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Abstract: Three-dimensional object detection plays a vital role in the field of environment perception
in autonomous driving, and its results are crucial for the subsequent processes. Pillar-based 3D object
detection is a method to detect objects in 3D by dividing point cloud data into pillars and extracting
features from each pillar. However, the current pillar-based 3D object-detection methods suffer from
problems such as “under-segmentation” and false detections in overlapping and occluded scenes. To
address these challenges, we propose an improved pillar-based 3D object-detection network with
a two-stage pillar feature-encoding (Ts-PFE) module that considers both inter- and intra-relational
features among and in the pillars. This novel approach enhances the model’s ability to identify the
local structure and global distribution of the data, which improves the distinction between objects in
occluded and overlapping scenes and ultimately reduces under-segmentation and false detection
problems. Furthermore, we use the attention mechanism to improve the backbone and make it focus
on important features. The proposed approach is evaluated on the KITTI dataset. The experimental
results show that the detection accuracy of the proposed approach are significantly improved on the
benchmarks of BEV and 3D. The improvement of AP for car, pedestrian, and cyclist 3D detection are
1.1%, 3.78%, and 2.23% over PointPillars.

Keywords: point cloud; autonomous vehicles; 3D object detection; pillar; LiDAR

1. Introduction

With expanding application scenarios such as autonomous driving, intelligent robotics,
and virtual reality, 3D object-detection technology has emerged as an important research
direction in the realm of computer vision [1]. The main task of point cloud 3D object
detection is to detect various objects, such as cars, pedestrians, and cyclists, from 3D point
cloud data [2]. Unlike traditional image-based object detection, point cloud 3D object
detection needs to deal with disordered point cloud data and consider the 3D information
of the objects [3,4]. Therefore, the key challenge of this task is how to extract the information
concerned, such as the object’s position, size, orientation, and so on, from the point cloud
data [5]. To solve this problem, researchers usually employ deep learning techniques to
build point cloud 3D object-detection models and optimize the performance of the models
by training on a large amount of point cloud data [6,7].

Regarding point cloud representation methods, current 3D object -detection techniques
can be divided into three categories: range image-based, point-based, and voxel-based
methods [8]. The range image-based method is a technique that involves the projection of
point cloud data onto a plane to generate a depth image, which is then utilized for object
detection. This method can process large-scale point cloud data efficiently and be easily
integrated with 2D image-processing algorithms. Nevertheless, at greater distances or lower
resolutions, this method may be prone to inaccuracies [9,10]. The point-based methods,
represented by PointNet [11], directly process the raw data and treat the point cloud
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as a disordered set of points. It processes each point independently, then aggregates the
features of the points to obtain the entire point cloud’s feature representation. The improved
PointNet++ [12] can better manage point cloud local information. However, processing
all point clouds leads to a huge computation complexity and high hardware requirements.
In contrast, the voxel-based method first converts the point cloud data into a 3D voxel
grid form, then processes and extracts the features of each voxel [13]. The pillar-based
method is a special voxel-based method which simplifies voxels further by disregarding
the z dimension, thereby turning the 3D problem into a 2D problem and reducing the
computation complexity to a certain extent. However, it leads to a loss of information, such
as the features of spatial location and relative position of each element [14]. PointPillars [15]
is a typical 3D object-detection network of a pillar-based method which relies solely on
point-wise aggregated features to represent pillar characteristics. This approach fails to
accurately represent the features of the pillar itself and the relationship between pillars
and the entire point cloud. This absence may give rise to several challenges. Firstly, in
the presence of mutually occluded and overlapping objects, it could lead to the under-
segmentation phenomenon, where the pillars of distinct objects are incorrectly classified
as belonging to the same entity [16]. Secondly, these issues could significantly undermine
the accuracy and reliability of object detection and localization, leading to missed or false
detection [17]. Additionally, changes of the relative relationships between the pillars and
the overall point cloud in different datasets or scenarios can lead to the increased instability
of detection results [18]. Therefore, it is crucial to consider the features of the pillar itself
and the relationship between the pillars and the overall point cloud.

