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Abstract: Hybrid electric vehicles (HEVs) are used as a bridge during the transition to battery electric
vehicles (BEVs) and to make energy consumption more efficient. The main problem in improving the
efficiency of HEV energy consumption is torque management. In this study, a novel approach based
on a nonlinear model predictive controller to solve the reference tracking and torque distribution
problem is proposed. That is to say, in order to increase the efficiency of torque distribution, the
weights of nonlinear model predictive control (NMPC) are trained with a Deep Q Network (DQN),
and an event-triggered mechanism is designed with DQN to reduce the computational cost of MPC.
The considered torque distribution problem varies according to the type and structure of the HEV.
In this study, a parallel type 2 hybrid electric vehicle (P2 HEV) is considered and modeled via
publicly shared passenger vehicle data of the engine, motor, high-voltage battery, transmission,
clutch, differential, and wheel characteristics. NMPC is formulated so that the torque values remain
within the physical limits of the engine, and the battery also operates at its physical limits. Namely, it
is guaranteed that the battery works according to a certain state of charge (SOC) window and current
limits. The state of health (SOH) of the battery is also considered in the optimization. The motor and
engine efficiencies increase by 3.61% and 2.86%, respectively, with the proposed control structure,
while the computational cost is reduced by 52.01% when utilizing the proposed event-triggering
mechanism in the NMPC controller.

Keywords: model predictive control; Deep Q Network; energy management; parallel hybrid electric
vehicle type 2; event-triggered mechanism

1. Introduction

HEV and BEV architectures have become increasingly popular in recent years, not
only as a result of government incentives for green energy and global emission regulations
but also because of the high demand for improved fuel efficiency. HEVs also serve as a
stepping stone to increasing the demand for electric vehicles in daily life [1,2].

HEVs can have typologies of different structures, such as serial, parallel, and power
split; additionally, they can be classified according to the number of electric motors and
their place in the architecture [3–5].

There are six main components of the powertrain, and they are the engine, clutch
(separation clutch), EM, high-voltage battery, transmission, and differential. The connec-
tions, both mechanical and electrical, between these components are shown in Figure 1.
The engine and EM are the two main traction sources of the vehicle and are placed on
the same shaft. The energy transfer between these two components is bidirectional, as
the battery supplies power to the EM during traction, and the opposite scenario holds
during regenerative braking. The clutch, namely, the “separation clutch”, decouples the
engine from the EM, which is the most characteristic feature of this hybrid architecture. The
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transmission includes a gearbox, where a related gear ratio is obtained, and the differential
is the mechanical part where the rotational movement of the input shaft is transmitted
to the wheels by considering the final drive ratio. P2 HEV architecture allows traction
from the engine and EM separately or together based on driver request. Therefore, the
most significant problem in achieving higher efficiency is the management of the torque
distribution.

Figure 1. P2 HEV architecture.

As a power source for electric motors, Li-On batteries offer great advantages. It is
noteworthy that Li-On batteries, which have many advantages in specific energy, specific
power, life span, cost, and performance criteria, are suitable for the automotive field [6–8].

The current, voltage, SOC, and energy capacity that a Li-On battery can provide are
within certain limits. In Li-On batteries, the ranges of the current, voltage, and SOC play
a big role in energy efficiency. For this reason, applications such as the SOC window
have been developed, and studies have been conducted to establish more sensitive SOC
estimation methods [9,10]. In addition, these values also change with the SOH. The SOH
is one of the key concepts that need to be optimized, and it provides information about
the health status and aging of the battery. Battery aging changes depend on the tempera-
ture, number of full cycles, battery chemistry, resistance, SOC status, and environmental
conditions [11–13].

Various controllers are frequently used for the torque distribution problem, such as
model predictive control (MPC), fuzzy logic, and reinforcement learning (RL).

Energy management strategies for HEVs are developed in [14] using fuzzy logic and
Elman neural network tuning. The strategies aim to optimize the power split between the
engine and electric motor by considering driving conditions, the battery state of charge,
and other relevant factors. The fuzzy logic and Elman neural network tuning algorithms
are compared with other energy management strategies using simulations.

The study in [15] compares two energy management strategies, fuzzy logic and the
equivalent consumption minimization strategy (ECMS), for P2 HEVs. The strategies
aim to optimize the power distribution between traction sources. A rule-based energy
management strategy for a light-duty commercial P2 HEV using dynamic programming
(DP) is presented in [16].

A two-level MPC approach for the energy management of parallel HEVs is proposed
in [17]. The upper-level controller optimizes the power split between the engine, motor,
and battery based on current driving conditions and driver demands. The lower-level
controller implements the power split and manages the battery SOC. This approach enables
the separate optimization of the energy management problem, uses simplified models for
the powertrain components, and provides a more efficient and responsive system.

The study on the effect of SOC uncertainty on the MPC-based energy management
strategy for HEVs in [18] examines the impact of uncertain SOC estimations on the perfor-
mance of the MPC-based energy management strategy for HEVs. The study shows that
higher levels of SOC uncertainty result in decreased fuel economy and increased battery
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degradation. Additionally, the study highlights the importance of accurate SOC estimations
for optimal HEV performance and longevity.

An adaptive MPC strategy is proposed in [19], and it includes battery thermal limi-
tations to optimize the fuel consumption of a P2 HEV. The proposed strategy considers
the battery’s thermal behavior and adjusts the power distribution between the engine and
electric motor to reduce fuel consumption while maintaining the battery’s thermal limits.

A hierarchical control strategy is proposed in [20] with a robust MPC for the energy
management of parallel HEVs in the presence of uncertainty. The high-level controller is
responsible for determining the setpoints of the low-level controller based on the driver
demand and the vehicle’s operating conditions. The low-level controller is responsible for
optimizing the energy flow between the powertrain components of the HEV based on the
setpoints determined by the high-level controller.

A novel energy management strategy is proposed in [21] using a hierarchical MPC
framework for plug-in HEVs. The study introduces a dynamic programming (DP) algo-
rithm to solve the high-level MPC optimization problem efficiently. The DP algorithm
optimizes the energy management strategy over the entire driving cycle and provides a set
of optimal setpoints for the low-level controller to follow.

Using stochastic MPC and RL, the energy management of plug-in HEVs is analyzed
in [22]. The proposed framework accounts for uncertainties in the PHEV’s operating condi-
tions and uses a probabilistic model to solve a stochastic optimization problem. The study
introduces an RL algorithm to learn the optimal control policy based on historical data,
which significantly improves fuel economy compared to conventional rule-based strategies.

The main problem in MPC is the execution time of the controller due to its complex
structure. To reduce execution frequency, many studies have been performed [23–25].
Triggering instances are determined based on the difference between the current measured
state and the measurement in the previous sampling instance or the difference between the
current measured state and the predicted optimal state [23,26–29].

