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Abstract: Battery states are very important for the safe and reliable use of new energy vehicles. The
estimation of power battery states has become a research hotspot in the development of electric buses
and transportation safety management. This paper summarizes the basic workflow of battery states
estimation tasks, compares, and analyzes the advantages and disadvantages of three types of data
sources for battery states estimation, summarizes the characteristics and research progress of the three
main models used for estimating power battery states such as machine learning models, deep learning
models, and hybrid models, and prospects the development trend of estimation methods. It can be
concluded that there are many data sources used for battery states estimation, and the onboard sensor
data under natural driving conditions has the characteristics of objectivity and authenticity, making it
the main data source for accurate power battery states estimation; Artificial neural network promotes
the rapid development of deep learning methods, and deep learning models are increasingly applied
in power battery states estimation, demonstrating advantages in accuracy and robustness; Hybrid
models estimate the states of power batteries more accurately and reliably by comprehensively
utilizing the characteristics of different types of models, which is an important development trend of
battery states estimation methods. Higher accuracy, real-time performance, and robustness are the
development goals of power battery states estimation methods.

Keywords: battery states estimation method; data sources for battery state; machine learning model;
deep learning model; hybrid model; data-driven method; electric bus

1. Introduction

The development of automobile electrification has effectively alleviated the oil energy
crisis and environmental pollution problems caused by fuel vehicles. Under the dual-
wheel drive of market demand and policy support, the application scale of electric bus has
rapidly increased. As the core energy storage component of electric vehicles, the states of a
power battery affect the driving safety performance of the vehicle [1]. Abnormal battery
states often lead to vehicle fire safety incidents. Due to the long mileage of the driving
route, electric buses need to be equipped with more power battery modules to meet daily
operational needs. At the same time, as electric buses transport more passengers, higher
safety for power batteries and the entire vehicle is required. Battery states refer to the
working state of a battery during its service, mainly including state of charge (SOC) [2],
state of health (SOH) [3], remaining useful life (RUL) [4], state of power (SOP) [5], state of
energy (SOE) [6], state of safety SOS [7], etc. Accurate estimation of battery states, early
detection of abnormalities, and timely warning and disposal are of great significance for
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ensuring the safe and reliable use of battery, thus prolonging service life and enhancing
aging performance of battery, and ensuring the safe use of electric buses.

The main goal of battery management is to estimate the power battery states accurately,
providing guidance for safe use, maintenance, replacement, and retirement of batteries. To
achieve this goal, researchers have conducted a large amount of effective research on the
battery states estimation methods and arrived at fruitful achievements.

Researchers have designed different workflows to estimate the battery states [8,9].
The basic workflow usually includes four steps: data collection and preprocessing, feature
engineering, battery model construction, and application, as shown in Figure 1. Data
acquisition and preprocessing is the first step to focus on obtaining the battery states data
with the data acquisition system, and performing data preprocessing such as data cleaning,
data filtering, and regularization. The second step is feature engineering, which is to select
and extract the features of the collected data, reduce the data dimension, extract the data
features closely related to the battery states, and avoid excessive data redundancy. The
main methods include principal component analysis, correlation coefficient analysis, and
cosine similarity analysis, etc. The third step is to construct an estimation model, which is
the core of the workflow, and to establish a mapping relationship between input data and
output data. The commonly used models include machine learning models, deep learning
models, and hybrid models. The final step is to apply the results of battery states estimation,
such as abnormal states warning, triggering active intervention and disposal procedures.
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Figure 1. The basic workflow of the battery states estimation.

While estimating the battery states, different data sources have a significant impact on
the estimation accuracy, and high-quality data are one of the key factors for conducting
data-driven battery states estimation. There are three common types of data sources: test
data, simulation data, and natural driving data. Specific data includes voltage, current, tem-
perature [10–12], and CAN data [13]. Deng et al. [10] have estimated the battery states by
comprehensively capturing time series characteristic data of voltage and current. With the
development of vehicle sensor technology, 5G communication, and vehicle networking tech-
nology, a massive amount of battery states data under natural driving conditions has been
recorded and stored, providing important input for data-driven battery states estimation.

Another key factor is to construct a battery states estimation model. The methods for
building models are mainly divided into two categories: analytical model-based methods
and data-driven model-based methods. The methods based on an analytical model mainly
include electrochemical models and equivalent circuit models. The electrochemical model is
based on the internal structure of the battery and simulates the complex chemical reaction
mechanism inside the battery. The equivalent circuit model characterizes the battery
by analyzing its electrical characteristics during working and simulating characteristics
using circuit components. It has the characteristics of simple modeling structure and low
computational cost [14,15]. The key models include the Rint model, Thevenin model, PNGV
model, GNL model, etc. [16]. The problem of the above method is that detailed physical
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structure parameters of the model need to be obtained, as well as the high nonlinearity and
strong coupling characteristics between each parameter, which result in low accuracy of the
estimation and difficulty in further significant improvement. Data-driven model is to treat
the battery as a black box, analyze hidden information and evolution rules from the external
feature parameters of the battery, and estimate the battery states by mining the hidden
feature information based on a large amount of dataset. Data-driven models involve
simulating battery states by end-to-end training of data, which has the characteristics
of simple modeling process, high estimation accuracy, and strong generalization ability.
However, this model needs a large amount of data for training [17]. In recent years, with
the development of internet of vehicles technology, a large amount of battery data has been
recorded and stored, laying the data foundation for data-driven models. These methods
are increasingly applied in power battery state models. This paper focuses on the research
progress of data-driven models.