In this paper, we propose an improved pillar-based network for 3D object detection
based on pillars. It comprises three essential components: the pillar feature-encoding
module, a backbone consisting of a region proposal network (RPN), squeeze-and-excitation
networks (SeNet) for feature extraction, and a head for 3D boxes’ regression.For pillar
feature encoding, we propose a two-stage pillar feature-encoding (Ts-PFE) module that
considers both inter- and intra-relational features among and in the pillars which can help
the model better understand the spatial location and relative position of each pillar. On one
hand, the model can better identify the local structure and global distribution of the pillars,
thus improving the distinction between objects and reducing the under-segmentation
phenomenon that arises in the presence of mutually occluded and overlapping objects. On
the other hand, more accurate detection and localization can alleviate the issue of missed
and false detections. Moreover, the stability and generalization capabilities of the model in
different datasets or scenarios are enhanced. Additionally, we have incorporated SeNet
into the backbone module for improved performance. This module enhances key features
in pseudo-images and suppresses irrelevant features through attention mechanism, thereby
bolstering the network’s ability to extract important features of objects for detection.

The experimental evaluation on the KITTI dataset demonstrates the effectiveness of
the proposed approach. Specifically, our method achieves significant improvements in
object-detection performance while reducing under-segmentation problems in occluded
and overlapping scenes. Our contributions can be summarized as follows:

• To solve the problem of under-segmentation due to missing features, compared with
other pillar-based approaches that only consider the intra-relational features, we
propose Ts-PFE, a feature-encoding network which considers both inter- and intra-
relational features among and in the pillars. It improves the distinction between objects
and reduces the under-segmentation problems in occluded and overlapping scenes.

• We improved the backbone by integrating SeNet, enhancing key features in pseudo-
images, and suppressing irrelevant information to enhance the network’s ability to
extract important features of objects to be detected. By leveraging the power of SeNet,
the proposed approach exhibits superior performance in object detection compared to
prior works.

• Evaluated on the KITTI dataset, the experiments show that the detection accuracy of
the proposed approach are significantly improved; the improvement of AP for car,
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pedestrian, and cyclist 3D detection are 1.1%, 3.78%, and 2.23% over the baseline. The
results of qualitative evaluation show that the under-segmentation problem is reduced
in the occlusion and overlapping scenes.

2. Related Work
2.1. 3D Object Detection from Point Cloud Based on Voxel/Pillar

In recent years, voxel- and pillar-based methods have been widely developed and ap-
plied. These methods first transform the point cloud into fixed-shaped voxels or pillars, fol-
lowed by feature extraction using 2D/3D convolution, and then implement object-detection
tasks through classification and regression [19]. This approach provides significant compu-
tational advantages over processing each point individually, making it particularly suitable
for real-time applications such as autonomous driving [15]. VoxelNet [13] is among the
pioneering works in this field, which innovatively uses voxel feature encoding (VFE) and
3D convolution to encode and extract features from the voxels. However, the huge number
of voxels lead to a large computation of 3D convolution and a slow inference speed. To
address this issue, SECOND [20] proposed 3D sparse convolution to accelerate the training
and inference process by eliminating the empty voxels. Despite its improved efficiency,
sparse convolution is not deployment friendly. PointPillars [15], instead of using the tradi-
tional voxel-based method, simplify the voxel representation by generating a pseudo-image
that can be processed by 2D convolution neural networks. This approach has efficient
computational performance and became one of the dominant methods in practice. More re-
cently, CenterPoint [21] was proposed, which converts the point cloud into a voxel network,
predicts the object center, size, and orientation at the center of each voxel, and uses a 2D
convolutional network to extract local features, which achieves a good balance between
accuracy and speed, and can also handle small targets with high detection accuracy.

The voxel/pillar-based algorithm, while effective in some regards, has some notable
limitations [19]. First, the uniform voxelization method can result in a loss of point cloud
information and uneven sampling [22]. Secondly, when dealing with some small objects or
dense point cloud, there may be a high rate of false detection and missed detection [23]. In
addition, ignoring the relationship between the local and the global feature can lead to the
under-segmentation issue [24]. To overcome these limitations, several improvements have
been proposed, including improvements to voxelization methods, attention mechanisms,
multi-scale features, and data-enhancement methods. For instance, in SCNet [25], each grid
is divided into smaller sub-grids to preserve more point cloud information and alleviate
the under- and over-segmentation. SA-Det3D [26] proposes two variants of self-attention
for contextual modeling in 3D object detection by adding convolutional features and
self-attentive features to model in 3D object detection. PV-RCNN [27] uses a voxel feature-
encoding network to extract features of voxels, and then fuses the voxel features with point
cloud features, which can better handle objects of different sizes and shapes.