The potential benefits of using event-triggered MPC strategies are demonstrated for
BEVs and HEVs, including improved fuel economy, battery life, and reduced computational
complexity, in [30–32]. MPC and DQN are different approaches and require different
problem-solving methods. While MPC is used to create an optimized control strategy for a
dynamic system, DQN combines the Q-learning algorithm with deep learning, allowing
an agent to learn what actions to take to achieve the highest overall reward in a given
environment. DQN is also used to solve the energy management problem in automotive
applications in the literature [33,34].

Studies have been conducted to compare MPC and DQN [35]. In addition, there are
studies in which the combination of MPC-DQN is used to increase the performance of MPC
and to select design parameters, such as the prediction horizon and weight [36–38].

In this study, two nonlinear model predictive controllers are considered for different
purposes. The first MPC provides the total torque request for reference velocity tracking
under a finite prediction horizon according to the drivability criteria. The second MPC is
applied under a finite prediction horizon to provide optimal torque distribution within the
traction source limits. There are various physical limitations to the internal combustion
engine, electric motor, and battery. Accordingly, the physical limits of the battery, voltage,
and current can be applied between certain values. In addition, the working behavior of
the battery changes with the aging of the battery. For this reason, the factors affecting the
aging of the battery are taken into account. Finally, in order to decelerate the aging of the
battery, the SOC window is determined, and the battery is set to operate between certain
SOC values. The SOC and SOH concepts for torque distribution are taken into account
with MPC.

The execution time of MPC can be considered a shortcoming to solve the complex
optimal control problem in each step to provide a prediction control sequence. In this
study, to reduce the frequency of solving the optimal control problem and to eliminate the
mentioned problem, an event-triggered mechanism is constructed via DQN and integrated
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into MPC. In addition, due to the fact that the efficiency of the internal combustion engine,
the electric motor, and the requested total torque change during driving, the weight terms
of the cost function are intended to be modified adaptively. In order to achieve this,
training with DQN is carried out, and appropriate weight terms are determined. In this
way, the efficiency of energy consumption is improved with less frequency of operation of
the controller.

This paper is organized as follows: In Section 2, the vehicle specifications, suitable bat-
tery/cell selection, and simulation and modeling environment are presented. In Section 3,
the MPC methodology and vehicle dynamics are provided. In Section 4, the event-triggered
mechanism and MPC weights via DQN are proposed. In Section 5, the results are provided
and discussed, and Section 6 concludes this work.

2. Materials and Methods

A P2 HEV is modeled in the MATLAB/Simulink environment by using physical
modeling, which contains Simscape™ blocks. This approach helps to integrate the specifi-
cations of the powertrain components and vehicle dynamics in such a way that they can be
highly accurate. Additionally, three modeling standards, namely, MathWorks Advisory
Board (MAB), Japan MATLAB Automotive Advisory Board (JMAAB), and Motor Industry
Software Reliability Association (MISRA) 2012, are used to check that the vehicle model is
built successfully. The results are created by using the MATLAB Model Advisor toolbox
without fail. According to the publicly shared specifications of the P2 HEV Kia Niro,
all vehicle components are modeled. The sampling time is chosen as 0.01 s as in most
automotive applications.

The type of electric motor used in this vehicle is an Interior Permanent Magnet Syn-
chronous Motor (IPMSM) and is often used in the automotive industry. The technical data,
which comprise the type of motor, the maximum amount of torque, the maximum motor
power, the operating voltage, the maximum speed, and the efficiency of the inverter and
motor, are given in Table 1. In addition to this information, an electric motor efficiency map
based on the motor shaft speed and motor torque is also available. Since all the required
parameters in the shared battery data are not available, battery pack and cell selections are
made by taking into account the system configuration and motor performance criteria.

Table 1. Powertrain specification of Kia Niro.

Specification

Motor Type IPMSM
10 s Peak Power 32 kW

Maximum Torque 170 Nm
Maximum Speed 3750 min−1

System Nominal Voltage 240V
Motor Max. Efficiency 95%

Connected Inverter Efficiency 97%

An automotive consists of many different components and subsystems. These compo-
nents and subsystems combine to form a larger system that meets the functional require-
ments of the vehicle. However, managing all the systems of a vehicle as a whole is quite
difficult and complex. Therefore, the system levels of the automotive industry are detailed
from general to specific and provide the management of system requirements.

For the battery and cell, starting with L0 vehicle level requirements, L1 powertrain
level, L2 battery level, and L3 module/cell level requirements are detailed. Finally, after
checking whether the cell to be selected meets the high-level requirements, battery pack
and cell selections are completed.

Starting from system level 1, the power of the battery should be calculated in charge
and discharge cases based on the powertrain efficiency for battery selection. According
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to the inverter and electric motor efficiencies, the powertrain efficiency ratio is given in
Table 2.

Table 2. Powertrain element efficiency.

Inverter Electric Motor Powertrain

97% 95% 92.150%

With these efficiency values, when traction and recuperation such as regenerative
braking are performed, the target power values of the battery in charge and discharge cases
are as shown in Table 3.

Table 3. Charging and discharging power.

Component 10 s Peak Discharging Power 10 s Peak Charging Power

Electric Motor 32 kW 32 kW
Battery 34.726 kW 29.488 kW

Afterward, a usable energy target which is shown in Table 4 is found over the estimated
consumption values with the maximum range that can be reached in 1 battery cycle using
only the motor for traction.

Table 4. Usable energy target.

Criteria Value Unit

Target Range 6 km
Consumption 25 kWh/100 km
Consumption 250 Wh/km

Usable Target Energy 1500 Wh

Another important criterion in determining battery cell is the chemistry of the battery.
With different battery chemistries, the weight, cost, safety, performance, power, and voltage
values of the battery vary. There are 6 different types of chemistries in frequently used
Li-On batteries (Table 5) [39,40].

Table 5. Li-On battery chemistries [40].