Data-driven models include classical machine learning models, deep learning mod-
els, and hybrid models. In early battery states estimation research, classical machine
learning models are mainly used, and common models include artificial neural networks
(ANN) [18,19], support vector machine (SVM) [20,21], and Gaussian process regression
(GPR) [22,23], hidden Markov model (HMM) [24,25], random forest (RF) [26,27], fuzzy
control [28,29], autoregressive(AR) [30,31], relevance vector machine (RVM) [32,33], etc.
Although classic machine learning models can estimate battery states based on a small
number of data samples, the estimation quality relies on expert experience to manually
extract features, and the estimation accuracy is greatly affected by the selected features.

With the development of neural network technology, to further improve the accuracy
and robustness of battery states estimation, some scholars have begun to explore the use of
deep learning methods, such as convolutional neural networks (CNN) [34–36], recurrent
neural networks (RNN) [37,38], and other models. The deep learning models achieve high-
level abstract representation and modeling of data by constructing a depth map composed
of multiple processing layers and nonlinear and linear transformations. Compared with
the machine learning methods, deep learning methods can automatically extract features of
different depths from massive data, achieving end-to-end learning. They are not sensitive
to data noise, easy to understand, and they have good portability. When the data sample
size is sufficient, it can achieve higher estimation accuracy. However, the shortcomings of
deep learning models are the need for larger data samples and more training time to train
the model.

To further improve the accuracy and robustness of models and reduce training time,
some scholars have attempted to comprehensively utilize the characteristics of different
models to build hybrid models for battery states estimation [39–41]. For example, Song
used the feature extraction capability of CNN and the time series prediction capability of
RNN to try to build a hybrid model CNN-LSTM to estimate the SOC state of batteries,
extracted advanced spatial features from original data through CNN, and captured the
nonlinear relationship between SOC and measurable data such as current, voltage, and
temperature through LSTM. It has better tracking performance than the single model of
LSTM or CNN. The maximum average error of SOC estimation is less than 1.5%, and the
maximum root mean square error is less than 2%. The hybrid model has good application
prospects in the field of health estimation of batteries.

Researchers have summarized the research progress of power battery states estimation
technology. For example, Toughzaoui et al. [42] summarized the research status of battery
health status estimation and remaining life estimation, and Manoharan et al. [43] summa-
rized battery states estimation technology based on traditional machine learning models.
By analyzing the existing review literature, it was found that the existing literature mainly
analyzes some battery states based on machine learning models, and there is no analysis of
battery states estimation technology based on deep learning models and hybrid models.
The main purpose of this paper is to analyze the latest achievements in data-driven power
battery states estimation recently, summarize the main data sources and characteristics
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of battery states, and compare and analyze the mainstream data-driven models and their
advantages and disadvantages. In addition, some other content was summarized, and the
basic process for estimating the health status of power batteries was proposed. The future
technological development trends of data sources and data-driven models for estimating
the battery states were discussed.

The main contributions of this paper include: (1) Analyzing the main data sources and
their characteristics used to estimate battery states, providing guidance for subsequent data
collection and application of power batteries; (2) Summarizing the construction methods
of data-driven battery states estimation models, providing support for further research
on model construction methods; (3) Analyzing the development trend of battery states
estimation technology to provide reference for future research on estimation methods.

The structure of this paper is as follows. The second part analyzes the data sources
and their characteristics. The third part discusses the model and characteristics of data-
driven status estimation of power batteries. Finally, the development trend is analyzed and
conclusions are presented.

2. Data for Battery States Estimation

There are many data sources used to estimate the battery states. According to the
data acquisition method, the main data sources are divided into three categories: test data,
simulation data, and natural driving data, as shown in Figure 2.
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Figure 2. Data for battery states estimation.

2.1. Test Data

Some researchers use experimental data to estimate the states of batteries [44,45],
which can be further divided into the following categories: electrical data such as voltage,
current, resistance, capacitance, SOC, etc.; heat data such as temperature; other data such
as gas composition, pressure inside the battery box, etc. Some of these data can be directly
measured through testing equipment, such as temperature, which can be directly measured
through single point, multi-point, infrared imaging or ultrasound method. Some data
need to be obtained through indirect estimation methods, such as the resistance of power
batteries. The characteristic of this type of data is authenticity and objectivity, but it requires
the use of professional equipment for collection.