2.2. Attention Mechanisms in Object Detection

As a crucial technique in neural networks, the attention mechanism has been heavily
employed in computer vision, including tasks such as classification, detection, and segmen-
tation [28]. Through this mechanism, the attention of the network is directed to key details
and focusing more on the region or feature of interest, thus improving detection accuracy
and robustness [29].

The attention mechanism has also been widely applied in the field of point cloud
object detection. The commonly used methods are channel attention, spatial attention,
and their combination. Spatial attention allows the network to prioritize information from
certain locations in the point cloud, while channel attention means that the network can
pay more attention to the features of certain channels [30]. The self-attention method [31],
transformer [32], and SeNet [33], etc., are other types of attention mechanisms. Ref. [34]
delves into the role of attention mechanisms in 3D point cloud object detection and shows
that self-attention modules are not preferable in processing 3D point cloud data, and that
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SE and CBAM enable the effectiveness and efficiency of 3D point cloud feature refinement.
In [35], three modified attention mechanisms (SOCA, SOPA, and SAPI) are used to improve
the effectiveness of feature extraction. Ref. [26] proposed two self-attention variants, FSA
and DSA, for contextual modeling in 3D object detection, incorporating convolutional and
self-attentive features in the model. Moreover, the attention mechanism can be used for
point cloud segmentation, as seen in [36], where the network structure is based on the
point-attention mechanism, effectively improving point cloud segmentation performance.

3. Our Approach

In this section, we introduce our approach, the pillar-based 3D object-detection net-
work using a two-stage feature encoding module. The network architecture is illustrated
in Figure 1. It comprises three components: the pillar feature-encoding module, a back-
bone which contains RPN and SeNet for feature extraction, and a head for 3D boxes’
regression.We provide a detailed description of each block in the remainder of this section.
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Figure 1. The overall network architecture of the proposed approach. The main components of the
network are a pillar feature-encoding module, a backbone, and a detection head. The raw point cloud
is converted to pillars. The encoder uses the pillars to learn a set of features that can be scattered back
to a 2D pseudo-image for a convolutional neural network. The features from the backbone are used
by the detection head to predict 3D bounding boxes for objects.

3.1. Two-Stage Pillar Feature Encoding

The voxel and pillar encoding approach has significantly impacted the development
of 3D object detection based on point cloud by redefining the organization and processing
of point clouds. By employing aggregated features to characterize voxel and pillar features,
it has substantially reduced computational requirements while increasing operational
speed [13]. However, this approach has a limitation; it only captures local features, failing
to accurately represent the features of the pillar itself and the relationship between pillars
and the entire point cloud [15]. In this paper, we propose a novel two-stage pillar feature-
encoding (Ts-PFE) module as a solution to this issue. It considers both inter- and intra-
relational features among and in the pillars, which can help the model better identify
the local structure and global distribution of the pillars, thus improving the distinction
between objects and reducing the under-segmentation problems in the presence of mutually
occluded and overlapping objects. In addition, more accurate detection and localization can
reduce the problems of missed and false detections. Furthermore, the inclusion of a wider
range of features enhances the model’s expressiveness and generalization capabilities.
As shown in Figure 2, the proposed Ts-PFE module consists of three units: (1) the point
feature-encoding unit, (2) the pillar feature-encoding unit, (3) the feature-fusion unit.
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Figure 2. The Two-stage Pillar Feature Encoding (Ts-PFE) module architecture. It consists of three
units: the point feature-encoding unit, the pillar feature-encoding unit, and the feature-fusion
unit. The point feature encoding is used to obtain the point-wise aggregated features. The pillar
feature encoding is used to obtain the pillar-wise features. Finally, the fusion unit concatenates the
features together.