Criteria LCO LMO NMC LFP NCA LTO

Nominal Voltage (V) 3.6 3.7 3.7 3.2 3.6 2.4
Specific Energy (Wh/kg) 150–200 100–150 150–220 90–120 200–260 50–80

Cycle Life 500–1000 300–700 1000–2000 2000–2500 500 3000–7000
Thermal Runaway (ºC) 150 250 210 270 150 Safest

Among other criteria, specific power and specific energy are evaluated as high priority,
and NMC, which is the most widely used in the automotive industry, is selected as the
battery chemistry. As the system level increases from 2 to 3, the serial–parallel configuration
is determined by considering the battery’s chemistry and power demands. The cell nominal
voltage of NMC, which is the chemistry of the selected battery, is 3.7 V. A total of 65 cells
are needed to supply the system voltage. After determining the total number of cells that
need to be connected in series, using the battery’s charge and discharge power values
and system voltage values, the maximum charge and discharge requested currents of the
battery are as follows:
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VSys

VCell
= NCell −→

240 V
3.7 V

≈ 65 (1)

PDisMax
VSys

= IDisMax −→
34.7 kW

240 V
= 144.4 A (2)

PChaMax
VSys

= IChaMax −→
29.5 kW

240 V
= 122.6 A (3)

where VSys and VCell are the system and cell nominal voltage; NCell is the number of cells
connected in series; and PDisMax, PChaMax, IDisMax, and IChaMax are the 10 s peak discharge
and charge power and current. By using 65 cells with a 3.7 V cell voltage, the battery can
provide 240.5 V as the nominal voltage. After determining the use of 65 cells in series, the
usable energy capacities are found to be 65s1p and 65s2p for the parallel configuration
(Table 6). The usable energy capacity of the battery is obtained by using the ratio of the
usable target energy and the voltage. With the use of the SOC window, the energy capacity
of the battery corresponds to separate values as installed and usable. There are various
applications for using a battery pack for a long time or over a cycle to obtain consistent
power without reducing its lifespan too much. One of them is to create an SOC window
for SOC. The SOC window is intended to improve performance by operating the SOC in a
narrower range rather than in the 0–100 range. The SOC window changes according to the
structure and architecture of the vehicle. While this range is larger in electric vehicles, the
SOC window is smaller in hybrid electric vehicles. It is needed to ensure that the battery is
not used at very high and very low SOC percentages. High voltage values are required for
a high SOC. In high-SOC situations, high voltage values stress the cell. For this reason, the
life of the battery is reduced. Exceeding the maximum voltage limit represents a dangerous
situation at high voltage, and it risks the safety of the cell and battery pack. For a low SOC,
however, the open-circuit voltage values decrease, and the internal resistance increases.
Thus, in the case of discharge, the voltage value may decrease further, and the minimum
voltage limit may be exceeded. Due to all these reasons, the SOC is operated between
30% and 80%, and the SOC window is selected as 50% by examining other applications.
The installed energy capacity of the battery is calculated by multiplying the usable energy
capacity of the battery with the SOC window.

Table 6. Cell configuration.

Criteria 65s1p 65s2p

Battery Nominal Voltage 240.5 V 240.5 V
Usable Target Energy 1.5 kWh 1.5 kWh

Installed Target Energy 3 kWh 3 kWh
Used DOD 50% 50%

Cell Usable Energy Capacity (Ah) 6.237 Ah 3.118 Ah
Cell Installed Energy Capacity (Ah) 12.474 Ah 6.237 Ah

A battery with NMC chemistry that provides 12.474 Ah or 6.237 Ah cell-installed
energy capacity (Ah) and can deliver more than the desired current values should be
selected. Batteries, which are frequently used in the automotive industry and are the
subject of long-term tests, are examined, and a battery that meets the system requirements
is selected. The battery specifications are shown below (Table 7).
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Table 7. Verification of the battery pack for system requirements.

Specification Battery System Requirement

Configuration 65s2p -
Cell Nominal Voltage (V) 3.71 3.7
Pack Nominal Voltage (V) 241.15 240
Cell Usable Energy (Ah) 6.73 6.237

Cell Installed Energy (Ah) 13.46 12.474
SoC Window 30–80% 30–80%

Used SOC 50% 50%
Usable Energy (kWh) 1.6229 1.5

Installed Energy (kWh) 3.245 3

It is seen that the usable energy capacity, required current limits, and voltage values,
which are system requirements, are provided with the characteristics of the selected battery.

3. System Dynamics and Prediction Model

In this section, the flow diagram of the study (which can be seen in Figure 2), vehicle
dynamics equations, and relations for nonlinear model predictive control are explained.

Figure 2. Flow diagram of the study.

As can be seen in Figure 2, while tracking the Worldwide Harmonized Light Vehicle
Test Procedure (WLTP) velocity reference and distributing the torque between the engine
and motor, two MPCs are integrated into the powertrain system, and they dynamically
adjust the torque to optimize performance and efficiency.

The first MPC calculates the total torque request, which is the control signal u, based
on the WLTP velocity reference VRe f , vehicle position x1, and velocity x2 by considering
drivability. The total torque request is the setpoint of the second MPC. The requested total
torque is distributed between the engine and motor based on a number of constraints,
such as the SOC, engine torque limits, motor torque limits, and battery current IBatt via the
second MPC. The distribution of the torque is adjusted continuously based on feedback
from the vehicle velocity, SOC level, open-circuit voltage, and actual gear.

The requested torque outputs τMotReq and τEngReq of the powertrain system are con-
trolled and regulated by various components, such as the engine control unit (ECU), the
motor control unit (MCU), and the transmission control unit (TCU). After that, the pro-
duced torques, which are τMotAct and τEngAct, are typically transmitted to the wheels as
τAxle and τWhl via the transmission and final drive ratio, respectively. In an HEV, the electric
motor is powered by a battery pack, which provides electrical energy to the motor. The
current flow in the powertrain system refers to the flow of electrical power PBatt from the
battery to the motor, as well as the flow of energy back to the battery during regenerative
braking. The current is controlled and regulated by the battery management system (BMS),
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which adjusts the voltage and current supplied to the motor based on the desired torque
output and other factors. The event-triggered mechanism via DQN and the weights of the
second MPC via DQN are integrated to increase the efficiency of the MPCs.

In this study, two MPCs are integrated to obtain the optimal solution. Using two
MPCs instead of one complex MPC has advantages in systems with many constraints.
With regard to improving performance and feasibility, in systems with many constraints,
it can be challenging to find a solution that satisfies all constraints. By using two simple
MPC controllers, each controller can focus on a subset of constraints, making it easier to
find feasible solutions that satisfy all constraints. Additionally, reducing computational
complexity is another aim. When there are many constraints, a complex MPC controller
may require a large number of optimization variables, resulting in high computational
complexity. By using two simple MPC controllers, each controller can focus on a smaller
set of optimization variables, reducing the overall computational complexity of the control
system. Lastly, each controller can be designed to optimize different aspects of the control
performance, providing greater flexibility in the control system.

For the prediction model, resistance forces, which are given in Equation (7), affect
the vehicle in the opposite direction depending on vehicle velocity, mass, frontal area, etc.
Basically, there are three main resistances forces that are applied to the vehicle.

FAirR = 0.5ρcd AvV2 (4)

FGradR = mgsin(θ) (5)

FRollR = mgcr (6)

FTotR = FAirR + FGradR + FRollR (7)

By taking into consideration the road gradient, wind speed, and mechanical motion,
the resistance forces are calculated in the prediction model to generate a control signal in
order to track the reference input.