2.2. Simulation Data

Some researchers use simulation data to estimate the battery states [46,47]. For ex-
ample, Sakile simulated the battery model in the MATLAB/Simulink environment and
used simulation data to predict the SOC and RUL of the battery. The use of simulation to
collect data under various operating conditions, working environments, and meteorological
conditions has strong flexibility, but the main drawback is that the ability of simulation to
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reproduce and capture real operating conditions, working environments, and meteorologi-
cal conditions is limited, and simulation data may not be consistent with real operating
conditions data.

2.3. Natural Driving Data

With the development of on-board sensors, internet of vehicles, cloud platforms,
and other technologies, a large amount of natural driving data is stored and recorded.
Natural driving data have the characteristics of easy access to data, objective and realistic
status, large amount of data, and rich information. These data not only include battery
states data, but also include vehicle actual scene data and environmental meteorological
data [48]. Wang used real driving data from two electric buses to predict the battery
temperature during the charging phase of an electric bus [49]. With the development of
artificial intelligence and big data technology, natural driving data may become the main
source of data for estimating the status of batteries in engineering practice.

In summary, the three types of data sources used to estimate the battery states have
different characteristics, and the advantages and disadvantages of each type of data source
are analyzed in Table 1.

Table 1. The characteristics of data source.

Data Source Strengths Weakness

Test Data
The data are objective and
truthful, and can collect extreme
working condition data

Special testing equipment is
required, and the testing process
requires a large amount of
manpower and material
resources, with a long acquisition
cycle and high requirements for
the testing environment

Simulation Data
Easy and convenient to obtain,
with good repeatability and no
environmental constraints

Data quality is greatly affected by
model accuracy

Natural Driving Data
The data are real and objective,
easy to collect and cover a wide
range of scene conditions

High data interference noise
makes it difficult to obtain
extreme scenario data

3. Data-Driven Model for Battery States Estimation

According to the characteristics of the model, the data-driven battery states estimation
models can be divided into three categories: machine learning models, deep learning
models, and hybrid models, as shown in Figure 3.
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3.1. Machine Learning Model

Machine learning refers to learning general rules from limited observation data and
utilizing these rules to predict and analyze unknown data. The model needs to first
represent the data as a set of features and then input these features into the prediction
classifier to predict the output results. Its feature representation mainly relies on manual
experience or feature transformation methods for extraction, and the extracted features
have a significant impact on the recognition accuracy of the model. This paper focuses on
analyzing the progress of estimating the battery states using ANN, SVM, and GPR models.

(1) ANN model

ANN is an information processing system established based on imitating the structure
and function of brain neural networks. Artificial neural networks have self-learning, self-
organizing, adaptive, and strong nonlinear function approximation capabilities, and has
strong fault tolerance, which is suitable for complex nonlinear modeling problems with
multiple related features. The basic structure of ANN includes three layers: input layer,
output layer, and hidden layer, as shown in Figure 4.
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ANN models have significant advantages in estimation accuracy and robustness, and
they have been widely applied in the field of battery states estimation. Researchers have
conducted extensive research on building ANN models to estimate battery states [50–55].
For example, Wang et al. [50] used an ANN model to estimate the temperature changes of
the lithium-ion batteries. They established temperature prediction models using backprop-
agation neural networks (BP-NN), radial basis function neural networks (RBF-NN), and
Elman neural networks (Elman-NN), respectively, and compared the temperature predic-
tion performance of different neural network modeling techniques. The MSE and MAE
values did not exceed 0.3. At the same time, it is noted that the Elman-NN model has good
adaptability and generalization ability, and has fast convergence speed. Bezha et al. [51]
proposed a method for estimating the internal impedance parameters of lithium-ion bat-
teries based on ANN, which achieves accurate estimation of the actual state of the battery
within 30 s, with a maximum error of less than 3%. The model has good universality.
Hussein et al. [52] used the ANN model to estimate the SOC of electric vehicle power
batteries, and the error was less than 3%. Jaliliantabar et al. [54] constructed an ANN model
to predict the SOT of lithium-ion batteries with the mean absolute percentage error (MAPE)
being about 0.331.

Overall, the ANN model has good performance in the process of battery state predic-
tion, the calculation process is fast and convenient, and the prediction result is relatively
accurate, suitable for all kinds of battery. ANN also has some weaknesses, such as the model
estimation accuracy being greatly affected by the training sample data, the large amount
of data is an important prerequisite for obtaining accurate estimates, and the prediction
ability of small sample data is poor. The parameters of ANN are complex, and it is easy
to fall into the local optimization of parameters in during training, resulting in overfitting.
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Due to the lack of clear methods for selecting network structures, the prior experience or
comparison of multiple models is required to determine the final network structure.