We first pillarize the point cloud data by considering only the X, Y direction and
ignoring the information in the Z axis direction. Specifically, the point cloud P in 3D space
has a range of L, W, and H along the X, Y, and Z axes, and is divided into a set of pillars of
size vL, vW , and H. Each pillar is represented by v = {pi = [xi, yi, zi, ri] ∈ RN×4}. xi,
yi, and zi denote the coordinates of each point along X, Y, and Z axes, respectively, while ri
represents the laser reflection intensity.

3.1.1. Point Feature Encoding

In this unit, we aggregate the features of the points to represent the features of
the pillars. First, the four-dimensional feature vector of the points is expanded to a
ten-dimensional vector, pn

i = {
[

xi, yi, zi, ri, xc
i , yc

i , zc
i , xp

i , yp
i , zp

i

]
∈ RN×10}. Here,

[xi, yi, zi, ri] represent the coordinates and reflectance of the points, while
[
xc

i , yc
i , zc

i
]

represent the distance to the arithmetic mean of all points in the pillar, and
[

xp
i , yp

i , zp
i

]
is

the offset of each point from the pillar center. Subsequently, the feature is enhanced and
mapped to a higher dimension by an MLP layer network, which is defined as

pm
i = m(pn

i ; wm) (1)

where the function m(·) signifies a stack of multiple MLP layers which contain batch nor-
malization (BN) layers and rectified linear unit (ReLU) layers, wm represents the learnable
weights, and pm

i ∈ RN×D is the point-wise feature. Next, max-pooling is used to aggregate
the features of all points in pillar j into a single-feature vector used to characterize the
information of this pillar. It is given by

pm
j = MAX(pm

i ) (2)

where MAX(·) denotes the max-pooling operation across these points’ features, and
pm

j ∈ RD is the resultant feature vector for the pillar j.
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3.1.2. Pillar Feature Encoding

It is not enough to obtain the features of the pillar aggregated from the points. There-
fore, we utilize the second-stage feature encoding, which is the pillar feature-encoding unit,
to encode the pillar’s inherent features and its relationship with the entire point cloud.

First, we use the arithmetic mean
[

xc
j , yc

j , zc
j

]
of all the points in pillar j to represent

the center of gravity of the pillar, and the center value
[

xp
j , yp

j , zp
j

]
of pillar j as the pillar’s

center. Next, we find the arithmetic mean xc
j , yc

j , zc
j of all points as the center of gravity of

the overall point cloud, and the coordinates xp
j , yp

j , zp
j of the center pillar as the pillar center

of the overall point cloud, and then we can obtain the offset
[

xc
j − xc

j , yc
j − yc

j , zc
j − zc

j

]
from

each pillar to the center of gravity and the offset
[

xp
j − xp

j , yp
j − yp

j , zp
j − zp

j

]
from each

pillar to the pillar center of the overall pillar. At this time, we have the following features:
vn

j = {[xc
j , yc

j , zc
j , xp

j , yp
j , zp

j , xc
j − xc

j , yc
j − yc

j , zc
j − zc

j , xp
j − xp

j , yp
j − yp

j , zp
j − zp

j ] ∈ R12}.
Then, the features are augmented and mapped to a higher dimension by an MLP layer
network. The equation is

vm
j = m(vn

j ; wm) (3)

where the function m(·) is a stack of multiple MLP layers which contain batch normalization
(BN) layers and rectified linear unit (ReLU) layers, wm represents the learnable weights,
and vm

j ∈ RG is the pillar-wise feature, which contains the features of the pillar itself, the
relationship between the pillars, and the overall point cloud.

3.1.3. Feature Fusion

The aforementioned features can be categorized into two types: the former is extracted
from the points and the latter is calculated using the pillar’s own features. They are both
vectors used to characterize the features of the pillar. In this fusion module, we fuse the
two types of features to obtain the complete features of the pillar. Its formula is as follows:

Vc
j = f usion(pm

j ; vm
j ) (4)

where f usion(·) is the feature concatenation function and Vc
j ∈ RD+G is the fused pillar

feature. After obtaining the fused features, we only need to map each pillar to a plane
according to the coordinates of the pillar to obtain a pseudo-image U whose dimension is
H ×W × (D + G). For convenience, we consider (D + G) as C.