With the first MPC, the total torque request should provide the traction forces not only
for all resistance forces but also for the velocity tracking error between the vehicle velocity
and reference velocity. The nonlinear model equations are as follows:

FReq =
(τMot + τEng + ∆τTot)NGear NFDR

r
(8)

FNet = FReq − FTotR (9)

ẋ1 = x2 (10)

ẋ2 =
FNet
m

(11)

x2(k + 1) = x2(k) +
FNetTs

m
(12)

x1(k + 1) = x1(k) + x2(k + 1)Ts (13)

where ∆τTot is the control signal, which is the requested total delta torque. x1 and x2 are
system states, which are the position and vehicle velocity. The axle-based torque values
τMot and τEng are transmitted to the wheel-based torque via the powertrain components,
which are the transmission and final drive ratio. The wheel-based torque is converted to
the requested force by dividing the wheel radius. x1 is updated by considering the net force
and vehicle mass, which correspond to acceleration. For the vehicle dynamics of P2 HEV,
the nomenclature is given in Table 8.



World Electr. Veh. J. 2023, 14, 135 9 of 28

Table 8. Nomenclature.

Variable Description

FTotR Total resistance force
FAirR Aerodynamic resistance force

FGradR Grade resistance force
FRollR Rolling resistance force
FReq Force requested by driver
FNet Net force
τEng Engine-based torque
τMot Motor-based torque

ρ Air density
cd Drag coefficient
A f Vehicle frontal areal
V Vehicle velocity
m Vehicle mass
g Gravity
θ Road angle

Cr Rolling resistance coefficient
NGear Gear ratio
NFDR Final drive ratio

r Wheel radius

The limit of motion, as defined in the ISO 2631-5 standard (Table 9) [41], is a measure
of the maximum displacement of a vehicle’s body or chassis experienced by the driver or
passengers during normal driving conditions. It is expressed as a percentage of the total
body or chassis displacement and is used to evaluate the drivability of a vehicle. The limit
of motion can significantly affect the comfort and safety of the vehicle’s occupants, with
vehicles with a lower limit of motion typically being more stable and comfortable to drive.
However, vehicles with a higher limit of motion may be more prone to vibrations and other
movements that can be unsettling for the driver and passengers.

Table 9. ISO 2631-5 acceleration limits [41].

Comfort Levels Acceleration Limits

Not uncomfortable 0.315 m/s2

A little uncomfortable 0.63 m/s2

Fairly uncomfortable 1.0 m/s2

Uncomfortable 1.6 m/s2

Very uncomfortable 2.5 m/s2

According to the ISO 2631-5 standard, comfort levels are given according to the
acceleration values. Torque demands and torque variation occur in line with acceleration
changes. In order for the requested torque and requested torque changes to be realizable,
the acceleration changes specified in the standard are taken as a reference. Using the
acceleration–torque relationship, the torque variation limits are determined as follows:

F = ma (14)

a =
∆τTotNGear NFDR

rm
(15)

∆τLow
Tot < ∆τTot < ∆τ

Upp
Tot (16)

where ∆τLow
Tot and ∆τ

Upp
Tot are the control signal upper and lower limits, which correspond

to the ISO 2631-5 acceleration limits. For the total torque request, the cost function is
established as follows:

J =
N

∑
j=1

WTrack(x2Re f (k + j|k))− x2(k + j|k))2 (17)
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where N is the prediction horizon, WTrack is the tracking weight, and x2Re f is the reference
velocity for a given discrete time step k. After calculating the requested total engine and
motor torques, one must calculate how much torque should be demanded and from which
traction source for minimum power consumption. In HEVs, the torque distribution between
the engine and the motor can have a significant impact on the vehicle’s performance and
fuel efficiency. The engine and motor can work together to provide the necessary power to
the vehicle, or they can operate independently to optimize efficiency.

For example, in a hybrid electric vehicle, the engine may be used to power the car
at higher speeds, while the electric motor is used at lower speeds or during acceleration
to provide additional torque. This can help to reduce the workload on the engine and
improve fuel efficiency. Similarly, the electric motor may be used to power the vehicle
during stop-and-go traffic or at low speeds, which can help to reduce fuel consumption
and emissions.

Variations of motor torque and engine torque are selected as control signals. The
aim of the selection of the delta motor and engine torque as control signals is to prevent
steady-state errors by using integral action. The equality constraint is applied in order to
be able to generate the requested torque for the HEV in Equation (18).

τTot = (u1 + τMot) + (u2 + τEng) (18)

Powertrain components work within the limited operating range inherently; hence,
the limits of the motor, engine, battery, and associated system variables are taken into
consideration for the controller design.

Figure 3a,b show the characteristics of the engine and motor, respectively. The blue
lines represent the rotational speed and torque curves. These torque curves are the physical
limits of the engine and motor; hence, they are used as MPC constraints. The colored regions
show the engine and motor efficiency, which takes the values shown on the efficiency bar.

Figure 3. Motor and engine characteristics: (a) engine efficiency and physical limits; (b) motor
efficiency and physical limits.

For the torque constraints, the rotational speed is calculated via the vehicle speed
dynamically.

ωMot = ωEng =
x2NGear NFDR

0.3769r
(19)

The engine and motor constraints for the HEV are considered with the following
equations:
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τ
Upp
Eng = interpl(ωAxis

Eng , τAxis
Eng , ωEng) (20)

τ
Upp
Mot = interpl(ωAxis

Mot , τAxis
Mot , ωMot) (21)

τLow
Eng = 0 (22)

τLow
Mot = −τ

Upp
Mot (23)

τLow
Eng < τEng < τ

Upp
Eng (24)

τLow
Mot < τMot < τ

Upp
Mot (25)

where τ
Upp
Eng , τLow

Eng , τ
Upp
Mot , and τLow

Mot are the upper and lower limits of the engine and motor.
The axis values of the engine and motor, which are taken from the vehicle datasheet, are
predefined to generate limit curves via interpolation. According to the axis values of the
torque and rotational speed, the upper limits of the engine and motor are determined based
on the actual rotational speed by interpolating. The engine cannot produce negative torque,
but the motor can work as a generator to charge a battery, so the lower limit of the engine
is 0, and the lower limit of the motor is the negative sign of the upper limit.

In order to provide the torque to be demanded from the motor, the battery must
provide a current. The relationship between the battery current and motor torque indicating
motor efficiency can be used to calculate the required battery current.

MotE f f =
ωMotτMot

IBattVBatt9.5488
(26)

IBatt =
ωMotτMot

MotE f f VBatt9.5488
(27)

The motor torque can be represented by the control signal, while the motor speed in
the next sample is obtained via the vehicle speed using Equation (19). Motor efficiency is
calculated with a lookup table that includes the motor torque and motor speed.