(2) SVM model

The SVM model is a new learning machine that maps nonlinear functions based on
statistical learning theory. It maps nonlinear problems in low-dimensional space to linear
problems in high-dimensional space through kernel function to complete the modeling
of complex nonlinear systems, and find an appropriate hyperplane to complete accurate
classification of data. Its principle is shown in Figure 5.
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Unlike ANN, the SVM method has stricter mathematical proof, lower computational
complexity, faster convergence speed, and can effectively prevent local parameter opti-
mization problems. SVM is not sensitive to the dimensions and variability of data, and is
suitable for classification and regression of complex small sample data. Additionally, it has
strong generalization ability and high estimation accuracy [56]. Some researchers use SVM
to estimate the states of battery, for example, Deng et al. [57] applied SVM to diagnose the
fault state of electric vehicle power batteries, with an accuracy of over 89%; Wang et al. [58]
used an SVM method to model the nonlinear dynamic characteristics of batteries based
on a small number of experimental data samples, with an estimated maximum relative
error of 3.61%; Chen et al. [59] constructed an SVM model to predict SOH online using
charging data, achieving an error of less than 2%; Li et al. [60] proposed a method to
indirectly estimate the RUL by using SVM model. Compared with ANN methods, the SVM
model has higher accuracy and shorter computational time, with a maximum error of 5%
in battery states estimation. Some researchers have also used a combination of SVM and
other methods to estimate battery states [61–65].

However, the SVM model still has some shortcomings in practical applications, for
instance, feature vector is difficult to measure and calculate, kernel parameters are difficult
to select, the model is highly dependent on cross-training and regularization methods and
sensitive to missing data during feature vector selection or training process.

(3) GPR model

The GPR model is a universal and resolvable non-parametric probability model that
uses a priori of Gaussian processes to conduct regression analysis on data. In theory, it
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can achieve universal approximation of any continuous function in compact space and has
been applied in the fields of time series analysis, image processing, and automatic control.
GPR has the advantage of low computational complexity in solving high-complexity
problems. Many researchers have constructed GPR battery states estimation models to
solve complex nonlinear problems during the process of electric state changes [22,23,66–77].
Wang et al. [22] established a battery states estimation model based on GPR, which has
prominent accuracy and robustness, with a maximum relative error within 2%. Liu et al. [23]
established a data-driven GPR model to predict the battery SOH, and achieved high
accuracy under the premise of small sample size input. Except for some individual point
estimation errors greater than 3%, most of them are less than 1.5%. Zhou et al. [66] designed
a cyclic GPR model with delayed feedback loop to estimate the status of batteries, which has
high accuracy and robustness, with an estimation error of 1.12%. Yang et al. [67] proposed
a GPR model based on the charging curve to estimate SOH. The model has good robustness
and reliability, and the estimation error of SOH is mostly less than 2%. Wang et al. [68]
proposed a data-driven integrated Gaussian process regression (GPR) model to estimate
SOH by comparing and analyzing the influence of different mean and kernel functions
on the estimation accuracy of GPR model, achieving mean absolute error (MAE) and root
mean square error (RMSE) of 1.7% and 2.41%, respectively. Pang et al. [69] proposed a
GPR model for estimating battery RUL, which has high estimation accuracy and achieves
battery RMSE less than 0.04.

In summary, GPR has the advantages of high model prediction accuracy and prob-
ability density prediction results. There are two main shortcomings. Firstly, due to the
inherent structure of the GPR model, the computational complexity is high when analyzing
large amounts of data; Secondly, the GPR model has more hyper-parameters, and the
hyper-parameter adjustment process is tedious during training.

In addition, some scholars have utilized other machine learning models, such as
particle filtering [78], Wavelet [79], Extra tree [80], Gradient boosting method [81], Linear
compression [82], KNN [83], etc., to estimate battery states and have achieved certain
results. A summary of machine learning models and their corresponding advantages and
disadvantages is shown in Table 2.

Table 2. Application and characteristic of machine learning model.

Battery States Application Strength Weakness

SOH [19–23,59,64,66–
68,71,73,76,78,79,81,82]

Used for electric health
state estimation

Used to estimate the battery
states, learn general rules
from limited data, and predict
unknown data. Necessary to
represent the data as a set of
features and input them into
the classifier to predict the
output results. It has certain
advantages in terms of
accuracy and robustness
of estimation.

Relying on manual experience or
feature transformation methods to
extract features has a significant
impact on the accuracy of model
estimation. The input and output
dimensions of the model cannot
be arbitrarily changed, and the
sample length is fixed. Difficult to
handle ordinal numbers. When
the data sample size is large,
overfitting may easily occur.

SOC [18,52,55,72,74,75,77] Used for battery state of
charge estimation

RUL [53,60,61,69,70,76,80,83] Used to estimate the
remaining battery life

Others
[50,51,54,56–58,62,63,65]

Used to estimate other
status such as SOT, SOP,
SOS, etc. of the battery

3.2. Deep Learning Model

The concept of deep learning originates from the research of artificial neural networks,
which use a processing mechanism of combining multiple hidden layers to stack and
processing output layer by layer, to transform the low-level feature representations that
is not closely related to the initial and target into higher-order abstract features that are
more closely related to the target, in order to discover distributed feature representations of
data. In recent years, this method has gradually been applied to the estimation of battery
states and has achieved good results in mapping battery states data to typical state specific
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features to estimate battery states. The common deep learning models include CNN, RNN,
MLP [84,85], etc. This paper focuses on analyzing the state of the research on constructing
battery state models using CNN and RNN.