3.2. Backbone

After obtaining the pseudo-image, the following part is a convolutional network which
is used for feature extraction. We improved the backbone with SeNet, which can highlight
the key information while ignoring the irrelevant information; its structure is as illustrated
in Figure 1. The backbone consists of two parts: one of them is the SeNet and the other is
an RPN connected in series behind.

3.2.1. SeNet

Squeeze-and-excitation networks (SeNet) are a channel-based feature-attention mod-
ule proposed by [37] in 2017. This module enhanced the network’s ability to extract vital
features of the object to be detected by modeling each feature channel, distinguishing the
importance of different channels, and enhancing key features while suppressing irrelevant
information. Incorporating this attention mechanism in practical applications can greatly
improve model performance, enabling it to better capture the details and features in the
image. Therefore, we utilize SeNet to process the pseudo-images obtained from PointPillars
for feature learning and attention weights’ calculation. The resulting weighted features
are then mapped onto the original point cloud data to further enhance the accuracy and
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robustness of object detection. By combining the strengths of PointPillars with SeNet, we
can generate a more expressive and generalizable feature representation.

In the preceding steps, we obtain the feature map U with dimensions H ×W × C. Fol-
lowing the feature-map processing transformation, two separate operations are performed.
Firstly, the new feature map U undergoes global average pooling, compressing the height
and width dimensions into a vector of size 1× 1× C while preserving channel information,
which we denote as z. To calculate the cth element of z, we use the formula

zc = Fsq(uc) =
1

H ×W ∑ H
i=1 ∑ W

j=1uc(i, j) (5)

where Fsq is the compression operation, uc is the feature vector after feature extraction, and i
and j are the positions of the cth element on the corresponding feature map. Through global
average pooling, the input feature map undergoes compression, and output features zc are
obtained to learn feature weights for each channel. Then zc are sequentially passed through
the fully connected layer, the ReLU layer, and sigmoid layers to complete the excitation
and achieve a comprehensive dependency capture between channels, calculated as

s = Fex(z, W)− σ(g(z, W))− σ(W2δ(W1z)) (6)

where W1 and W2 are the two weight matrices to be learned, σ(·) is the sigmoid activation
function, δ(·) is the ReLU activation function, and s is the feature matrix obtained after
the excitation operation. Finally, the obtained feature matrix is weighted with the feature
matrix u. The weighting formula is

x̃ = Fscale(uc, sc) (7)

where x̃ is the final feature matrix obtained by the dot product weighting operation of the
feature matrix uc and sc.

3.2.2. RPN

Similarly to [13], this unit follows a strategy showcased in Figure 1. We employ the
RPN (region proposal network) to process the feature map obtained from the previous step,
aiming to enhance the detection capability of objects across various sizes with multi-scale
receptive field. The unit consists of three convolutional layers, each serving a specific
purpose. The initial layer within each block downsamples the feature map by half, accom-
plished through a convolution operation with a stride size of 2. Subsequently, a series of
convolutions with a stride of 1 are applied, complemented by BN (batch normalization)
and ReLU operations after each convolutional layer. These features from different scales
are then concatenated together and used for the final detection.

3.3. Detection Head

We employ the single shot detector (SSD) [38] to achieve 3D object detection, which ex-
hibits exceptional capabilities in terms of rapid detection speed and real-time performance.
Moreover, it showcases its versatility by enabling various detection head configurations,
allowing for adaptation to specific tasks.

3.4. Loss Function

We use the similar loss function as in [15]. We parameterize a 3D bounding box of the
ground truth as (x, y, z, w, l, h, θ), where (x, y, z) are the center location, and (w, l, h)
and θ represent the size and orientation angle of the bounding box, respectively. The
regression residuals between the ground truth and the anchors are as follows

∆x =
xgt − xa

da , ∆y =
ygt − ya

da , ∆z =
zgt − za

ha (8)
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∆w = log
wgt

wa , ∆l = log
lgt

la , ∆h = log
hgt

ha (9)

∆θ = sin(θgt − θa) (10)

where xgt denotes ground truth and xa is the anchor box, with da =
√
(la)2 + (wa)2. The

location loss is denoted as

Lloc = ∑
b∈(x,y,z,w,l,h,θ)

SmoothL1(∆b) (11)

For the classification loss, we use the focal loss [39]

Lcls = −a(1− p)r log p (12)

where p represents the probability of an anchor. We use the settings of r = 2 and a = 0.25.
Moreover, the heading direction loss Ldir is measured by a softmax classification loss on
discretized directions. Adding up all the losses to the total loss of the whole network, the
total loss function is defined as

L =
1

Npos
(βlocLloc + βclsLcls + βdirLdir) (13)

where Npos is the number of positive anchors. βloc, βcls and βdir are weighting coefficients
for the localization loss, classification loss, and direction loss, respectively. We use the
settings of βloc = 2, βcls = 1, βdir = 0.2.