The voltage can be found in the battery equivalent circuit depending on the current
with the ohmic resistance, open-circuit voltage, and RC pair, which shows Butler–Volmer
effects or the double-layer effect. The double-layer effect is a phenomenon that occurs
at the interface between a solid and a liquid (such as an electrode and an electrolyte). It
is caused by the presence of a thin layer of charges at the interface, which can be either
positive or negative depending on the materials involved. This thin layer of charges,
known as the electric double layer, can have a significant effect on the overall behavior of
the system. The double-layer effect behavior is similar to that of the capacitor [42]. The
Butler–Volmer equation is a mathematical expression that describes the current flowing
through an electrode–electrolyte system in terms of the overpotential (a measure of the
driving force for the reaction) and the exchange current density (a measure of the rate
at which the reaction occurs). The equation takes into account the effect of the electric
double layer on the overall behavior of the system and can be used to predict the behavior
of electrochemical cells under various conditions [43]. In light of this information, the
battery equivalent model is given in Figure 4, and the mathematical equations of battery
are as follows:
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Figure 4. Battery equivalent model.

VOTC(k + 1) = VOTC(k) +

1− e

−Ts

τOTC

 (28)

VBatt = VOC(SOC)−VOTC − Ro IBatt (29)

where VOTC is the one-time constant voltage for the RC pair, τOTC is the time constant of
the RC pair used to represent the double-layer effect, Ro is the ohmic resistance, VBatt is
the battery voltage, and VOC(SOC) is the open-circuit voltage. The open-circuit voltage has
different behaviors according to the charge and discharge conditions. In the open-circuit
voltage change, the charging and discharging speeds can be different due to different
current values. The charging rate of the battery is denoted by C as shown below. For
example, if a battery with a capacity of 6.5 Ah is charged with 13 A, it is charged in half an
hour and charged with 2C.

C =
IBatt

QMax
(30)

VOC(SOC) is calculated according to the curves presented in Figure 5.
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Figure 5. Open-circuit voltage C rates: (a) OCV charging currents with different C rates; (b) OCV
discharging currents with different C rates.

Another electrochemical event is the mass transport or Warburg effect. Since long
periods such as minutes or hours are required to observe mass transport or Warburg effects,
the same battery circuit model is used like many commercial vehicles’ battery models, and
this effect has been ignored. The battery current varies with the pack temperature and SOC
value. The currents that can be provided by considering these variables differ in charge and
discharge processes. In the model used, the battery temperature is assumed to be constant
at 25 °C; in this way, a three-dimensional representation which is given in Figure 6 becomes
a two-dimensional representation.
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Figure 6. Charging and discharging current limits: (a) charging current limits for SOC and pack
temperature; (b) charging current limits for SOC and pack temperature.

In Figure 7, the maximum current limits that can be given depending on the SOC and
constant temperature are given according to the charge discharge.
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Figure 7. Charging and discharging current limits for SOC and constant pack temperature.

ILow
Batt < IBatt < ILow

Batt (31)

The charge current represents a positive value, while the discharge current represents
a negative value. For this reason, the discharge current limit is shown as the lower limit,
and the charging current is shown as the upper limit.

The SOC variation is determined using the ratio of the battery current to the rated
capacity. The SOC is calculated by adding the SOC variation to the initial SOC value.

SOC(k + 1) = SOC(k)− η IBatt(k)Ts

Qmax
(32)

where SOC(k) is the initial SOC, IBatt is the battery current, and η is the cell coulombic
efficiency in the charge phase [44].

The initial value of the SOC and the regular current measurements are very important
in this method. Although it is a very widely used method, calendar aging should be taken
into account in the calculation of the initial SOC value, and the effects of the SOH on Qmax
should be taken into account.

The Qmax capacity value changes with the SOH effects. As a rule of thumb, when
the capacity of a battery drops to 80%, it is assumed that the battery has reached the end
of its life for automotive applications. For this reason, the aging effects of the battery are
examined between 100% and 80% of the SOH value. The investigated effects are cyclic
effects and temperature effects.
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Each charge and discharge of the battery is shown as one cycle. The aging of the
battery increases with each cycle. This cycling effect also changes with the use of the
SOC window.

Cell temperature, which is another factor, can have a significant effect on the SOH of a
battery. High temperatures can accelerate the degradation of the battery, reducing its overall
lifespan and performance. This is because high temperatures can cause chemical reactions
to occur within the battery at a faster rate, leading to increased chemical breakdown.
However, low temperatures can also have a negative impact on the battery SOH by slowing
down the battery’s chemical reactions and reducing its performance. This can lead to a
decrease in battery capacity and overall lifespan. To show the cell temperature at −10◦,
25◦, and 45◦ and the number of cycle effects, the capacity retention and internal resistance
change are given below.

According to Figure 8, the SOH function is created based on the number of cycles and
cell temperature in Equation (33).

SOH% = f (NCyc, TCell) (33)

Qmax is updated via the lookup table based on the effects of cycling NCyc and the TCell
temperature. Thus, the accuracy of the estimation is increased by using the SOH effects
given in Equation (33) in the SOC estimation.

Figure 8. Cell temperature and number of cycle effect for capacity retention and internal resistance:
(a) 45◦; (b) 25◦; (c) −10◦.
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The SOC window is important for managing the battery’s SOC within a safe and
optimal range. The battery may be operated at either very high or very low SOC levels,
which can lead to accelerated degradation, reduced performance, and safety hazards, which
are explained in Section 2. By selecting an appropriate SOC window, one can maintain the
battery within a safe and effective operating range, prevent overcharging or deep discharge,
avoid thermal runaway, and prolong the battery’s useful life; hence, the SOC is requested to
operate in this operating range and is added as a constraint to the MPC. The SOC window
and MPC constraint are shown in Figure 9.

Figure 9. SOC window.