(1) CNN model

The CNN model is a deep feed-forward neural network model including convolution
operation inspired by the mechanism of biological receptive field. It is composed of multi-
layer networks, including input layer, convolution layer, pooling layer, fully connected
layer, and output layer. The basic structure is shown in Figure 6. Compared with fully
connected neural networks, CNN automatically extracts the salient features of feature data
by changing the fully connected layer to the convolution layer and pooling layer, using
multiple convolution pooling operations, and then uses mathematical statistics methods
or classifiers to output after the full connection layer to complete the nonlinear mapping
from input to output. The CNN model utilizes a network structure of sparse connections
and parameter sharing to reduce the complexity of the model, significantly reducing the
number of network weights, and has advantages such as automatic feature extraction,
anti-noise interference, and end-to-end learning. It is widely used in machine vision, state
diagnosis, and other fields.
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Figure 6. The basic structure of CNN.

CNN models have been applied in estimating battery states and achieved many
research results [34–36,86–90]. For example, Wei et al. [34] constructed a CNN model and
trained the model based on the battery common dataset to predict the remaining life of
lithium-ion batteries. The life prediction results are superior to those of other existing
methods. Qian et al. [35] designed a 1D-CNN model architecture to estimate the battery
SOC using random segments of the charging curve as inputs. The models have good
robustness and accuracy and can accurately estimate battery SOC. Lu et al. [36] proposed a
CNN model for battery SOC estimation, which was used to estimate battery SOC based on
partial voltage data during battery discharge. It can accurately estimate battery SOC with
limited voltage data, and the MAPE is about 0.55%. Chemali et al. [86] proposed using
a CNN model driven by partial charging data to estimate battery SOH with an average
error of less than 0.8%. Sohn et al. [88] constructed a CNN model to extract features that
can reflect the dynamic changes in battery performance and accurately predict the battery
SOC. Shen et al. [89] constructed a deep convolutional neural network (DCNN) that can
accurately estimate battery SOC by using measurement data during charging, with higher
accuracy and robustness.

Some researchers utilize the feature extraction ability of CNN and combine it with
other machine learning methods for power battery state estimation [91,92]. For example,
Yang et al. [91] estimated the battery health status by building a CNN and random forest
hybrid model, which improved the estimation accuracy and robustness compared with
the single CNN model. In addition, some researchers have constructed CNN models
with various forms for battery health status research by coordinating with some adjust-
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ments and improvements, such as LeNet [93], ALexNet [94], VGGNet [95], ResNet [96],
DenseNet [97], etc.

In summary, the CNN models have high recognition accuracy and good robustness
and have achieved good application in battery states estimation field. However, as a
feedforward neural network, from the input to the output of the network from the bottom
to the top unidirectional connection, CNNs have the disadvantages that the input samples
are independent of each other, the output dimension is relatively fixed, and the output
only depends on the current input. At present, CNNs tend to have smaller convolutional
kernels, deeper network structures, fewer pooling layers, and gradually develop towards
fully connected networks.

(2) RNN model

The RNN model is a new type of neural network that takes sequence data as input
and realizes short-term memory capability through recursive loop units in the evolution
direction of sequence. Compared with CNN, the neurons of RNN can not only accept
information from other neurons, but also their own information. Through the network
parameter feedback mechanism, the important information of the network can be retained
and updated for a certain period of time, which presents significant advantages in the
modeling of time series problems. RNN has a loop network structure, connecting all nodes
in a chain manner. The simplified model is shown in Figure 7. RNN has the characteristics
of memory ability, parameter sharing, etc. It can theoretically approximate any nonlinear
dynamic system. It has certain advantages in learning the nonlinear characteristics of
sequences, and it has been widely used in speech recognition, machine translation, and
other tasks.
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Some scholars have utilized RNN’s strong ability to map high-dimensional and
strongly nonlinear data to estimate battery states by constructing RNN models, which
have achieved good results [8,38,39,98–100]. For example, Catelani et al. [8] used an RNN
model to estimate the RUL of lithium-ion batteries with good accuracy. Feng et al. [38]
attempted to construct an RNN framework for estimating battery SOC, which showed
good estimation performance with RMSE of less than 1.29%. Hsieh et al. [39] predicted the
discharge state of batteries by building an RNN model framework, with an error rate of
less than 2%.