4. Experiment
4.1. Dataset

All experimental results are evaluated on KITTI’s official evaluation test metrics,
which include both bird’s-eye view (BEV) and 3D. KITTI dataset are divided into easy,
moderate, and hard categories according to object size, occlusion level, and truncation.
The main metric of interest is average precision (AP) with intersection over union (IoU)
thresholds, where a 3D bounding box overlap of 0.7 for cars is considered reasonable,
whereas an overlap of 0.5 is required for pedestrians and cyclists. Notably, the official
KITTI leaderboard is ranked based on performance on the moderate category, with per-
formance being measured as the mean average precision (mAP) on KITTI validation. The
experiments are conducted on the KITTI 3D object-detection benchmark dataset, which
consists of 7481 training samples and 7518 test samples. The KITTI benchmark requires the
detection of specific categories [40], including cars, pedestrians and cyclists. We also follow
the widely used training–validation split, which comprises 3712 training samples and
3769 validation samples.

4.2. Implementation Details

Here, the detection range of the point cloud is [0, 70.4] m, [−40, 40] m, and [−3, 1] m
along the X, Y, Z axes, and we set the X, Y, Z pillar resolution of (0.16, 0.16, 4) m. The
maximum number of points per pillar is 32 and maximum number of pillars is 16,000.
When performing feature encoding, the dimensions of the point-wise feature D and pillar-
wise feature G after MLP are both 32. The proposed approach is based on the PyTorch
framework, with all networks trained on the NVIDIA GTX3090 computing platform. The
model is trained for 160 epochs with an initial learning rate of 2× 10−3 and decrease by 0.8
every 15 epochs with Adam [41] optimizer.
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4.3. Result

In this unit, we present the evaluation results of the proposed network using Ts-PFE
and the SeNet backbone on the KITTI dataset. Our analysis comprises both quantita-
tive and qualitative assessments, aimed at providing a comprehensive evaluation of the
network’s performance.

4.3.1. Quantitative Evaluation

All detection results are measured using the official KITTI evaluation detection metrics
of both BEV and 3D detection. We use an IoU threshold of 0.7 for the car category and 0.5
for the pedestrian and cyclist categories to calculate an average precision.

Compared with other similar algorithms, the proposed algorithm achieves promising
results. Tables 1 and 2 show the results of comparison under BEV and 3D settings. The
proposed method achieves BEV mAP scores of 84.95%, 53.24%, and 64.86%, and 3D mAP
scores of 76.09%, 47.31%, and 61.30% for the moderate level of car, pedestrian, and cyclist
detection, respectively. In particular, the improvement over PointPillars is 1.1%, 3.78%, and
2.23% under a moderately difficult level of 3D detection for the car, pedestrian, and cyclist
categories, respectively. This improvement can be attributed to the utilization of Ts-PFE,
which effectively captures the relationship between individual pillars and the overall point
cloud, as well as the use of SeNet backbone.

Table 1. Results on the KITTI test BEV detection benchmark (in %). The bold number indicates the
best result in a table.

Model
Car Pedestrian Cyclist

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

PointPillars [15] 88.35 86.10 79.83 58.66 50.23 47.19 79.14 62.25 56.00
SECOND [20] 88.07 79.37 77.95 55.10 46.27 44.76 73.67 56.04 48.78
VoxelNet [13] 89.35 79.26 77.39 46.13 40.74 38.11 66.70 54.76 50.55

TANet [42] 91.58 86.54 81.19 60.58 51.38 47.54 79.16 63.77 56.21
AVODFPN [43] 88.53 83.79 77.90 58.75 51.50 47.54 68.09 57.48 50.77
FPointNet [44] 88.70 84.00 75.33 58.09 50.22 47.20 75.38 61.96 54.68
HDNET [45] 89.14 86.57 78.32 N/A N/A N/A N/A N/A N/A

PRGBNet [46] 91.39 85.73 80.68 38.07 29.32 26.94 73.09 57.59 51.78
Ours 89.62 84.95 79.53 59.50 53.24 49.13 83.07 64.86 60.74

Table 2. Results on the KITTI test 3D detection benchmark (in %). The bold number indicates the
best result in a table.