SOCLow < SOC < SOCUpp (34)

30 < SOC < 80 (35)

A lower power consumption indicates a lower power loss. For this reason, the cost
function is as follows:

J =
N

∑
j=1

WEng(EngLoss(k + j|k)) + WMot(MotLoss(k + j|k)) + WBatt(BattLoss(k + j|k)) (36)

where WMot, WEng, and WBatt are weighted coefficients for the state and control signal.
Additionally, the motor, engine, and battery losses are represented as follows:

MotLoss = τMot(k)ωMot(k) = u1ωMot(k) (37)

EngLoss = τEng(k)ωEng(k) = u2ωEng(k) (38)

BattLoss = IBatt(k)VBatt(k) (39)

All constraints for the torque distribution are as follows:

τTot = (u1 + τMot) + (u2 + τEng) (40)

τLow
Eng < τEng < τ

Upp
Eng (41)

τLow
Mot < τMot < τ

Upp
Mot (42)

ILow
Batt < IBatt < ILow

Batt (43)

SOCLow < SOC < SOCUpp (44)

4. MPC Event-Triggered and Weight Adaptation Mechanism
4.1. Training of Event-Triggered Mechanism

In the HEV, the event-triggered mechanism via DQN is implemented in the MPCs for
the velocity tracking system.
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Event-triggered MPC has several advantages over traditional MPC. First, it can reduce
the computational burden of the control algorithm, as the control action is only updated
when necessary. This can be particularly important in systems with limited computing
resources or in applications where frequent updates of the control action are not required.
Second, event-triggered MPC can improve control performance by ensuring that the control
action is updated in response to significant changes in the system behavior rather than
continuously updating the control action regardless of the system state. This can result
in a more efficient and effective control strategy, especially for systems with nonlinear or
time-varying dynamics. To realize the event-triggered mechanism, DQN is used.

The goal of realizing the event-triggered mechanism via DQN is to learn the optimal
control policy that maximizes the expected cumulative reward over a finite time horizon,
given the current state sk of the system. In the event-triggered DQN, the Q-function Q(s, a)
is used to approximate the expected cumulative reward of taking action a in state s and
following the optimal control policy thereafter:

Q∗π(s, a) = maxE[
∞

∑
k=1

γkr(sk, ak)|s0 = s, a0 = a; π] (45)

where r is the reward at time k, which is a function of the state sk and the control action ak.
The Q-function is updated as follows:

Q(s, a)←− Q(s, a) + α(r + γmaxQ(s
′
, a
′
)−Q(s, a)) (46)

where r(s, a) is the immediate reward for taking action a in state s; s
′

is the next state; and α
and γ are the learning rate and discount factor, respectively. The learning rate and discount
factor are two important hyperparameters that affect how the agent learns and makes
decisions. The learning rate determines the step size at each iteration of the Q-learning
algorithm, which updates the Q-values of the state–action pairs based on the rewards
received by the agent. The discount factor determines the importance of future rewards in
the agent’s decision-making process. It determines how much the agent values immediate
rewards versus long-term rewards.

The main aim is to track the velocity reference with less triggering. To track the velocity
reference, states, and action are determined as follows:

sj =
3

∑
j=0

Vre f (k + j)−V(k) (47)

a = [0, 1] ∈ Z (48)

The states are determined as the difference between the vehicle velocity and forward-
first four reference velocity values. For the triggering mechanism, an action set consists of
“0 and 1”, where 0 means no triggering, and 1 means triggering.

One of the essential topics is the reward for DQN. A reward is a metric that tells the
system how well it is performing. It can serve to maximize gains, minimize losses, etc.,
but the general goal is to maximize the total rewards over time. To fulfill the objective, the
reward is determined based on the tracking ability and triggering.

r1 = −|
3

∑
j=0

Vre f (k + j)−V(k)|w1 (49)

r2 =

{
(LimV − |∑3

j=0 Vre f (k + j)−V(k)|)w2, if |∑3
j=0 Vre f (k + j)−V(k)| ≤ LimV

0, otherwise
(50)
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r3 = −akw3 (51)

rk(s, a) = r1 + r2 + r3 (52)

where w1 and w3 are weight calibration parameters, and w2 is the calibration lookup table
used to calibrate the reward function. The first term of the reward is the state difference
reward. It is used as a punishment from a technical point of view. In the case of a higher
state difference, the punishment increases based on the quantity of the state difference
between the vehicle velocity and vehicle velocity forward-first four references.

The second term of the reward is the track reward. The second reward term is related
to the first reward term, and if the difference between the vehicle speed and the first four
velocity reference values is lower than a certain parameter LimV , it gives the reward a
positive value according to the velocity difference and 1D lookup table. Otherwise, no
rewards are given.

The third reward term is related to triggering. The goal is to perform velocity tracking
with minimal triggering. For this reason, a penalty value is applied in the case of triggering.

There are few ways to determine the neuron size and hidden layer number based
on experiments, intuition, and literature studies. The neuron size, hidden layer size, and
activation function type are determined based on trial and error. The activation function
is selected as the rectified linear unit (RELU), the hidden layer number is determined to
be 3, and the neuron size is selected to be 24 empirically. The working condition of the
event-triggered mechanism is that the DQN output is greater than 0.5.

The world, real or virtual, in which the agent performs actions when the reinforcement
system begins exploring its environment, is entirely unaware of this system behavior. By
observing the results, it gains more experience. The exploration vs. exploitation trade-off
is typically controlled by an epsilon-greedy policy. During training, the agent selects the
action with the highest Q-value with probability 1 − ε and selects a random action with
probability epsilon. This way, the agent can balance the need to explore and the need
to exploit.

action =

{
Random action, ε

maxQ(s, a), 1− ε
(53)

where ε is a hyperparameter that controls the trade-off between exploration and exploitation
in the agent’s decision-making process. Moreover, ε is updated as follows:

ε = ε(1− εdecay) (54)

With every episode, the epsilon value decays by using εdecay, which is the epsilon decay
parameter. In this way, in the first phase of training, the agent explores the environment.
By decreasing the epsilon value, the agent exploits and gains more rewards. Finally, for
training, the MATLAB Reinforcement Learning Toolbox is used.

4.2. Training for Adaptation of Weights of MPC’s Cost Function

For this section, the cost function of the weight terms updated with DQN is employed.
The main advantage of using DQN for MPC weight training is that it can handle complex,
high-dimensional state and action spaces that may be difficult to optimize using traditional
optimization techniques. DQN can learn an optimal policy by approximating the Q-value
function, which is a measure of the expected cumulative reward obtained by following a
particular policy from a given state.

By training the MPC weights with DQN, the cost function can be optimized to mini-
mize the error between the predicted and actual system behavior. This is particularly useful
in systems with nonlinear dynamics, where it may be difficult to design an accurate cost
function using traditional optimization techniques.



World Electr. Veh. J. 2023, 14, 135 18 of 28

In addition, DQN can learn from experience, which enables it to adapt to changing
system dynamics over time. This makes it possible to improve the MPC weights as the
system evolves and to handle disturbances or uncertainties in the system.

The main aim is to increase energy performance and decrease fuel consumption by
modifying the weight terms. In this way, better optimization can be provided for the torque
distribution problem.

For the DQN design, axle-based torques are predicted by using the forward-first four
reference velocities, actual vehicle velocity, and resistance forces with the same principle in
Equations (7) and (13); then, they are assigned as DQN states. The cost function consists of
the internal combustion engine power, electric motor power, and associated battery power.
The reason why the DQN states are chosen as mentioned is that DQN can establish a link
between the predicted axle-level torque values and these power values.