The RNN model can only learn information that is close in time, making it difficult to
apply to sequence data that require long-term dependence. When the input sequence is
relatively long, there will be long-range dependence problems caused by gradient vanishing
and gradient explosion during the training process of RNN networks. The most effective
way to address this issue is to introduce a gating mechanism, which is called the LSTM
unit and the GRU unit.
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The LSTM unit updates the memory information of the unit by introducing a special-
ized memory unit that controls the input, memory, and output of information through
input gate, forget gate, and output gate. The basic structure is shown in Figure 8. Some re-
searchers have used LSTM to estimate battery states [101–108]. Yang et al. [101] established
an LSTM model to predict the battery SOH with error of less than 3%, and the model has
better accuracy and stability. Zhang et al. [102] built an LSTM model, which can accurately
estimate the SOC and RUL of lithium-ion batteries. Park et al. [103] proposed an LSTM
model to estimate battery RUL, the MAPE of the model reached 0.47–1.88%.
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Unlike LSTM, the GRU units simplify gates by merging input gates and forget
gates into update gates and solve the long-range dependency problem by setting a re-
set gate to control the balance between input and forget. The basic structure is shown in
Figure 9. Researchers have applied GRU to estimate battery states [109–114], for example,
Yang et al. [109] used a GRU model to estimate the battery SOC by using current, voltage,
and temperature data, with a maximum root mean square error of 3.5%. The model has
good robustness. Guo et al. [110] used the GRU model to predict the RUL of lithium batter-
ies with different charging strategies, which can provide accurate prediction results under
different charging strategies. The root mean square error of prediction can be controlled
within 1%, and the prediction response speed is very fast. Lyu et al. [111] estimated the
battery SOC based on a GRU model, noting that GRU outperforms LSTM and RNN in
network performance and estimation accuracy.

Some researchers have further improved the performance of recurrent neural networks
by increasing their depth, and used them for studying battery states estimation, such as
Stacked Recurrent Neural Network (SRNN) [115–118], Bidirectional Recurrent Neural
Network (Bi-RNN) [119–123], and Graph Neural Network (GNN) [124,125], and have
applied them in battery states estimation and achieved high estimation accuracy.

The above are only some typical application cases, and there are still many successful
application cases of RNN in building a health estimation model for power batteries [126–128],
which will not be repeated.
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It can be seen that RNN and its improved models can be used for estimating the
battery states, suitable for high-dimensional and big data sample learning, and can extract
deep spatiotemporal features. The error of battery states estimation is relatively low.
However, CNN requires a large amount of sample data and faces difficulties in obtaining
sample data. In summary, the models based on deep learning have achieved significant
application effects in the battery states estimation. The application fields and corresponding
characteristics are summarized in Table 3.

Table 3. Application and characteristics of CNN model.

Battery States Application Strength Weakness

SOH [86,87,91,101,102,104–
106,114,116,117,122,125]

Used for electric health
state estimation

Suitable for high-dimensional big
data samples, reducing the
number of parameters through
weight sharing and aggregation,
automatically extracting features
and integrating them with
classifiers to achieve end-to-end
learning, with high accuracy and
resistance to noise interference.

Due to the constraints of the
model structure, the input and
output dimensions cannot be
arbitrarily changed, and the
sample length is required to
be fixed. It is difficult to
process time series data, and
overfitting occurs easily when
the data sample size is large.

SOC [35,36,38,39,89,93,95,98,
99,109,111,113,115,119]
[120,124,128]

Used for battery state of
charge estimation

RUL
[34,92,96,103,107,110,112,118]

Used to estimate the
remaining battery life

Others [88,90,94,97,100,108,
121,123,126,127]