Model
Car Pedestrian Cyclist

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

PointPillars [15] 79.05 74.99 68.30 52.08 43.53 41.49 75.78 59.07 52.92
SECOND [20] 83.13 73.66 66.20 51.07 42.56 37.29 70.51 53.85 46.90
VoxelNet [13] 77.47 65.11 57.73 39.48 33.69 31.50 61.22 48.36 44.37

TANet [42] 84.39 75.94 68.82 53.72 44.34 40.49 75.70 59.44 52.53
AVODFPN [43] 81.94 71.88 66.38 50.80 42.81 40.88 64.00 52.18 46.61
FPointNet [44] 81.20 70.39 62.19 51.21 44.89 40.23 71.96 56.77 50.39
SATGCN [47] 83.20 76.04 71.17 44.63 37.37 34.92 75.24 61.70 55.32
PRGBNet [46] 83.99 73.49 68.56 34.77 26.40 24.03 67.05 52.15 46.78

Ours 83.52 76.09 73.88 53.99 47.31 42.98 81.23 61.30 57.57

4.3.2. Qualitative Evaluation

In order to qualitatively evaluate the performance of the network, we utilize it to
predict the results on the validation set and visualize it under a 3D view, as shown in
Figures 3 and 4.
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Typical object-detection results are shown in Figure 3, indicating that the proposed
model can accurately detect targets in the scene, even at longer distances or in instances
of occlusion or overlap. Conversely, Figure 4 shows the individual failure examples. For
example, it can be difficult to accurately identify objects that are not labeled in the data, such
as trucks (as seen in Figure 4a). Additionally, certain instances produce missed detections
(as shown in Figure 4b). The model may also mistakenly classify vertical objects such as
poles, garbage cans, or trees as pedestrians or cyclists (as seen in Figure 4c). In some cases,
there may be a slight over-segmentation, where the model detects one object as two (as
seen in Figure 4d).

Figure 3. Qualitative analysis on the KITTI validation dataset. The results are only from LiDAR.
For each sample, the upper part is the image and the lower part is a representative view of the
corresponding point cloud with 3D bounding box.

Figure 4. Failure cases on the KITTI validation dataset. Same visualized setup from Figure 3 but
focusing on several common failure examples. (a). It can be difficult to accurately identify objects that
are not labeled in the data, such as trucks. (b). Certain instances produce missed detections. (c). The
model may also mistakenly classify vertical objects such as poles, garbage cans, or trees as pedestrians
or cyclists. (d). In some cases, there may be a slight over-segmentation, where the model detects one
object as two.

4.4. Ablation Experiments

We conducted some ablation experiments to evaluate the importance and contribution
of each component within the proposed network. These experiments are performed on the
KITTL validation dataset, with PointPillars serving as the baseline.

4.4.1. SeNet Backbone Module Analysis

The results of “with SeNet” in Tables 3 and 4 demonstrate the effect of adding only
the SeNet module. This module serves to focus on key features in the pseudo-images,
which highlights important information while ignoring irrelevant information. The results
in the tables indicate a discernible improvement in performance, with increases of 2.25%
and 1.65% under moderate and hard levels of BEV detection for pedestrian category, as
well as 0.86% and 3.19% improvement under moderate and hard levels of BEV detection
for cyclist category. These findings firmly attest to the beneficial impact of the SeNet
backbone module.
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Table 3. Results on the KITTI test BEV detection benchmark (in %). The bold number indicates the
best result in a table.