In order to determine the weights of the cost function, the DQN action set is determined
between 0.1 and 5. The weight coefficient used for the electric motor power WMot is
determined during the training and transferred to MPC as an action value. The weight of
the battery WBatt is selected as WMot for the sake of simplicity. The weight coefficient of
the internal combustion engine power WEng is chosen as the complement of the weight
coefficient of the electric motor. In other words, WEng is equal to subtract the trained
weight WMot from 5, which is the specified maximum weight. Two traction sources work
in coordination. Using this relationship, the computational load and complexity of the
training are reduced by training only the motor power’s weight instead of two weight terms.
The DQN state and action for energy minimization via weight are given in Equation (56).

sk =
(|∑3

j=0 aRe f (k + j)− aVeh(k)|m− FTotR)r

NGear NFDR
(55)

a = [0.1− 5] ∈ R (56)

where aRe f and aVeh are the reference acceleration and vehicle acceleration, respectively.
By using the reward function, the DQN agent learns to optimize the MPC weight terms
to minimize the total power consumption of the system and to maximize the motor and
engine efficiencies. The agent learns to select the torque distribution among the axles
that results in the highest efficiencies while still meeting the performance requirements of
the system.

The use of this reward function provides a strong incentive to the agent to improve
the energy efficiency of the system. The reward function provides informative feedback
to the agent on the energy efficiency of its behavior and guides the agent towards the
optimal policy that maximizes the motor and engine efficiencies. In this direction, the
reward function is given in Equation (57).

rk(s, a) =

 f (MotE f f , EngE f f ), if
MotE f f + EngE f f

2
> LimE f f

− f (MotE f f , EngE f f ), otherwise
(57)

For the reward function that tries to maximize the average efficiency of the motor and
engine, if the average efficiency is higher than the value of the limit parameter, which is
LimE f f , the difference is given as a reward via the 1D lookup table. If the average efficiency
is lower than the value of the limit parameter, the difference is multiplied by the adjustment
parameter and used as a punishment.

The same neural network structure of 3 hidden layers with 24 rectified neurons for
each layer is used. For the training hyperparameters, the learning rate, discount factor,
epsilon, and mini batch size are determined to be 0.001, 0.99, 0.95, and 64, respectively.

5. Results and Discussion

In this section, the first and second MPCs and vehicle outputs are demonstrated.
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The first 300 s of the WLTP are used as a reference. The reason for using the first 300 s
of the WLTP test cycle is that they are considered to be representative of typical urban
driving conditions. During this phase, the vehicle undergoes multiple acceleration and
deceleration cycles, simulating stop-and-go traffic and city driving. The results of the total
torque demand of the first MPC, which is the total torque request control signal, and the
torque distribution of the second MPC, taking into account the corresponding constraints
of the engine and the motor, are given in Figure 10.
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Figure 10. Traction torques: (a) total torque request; (b) engine torque; (c) motor torque.

In Figures 11 and 12, the torque produced by the engine and motor, shaft speed,
consumed power, and lost power results are given.
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Figure 11. Engine outputs: (a) engine speed; (b) engine power; (c) engine power loss.
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Figure 12. Motor outputs: (a) motor speed; (b) motor power; (c) motor power loss.

The gear shifting of the gearbox is performed via the lookup table based on the
accelerator pedal and vehicle velocity, which is converted from the output shaft speed. The
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gear shifting results, which are obtained by also considering the slope of the road, are given
in Figure 13. For some period of the simulation, due to the braking priority, the accelerator
pedal is set to zero.
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Figure 13. Gear shifting strategy: (a) vehicle velocity; (b) accelerator pedal position; (c) transmission
gear.

The SOC, voltage, and current results are given in Figure 14 for the battery. When the
SOC is 80%, a voltage of 260 V is provided, and the voltage value changes as the SOC value
changes. Other factors affecting the change in the voltage value are the ohmic resistance
and the double-layer effect (Butler–Volmer). In line with these effects, relaxation is observed
between 80 and 140s. The charging current is shown as a positive value, the discharging
current is shown as a negative value, and it is observed that the current is between the
limits, which are the MPC current constraints given in Figure 7.
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Figure 14. Battery outputs: (a) SOC; (b) battery voltage; (c) battery current.

In order to examine the behavior of MPC with different initial SOC values and its
results against the SOC constraint, simulation results are obtained by assigning an initial
SOC value from the upper SOC limit, a value from the middle of the SOC limit, and a value
close to the lower SOC limit. At different initial SOC values, it is observed that it does not
violate the SOC constraints, and there are differences in the behavior of MPC. In order not
to violate the SOC lower limit, it is observed that the electric motor generally works in the
charging regions. While the initial SOC values are 80 and 50, it is observed that the electric
motor is frequently used for higher efficiency. Additionally, the battery voltage values also
change due to different initial SOC values. The SOC and battery voltage results are given
in Figure 15.
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Figure 15. SOC and voltage results: (a) SOC results with different initial SOC values; (b) voltage
results with different initial SOC values.

In the simulation where the initial SOC value is close to the lower limit, the current
values are usually in the positive (charging) region, not to violate the SOC lower limit.
However, in the simulations with the initial SOC values of 80 and 50, a similar current
profile with frequent charging and discharging is observed in Figure 16.
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Figure 16. Battery current results with different initial SOC values.

Finally, motor and engine torque behaviors are given at different initial SOC values
in Figure 17. In the simulation, where the initial SOC value is close to the lower limit,
the motor is generally used as a generator, and the engine mainly provides the requested
traction torque.
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Figure 17. Torque results with different initial SOC values: (a) motor torque results with different
initial SOC values; (b) engine torque results with different initial SOC values.

An examination of the effects of the SOH on the SOC is one of the important points of
this study. The battery chemistry, cycle aging, and cell temperature are the main factors



World Electr. Veh. J. 2023, 14, 135 22 of 28

in SOH changes. The cycling aging and cell temperature effects on the SOH are shown in
accordance with the SOC window in Figure 18.
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Figure 18. SOC results with different SOH values.

In the figure above, the SOH effect of the battery under different conditions is exam-
ined. Under the conditions of 3200 cycles and a cell temperature of 25 ºC, the SOH is 90%,
the internal resistance is equal to 108.5% of the initial resistance value, and QMax is equal to
5.85 Ah. Under the conditions of 4400 cycles and a cell temperature of 25 ºC, the SOH is
85%, the internal resistance is equal to 116.4% of the initial resistance value, and QMax is
equal to 5.525 Ah. Under the conditions of 5500 cycles and a cell temperature of 25 ºC, the
SOH is 80%, the internal resistance is equal to 130.2% of the initial resistance value, and
QMax is equal to 5.2 Ah.

When the figure is examined, the battery capacity decreases under these effects; when
the SOC shows the same value, serious time differences occur, and it is observed that the
battery discharges faster when the SOH is low.