Used to estimate other
status of the battery

3.3. Hybrid Model

A hybrid model refers to a high-precision model constructed by comprehensively
utilizing the different characteristics of different models. In recent years, hybrid mod-
els have attracted the attention of researchers. Some of them have put forward the
comprehensive use of hybrid model to estimate the battery state and achieved good
results [39–41,48,129–142]. For example, Song et al. [39] tried to build a hybrid model
CNN-LSTM to estimate the battery SOC by using the feature extraction capability of CNN
and the time series prediction capability of RNN, extracted advanced spatial features from
the original data through CNN, captured the nonlinear relationship between SOC and
measurable data such as current, voltage and temperature through LSTM, and obtained
better performance than the LSTM or CNN single model. The maximum average error
and the maximum root mean square error of SOC estimation was less than 1.5% and 2%,
respectively. Xu et al. [40] proposed that the hybrid model CNN-LSTM was added jump
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connection (as shown in Figure 10), which solved the problem of neural network degra-
dation caused by multi-layer LSTM, not only significantly improved the SOH estimation
accuracy, but also reduced the calculation amount of the model. RMSE was below 0.004
on both the NASA and Oxford battery data sets. Ren et al. [41] estimated the battery RUL
using a hybrid CNN-LSTM model, the accuracy and RMSE estimated based on the hybrid
model were 94.97% and 5.03%, respectively, which were much better than the SVM model
(corresponding results were 81.77% and 18.23%, respectively), and the model has good
generalization ability and robustness.
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Chen et al. [129] proposed a hybrid model ELM-BSASVM composed of an extreme
learning machine and an SVM model to predict the battery RUL. The hybrid model has
good robustness, and the RMSE value is 79.68% better than the SVM model. Zhao et al. [130]
and Liu et al. [131] explored a hybrid CNN and GRU model for battery SOH estimation
and validated the model by reconstructing feature series samples on the Oxford battery
dataset. The average values of RMSE and MAE reached 0.582% and 0.524%, respectively.
Wang et al. [48] proposed a hybrid CNN and LSTM model for predicting battery temper-
ature during the charging phase of electric buses, which was used to predict short-term
temperature changes of batteries in the future. The model not only has excellent accu-
racy and robustness, but also reduces time and space costs. Mei et al. [132] estimated the
battery energy state (SOE) by building a hybrid model framework consisting of LSTM
and CNN, with an estimation error of less than 3%. Zhang et al. [133] proposed a hybrid
model IPSO-CNN-ILSTM for estimating the battery RUL status. The mapping association
between fusion features and RUL was established through CNN and improved LSTM,
and the improved particle swarm optimization (IPSO) was used to optimize the weights
and learning factor parameters of the mapping network to achieve a battery life estima-
tion result of about 0.7% MAPE, the estimation result of MAPE is better 5.0% than the
CNN-LSTM model. Zraibi et al. [134] estimated the battery RUL by constructing a hybrid
model CNN-LSTM-DNN and comprehensively using the advantages of CNN, LSTM, and
DNN. The error and robustness of the hybrid model estimation are better than that of
the single model. Yanwen et al. [135] used CNN to extract health status characteristics,
mined data time series features with local features of long and short-term memory (LSTM),
and combined with a GRU cell to build a hybrid model, which significantly improved the
accuracy of battery SOH estimation. In summary, hybrid models can selectively select
models according to target requirements and data resources and design learning networks
of different depths and widths, with higher accuracy and stronger robustness.

All in all, data-driven status estimation technology for power batteries is relatively ma-
ture at present, and different methods have their own advantages and applicable scenarios.
Traditional machine learning models typically require extracting statistical features from
data based on expert experience, and then using classifiers for battery states estimation.
The accuracy is greatly affected by manually selecting features. The deep learning models
have the characteristics of automatically extracting distributed features from massive data
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and enabling end-to-end learning of data. Their applications in battery states estimation
methods are becoming increasingly popular, with high accuracy and great robustness. The
hybrid model consists of multiple different models, which can fully utilize the advantages
of different models to further enhance generalization ability and recognition robustness,
and it has good research and application prospects. The performance characteristics of
machine learning models, deep learning models, and hybrid models are summarized in
Table 4. Different models have different characteristics and need to select reasonably based
on goals, data resources, and other factors.

Table 4. Advantages and disadvantages of the models.

Methods Typical Model Advantages Disadvantages

Machine learning
models

SVM [20,57–65]

Requires small data samples, and
features are extracted based on expert
experience. Low computational
complexity and fast convergence speed,
and strong training ability for small
sample data; Suitable for different battery
applications, good for diagnostic

Difficulty considering nonlinear
and complex time-varying
information, and low accuracy;
Parameters are complex and
difficult to select; High
dependence on cross training
and regularization methods;
Sensitive to missing data.

ANN [18,19,50–55]

A large amount of comprehensive sample
data is required, and the estimation error
is largely influenced by the training data;
difficult to achieve online training; Strong
self-learning ability, high prediction
accuracy, and good analysis effect on
nonlinear systems

Need to use prior experience to
determine the network structure
of the mode; Needs lots of
training data; Network
parameters are complex, and
the required training time and
computing resources increase
sharply with the increase of
data volume

GPR [22,23,66–77]
High prediction accuracy, output in the
form of probability prediction; High
computational complexity

More hyper parameters,
complicated adjustment

Deep learning
models

CNN [34–36,86–97]

Automatic feature extraction, seamless
connection with the classifier, high
accuracy, and it is greatly affected by the
correlation of feature data and the length
of sample data; Simple control structure
and robust tracking performance in
uncertain environments, fast estimation,
high accuracy

Requires a large sample size of
data, large amount of
calculation needed, complicated

Basic RNN
[8,38,39,98–100]
LSTM [101–108]
GRU [109–114]

Others [115–128]

Accurate estimation of SOC, no initial
SOC needed, easily filter noise in data
with the gating mechanism to consider
the influence of time dimension, high
accuracy, large computational power and
resource occupation, and slow
convergence speed of multi-feature data

Requires big data,
large amount of calculation
needed, complicated

Hybrid models
[39–41,48,129–142] CNN + RNN

Considering the advantages of different
models, it has strong generalization
ability and good robustness

4. Future Development Trends

With the application of technologies such as artificial intelligence, network com-
munication, and advanced sensors, automobiles are accelerating towards electrification,
intelligence, and networking. Data-driven power battery states estimation methods have
broad application prospects in the field of battery safety management for electric buses. In
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terms of the future, power battery states estimation methods have shown the following
development trends.