Model
Car Pedestrian Cyclist

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

PointPillars [15] 88.35 86.10 79.83 58.66 50.23 49.19 79.14 62.25 56.00
withSeNet 90.03 86.35 79.83 58.21 52.48 48.84 79.37 63.11 59.19
withTsPFE 89.50 86.43 79.74 58.29 52.51 49.01 80.79 61.71 59.27
withboth 89.62 84.95 79.53 59.50 53.24 49.13 83.07 64.86 60.74

Table 4. Results on the KITTI test 3D detection benchmark (in %). The bold number indicates the
best result in a table.

Model
Car Pedestrian Cyclist

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

PointPillars [15] 79.05 74.99 68.30 52.08 43.53 41.49 75.78 59.07 52.92
withSeNet 83.85 76.09 69.06 52.02 46.97 42.54 76.28 59.14 55.51
withTsPFE 83.36 75.74 68.90 52.64 46.59 42.99 75.98 58.28 54.16
withboth 83.52 76.09 73.88 53.99 47.31 42.98 81.23 61.30 57.57

4.4.2. Ts-PFE Module Analysis

The results of “with Ts-PFE” in Tables 3 and 4 show the effect of integrating only the
Ts-PFE module in the main architecture. By considering both inter- and intra-relational
features among and in the pillars, the Ts-PFE module achieves noteworthy performance
gains across various metrics. Specifically, the improvement is 4.31% under the easy level of
3D detection for the car category, and 3.06% and 1.5% under the moderate and hard level of
3D detection for pedestrian category, respectively. For the cyclist category, we observe an
improvement of 1.24% under the hard level of 3D detection. These findings demonstrate
the crucial role played by Ts-PFE in enhancing the network’s performance.

4.4.3. Ts-PFE and SeNet Backbone Analysis

According to the findings presented in Tables 3 and 4 of “with both”, the impact of
incorporating both SeNet backbone and Ts-PFE is examined. Remarkably, the results reveal
that the performance of the models is consistently improved with the addition of both
modules, surpassing the baseline and outperforming the networks with individual module.

The preceding discussion presents ablation experiments conducted at the data level.
Furthermore, it is feasible to evaluate the network’s performance pre- and post-improvement
through visualization, as shown in Figure 5. We utilize the accompanying figures to com-
pare the visualization outputs, with and without the integration of the improved module.
The baseline network fails to account for the relationship between pillars and the overall
point cloud, which can lead to under-segmentation in case of overlap or occlusion and
missed detection, as shown in the left part of Figure 5a–d. In contrast, due to the application
of Ts-PFE in the proposed network, the relational features will be taken into account to
reduce the occurrence of error cases. As observed in the right portion of Figure 5a–d, the
improved network effectively detects occluded objects.
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Figure 5. Qualitative improvement of the model with Ts-PFE module (without SeNet) over the
baseline PointPillars for 3D detection. The results are shown under BEV in different scenes, with boxes
and arrows indicating key differences for a better comparison. The left part of each scene is the result
of the baseline, and the right part is the result of the proposed approach. (a,c,d) show improvements
for the missed detection problem, and (b) shows improvement for the under-segmentation problem.

5. Conclusions

In conclusion, we have proposed an improved pillar-based 3D object-detection net-
work that incorporates a two-stage pillar feature-encoding (Ts-PFE) module and a backbone
with SeNet. The utilization of the Ts-PFE module as the feature-encoding network in pillar-
based 3D object-detection network greatly enhances the network’s capability to handle
detection tasks under occlusion or overlapping scenes, while the backbone with SeNet
makes the network more focused on key features. The experiments on the KITTI dataset
show that the proposed method achieves superior detection accuracy compared to existing
methods. The improvement of AP for car, pedestrian, and cyclist 3D detection are 1.1%,
3.78%, and 2.23% over the baseline. More importantly, the ablation experiments also show
the significance of the proposed Ts-PFE module for performance improvement. Addition-
ally, the results of qualitative evaluation show that the proposed approach improve the
under-segmentation and missed detection problems in occluded or overlapping scenes.
These findings demonstrate the potential of the proposed approach in improving pillar-
based 3D object detection. However, it should be noted that the proposed method lacks the
evaluation in different levels of occlusion and overlap; further validation experiments are
needed in various occlusion scenarios. Additionally, our evaluation has been limited to
a single dataset, and future work should involve testing on a broader range of datasets to
assess the algorithm’s generalizability.
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