 2020, 5, 689–699. [CrossRef]

20. Dahmane, Y.; Ghanes, M.; Chenouard, R.; Alvarado-Ruiz, M. Coordinated Charging of Large Electric Vehicle Fleet in a Charging
Station With Limited Transformer Power. In Proceedings of the 2020 4th IEEE Conference on Control Technology and Applications
(IEEE CCTA), Montreal, QC, Canada, 24–26 August 2020; pp. 1–6.

21. Dahmane, Y.; Ghanes, M.; Chenouard, R.; Alvarado-Ruiz, M. Decentralized Control of Electric Vehicle Smart Charging for
Cost Minimization Considering Temperature and Battery Health. In Proceedings of the 2019 IEEE International Conference on
Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), Beijing, China, 21–23 October 2019;
pp. 1–6. [CrossRef]

22. Ziras, C.; Zecchino, A.; Marinelli, M. Response accuracy and tracking errors with decentralized control of commercial v2g
chargers. In Proceedings of the 2018 Power Systems Computation Conference (PSCC), Dublin, Ireland, 11–15 June 2018; pp. 1–7.

23. Ye, X.; Ji, T.; Li, M.; Wu, Q. Optimal control strategy for plug-in electric vehicles based on reinforcement learning in distribution
networks. In Proceedings of the 2018 International Conference on Power System Technology (POWERCON), Guangzhou, China,
6–8 November 2018; pp. 1706–1711.

24. Zeller, M.; Blake, S.; Cedillos, D.; Gertz, A.; Boyd, E. Flexibility within the Electrical Systems through Demand Side Response:
Introduction to Balancing Products and Markets in Germany, France, and the UK; Technical Report 3027514; European Commission:
Brussels, Belgium, 2017.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1186/s41601-018-0085-1
http://dx.doi.org/10.3390/su14053108
http://dx.doi.org/10.1080/01430750.2020.1783358
http://dx.doi.org/10.1109/TTE.2022.3185547
http://dx.doi.org/10.1109/TSG.2016.2530660
http://dx.doi.org/10.1109/TSG.2017.2681961
http://dx.doi.org/10.1016/j.apenergy.2019.02.044
http://dx.doi.org/10.1109/TSG.2018.2825322
http://dx.doi.org/10.1109/JSYST.2017.2771948
http://dx.doi.org/10.1109/TSG.2019.2929052
http://dx.doi.org/10.1109/TETCI.2020.2964886
http://dx.doi.org/10.1109/SmartGridComm.2019.8909796

	Introduction
	Optimization Problem Modeling
	Simulations and Results
	Impacts of the Charger Efficiency
	Impacts of the Number of EVs
	Impact of Long Frequency Drops and the Maximum Charging Rate
	Discussions about EV Usage in the Frequency Regulation Market

	Conclusions
	References