(1) The accuracy and reliability of data-driven battery states estimation methods largely
depend on the quality and quantity of sample data, as well as the diversity of working
scenario. During the actual condition of electric vehicles, environmental conditions
such as road slope, climate, as well as abnormal voltage and temperature, can cause
the battery modules to deviate from their equilibrium state. Based on natural driving,
on-board sensor data have gradually become the main source of data for battery states
estimation. The use of onboard sensors and network technology to obtain battery
states data under actual scenarios has the advantages of objectivity, accuracy, reliability,
massive data, and low acquisition cost, which can provide reliable data support
for accurate estimation of battery states. Meanwhile, data migration learning, and
confrontation generation learning will provide new solutions for generating massive
training data samples [95,140,143–147]. Tang et al. [147] combined industrial data
with accelerated aging testing through migration-based machine learning to restore
large-scale battery aging datasets and reduce the cost of aging testing. Li et al. [93]
migrate the CNN model pre-trained on the large capacity battery data set to the
small target battery data set through the transfer learning technology to improve the
capacity estimation accuracy.

(2) The design of models is crucial for achieving accurate estimation of battery states. Fur-
ther development of battery states estimation models with higher accuracy, stronger
robustness, and better real-time performance is a research hotspot. The deep learning
model overcomes the problem of rapid decline in estimation accuracy and generaliza-
tion ability caused by changes in work scenarios and key feature parameter selection
in traditional machine learning models. By automatically learning and extracting
spatiotemporal features of battery states data under different work scenarios, it has the
characteristics of high accuracy and good robustness and can achieve a good balance
between accuracy and generalization ability. The data-driven model-based battery
states estimation method using deep learning will become one of the mainstream
methods, especially for the hybrid model, which can comprehensively utilize the
unique advantages of various models and use multiple methods for comprehensive
complementarity in different stages of battery states estimation tasks to improve the
accuracy of model. It has great value for further investigation.

(3) It is an important research direction to further improve the accuracy and robustness
of battery states estimation by considering multiple scenarios and multiple feature
parameter constraints, combined with advanced intelligent algorithms. Artificial
intelligence algorithms such as deep learning and transfer learning are widely used
in battery states estimation, and traditional battery states estimation methods are
being reshaped and upgraded. Under the influence of multiple factors such as break-
throughs in algorithm technology, powerful computing power, and massive data,
artificial intelligence has the ability to represent knowledge and make inferential
decisions at multiple levels, distributions, and tasks. In some fields, artificial intel-
ligence has reached or surpassed human level. However, in the scenario of power
battery applications, the challenges faced by deep human applications of deep learn-
ing are enormous due to the complexity and variability of the environment, the lack
of annotated data, and the difficulty in overcoming practical pain points.

(4) The accurate and real-time requirements in engineering applications have introduced
higher requirements for the software and hardware of battery management systems.
Some application scenarios require real-time and accurate estimation of battery states,
which poses new challenges to the performance of battery management systems.
In addition to low-cost high-computing-power microprocessors and high-precision
sensors, more in-depth research is also needed on the collection and processing of
on-board sensor data, multi-source high-dimensional heterogeneous data fusion,
efficient deep learning network architecture design, and high-performance hybrid
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model development. Software and hardware technologies complement each other to
further improve the accuracy, reliability, and real-time performance of battery states
estimation while reducing costs. How to deeply mine multisource, heterogeneous, and
massive vehicle sensor data information, and then use information fusion technology
to classify and process information at different levels, comprehensively utilize the
characteristics of different models, and more accurately identify the true status of
various batteries will become a research hotspot in the field of battery management
system technology.

5. Summary

The states estimation method of power batteries is an important research direction in
the field of new energy vehicles, it plays an important role in engineering fields such as
energy storage management and safety management. This paper summarizes the data-
driven battery states estimation methods including data sources and estimation models.
Firstly, the current research progress of battery states estimation methods is summarized.
Around the basic process of battery states estimation tasks, mainstream data sources
and typical models used for battery states estimation are analyzed and discussed. By
comparing and analyzing the advantages and disadvantages of three types of data sources,
it is found that there is rich information hidden in onboard sensor data and the natural
driving data can be used as the main data source for battery states estimation. Secondly,
the models for battery states estimation are divided into three categories: machine learning
models, deep learning models, and hybrid models. By analyzing the research progress
of various models, the paper notes that the deep learning models represented by CNN,
RNN, and hybrid models have advantages in accuracy, generalization ability, and other
aspects compared with traditional machine learning models. Hybrid models have received
significant attention from researchers, becoming the mainstream of data-driven battery
states estimation. Additionally, battery states estimation methods face multiple challenges
including higher accuracy, real-time performance, and robustness which are important
trends. Scholars need to continue to conduct in-depth and detailed theoretical and applied
research on data-driven battery states estimation methods, which has profound significance
for improving the safety of new energy vehicles and the healthy development of the
automobile industry.
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