Finally, the velocity tracking results are given in Figure 19.
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Figure 19. Velocity tracking.

Event-triggered MPC with a DQN agent can achieve similar or better performance
than traditional time-triggered MPC while reducing communication and computation
requirements. For the event-triggered mechanism via DQN, the reward and action, which
are designed based on the number of triggers and the error in velocity tracking, are given
in Figure 20.
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Figure 20. Reward and action of DQN for event triggering: (a) reward; (b) action.

After observing that similar tracking velocity results are achieved with less triggers, it
is aimed to reduce motor and engine losses by modifying the weights with DQN. To test
the MPC whose weights are provided by DQN and to compare the performance with the
previous method, which is without DQN, results are generated. For the WLTP reference,
the motor and engine weights obtained with DQN are given in Figure 21, and the DQN
reward and action are given in Figure 22.
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Figure 21. Motor and engine weight with DQN for WLTP: (a) motor weight; (b) engine weight.
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Figure 22. Reward and action for weight: (a) reward; (b) action.

For energy minimization in WLTP, the engine and motor operational points are marked
and plotted on efficiency maps. The cyan marks represent the method without DQN, and
the white marks represent the DQN weight algorithm as in Figures 23 and 24.
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Figure 23. Engine operational points results: (a) engine operational points without DQN; (b) engine
operational points with DQN.

Figure 24. Motor operational point results: (a) motor operational points without DQN; (b) motor
operational points with DQN.

Indicating energy savings and fuel consumption figures via algorithms with and with-
out DQN can be important for providing a way to quantify and compare the performance of
different control strategies and algorithms for improving energy efficiency in vehicles. This
is why the fuel consumption results are given in Figure 25. The Simulink Simscape engine
module allows us to model and simulate the behavior of an engine. Additionally, it pro-
vides the power output of the engine under different operating conditions. However, brake
specific fuel consumption (BSFC), which is obtained from the given vehicle specifications,
is a measure of the amount of fuel consumed by an engine per unit of power produced
and provided by the Simscape model. Then, it is converted to the fuel consumption in
units of g/s for comparison purposes. As shown in Figure 25b, the event-triggered double-
MPC structure with DQNs performs the drive cycle under consideration with less fuel
consumption in terms of gram per second. In addition, the total consumption is derived as
102.076 g with the event-triggered double-MPC structure with DQNs, while it is calculated
as 104.996 g with the classic double-MPC structure by integrating fuel consumption.

After the triggering instances and weight training, the execution time, triggering number,
average velocity error, and motor and engine efficiency values are as shown in Table 10 for
the WLTP reference.

The purpose of the event-triggered mechanism is to reduce the computational cost by
triggering the controller less frequently. It aims to follow the velocity reference as much as
possible while reducing the computational cost. The execution time of a simulation depends
on various factors, such as the complexity of the system being simulated, the accuracy
and resolution of the simulation model, the computational resources available, and the
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simulation software being used. Overall, using multiple measurements of execution time
can help to reduce the impact of instant factors on the results, improving the accuracy and
reliability of the measurements. This is why the execution time is measured more than ten
times, and the average execution time is used as a result via the Simulink Profiler Toolbox.
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Figure 25. Fuel consumption:(a) vehicle velocity; (b) fuel consumption with DQN and without DQN.

Table 10. Efficiency Results in WLTP.

Criteria Structure with Two MPCs Connected
in Series

Structure with Two Event-Triggered MPCs
with DQNs Connected in Series

Triggering Number 30,000 14,396
Execution Time (s) 13.881 s 7.815 s

Engine Efficiency (%) 19.26% 22.12%
Motor Efficiency (%) 78.95% 82.56%

Average Velocity Error Per Sample (km/h) 0.0342 km/h 0.0518 km/h

As can be seen in Table 11, the classic double-MPC structure and event-triggered
double-MPC structure are compared. In a Simulink Profiler report, time refers to the total
execution time of the subsystem, including the time spent executing its own code, as well as
any code in the MPC subsystem. Self-time, however, only refers to the time spent executing
the code directly within the MPC, without including any time spent executing the code
in its elements, which transfer the outputs. Calls indicate the event-triggered number,
and the time/call metric refers to the average execution time of MPCs per function call.
The results represent the performance of two MPCs in total. According to the results, the
event-triggered mechanism reduces the execution time by triggering fewer controllers.

Table 11. Simulink Profiler Report.

Criteria Time (s) Calls Time/Calls Self-Time (s)

Structure with Two MPCs Connected in Series 15.321 s 30000 0.0005107 13.881 s
Structure with Two Event-Triggered MPCs with DQNs

Connected in Series 8.982 s 14396 0.0005087 7.815 s

After this stage, the weights of MPC are trained with DQN to distribute the torque
more efficiently. According to the results, the efficiency of the motor increases by 3.61%,
while the efficiency of the engine increases by 2.86%. This efficiency increase is achieved
by triggering 52.01% fewer controllers. Thus, while the computational cost is reduced, the
energy efficiency is also increased with MPC and DQN.

6. Conclusions

In this study, the energy management problem for HEVs is studied. HEVs have
different types with different architectures; a Kia Niro with the P2 HEV configuration is
modeled in this study. Since there are limited data about the battery pack in the publicly
shared vehicle information, the appropriate battery and cell are selected for the vehicle,
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and vehicle modeling is detailed. The first MPC is designed to follow the WLTP velocity
reference. The first MPC calculates the total torque that must be requested in accordance
with the comfort–acceleration limits for velocity reference tracking. With the second MPC,
this total demanded torque value is distributed between the motor and the engine. During
torque distribution, the physical limits of the motor and engine are taken into account.
In addition to the motor and engine, the battery also has physical limitations. These
constraints are that the SOC operates within a certain range and current limits, and SOH
effects are also taken into account in the second MPC. In traditional MPCs, the control action
is computed at every sampling time based on the current system state and a prediction of
future system behavior. In an event-triggered MPC approach, the control action is only
computed when certain triggering conditions are met, such as when the system behavior
deviates from a predefined threshold or when a specific event occurs. This approach can
reduce the computational burden of MPC while maintaining the control performance,
making it suitable for systems with limited computing resources or applications where
frequent updates of the control action are not required. An event-triggered mechanism is
designed with DQN to reduce the computational cost. Finally, the weights of the second
MPC are trained with DQN to increase efficiency. The efficiency of the motor increases
by 3.61%, while the efficiency of the engine increases by 2.86%. Moreover, the efficiency
increases of the motor and the engine are realized with 52.01% less triggering. We aim to
show that MPC performance can be increased using methods such as DQN in the energy
management problem. With this proposal, an efficient energy management strategy is
provided with less computational cost.
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