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Abstract: Battery sensor data collection and transmission are essential for battery management
systems (BMS). Since inaccurate battery data brought on by sensor faults, communication issues, or
even cyber-attacks can impose serious harm on BMS and adversely impact the overall dependability
of BMS-based applications, such as electric vehicles, it is critical to assess the durability of battery
sensor and communication data in BMS. Sensor data are necessary for a BMS to perform every
operation. Effective sensor fault detection is crucial for the sustainability and security of electric
vehicle battery systems. This research suggests a system for battery data, especially lithium ion
batteries, that allows deep learning-based detection and the classification of faulty battery sensor and
transmission information. Initially, we collected the sensor data, and preprocessing was carried out
using z-score normalization. The features were extracted using sparse principal component analysis
(SPCA), and enhanced marine predators algorithm (EMPA) was used for feature selection. The BMS’s
safety and dependability may be enhanced by the suggested incipient bat-optimized deep residual
network (IB-DRN)-based false battery data identification and classification system. Simulations using
MATLAB (2021a), along with statistics, machine learning, and a deep learning toolbox, along with
experimental research, were used to show and assess how well the suggested strategy performs. It is
shown to be superior to traditional approaches.

Keywords: battery management systems (BMS); BMS sensor fault detection; deep learning; incipient
bat-optimized deep residual network (IB-DRN)

1. Introduction

The transportation sector is responsible for a significant proportion of greenhouse gas
emissions and environmental degradation. However, the development of battery-powered
energy storage devices, including electric vehicles, hybrid locomotives, and other e-mobility
applications, has the potential to positively impact this sector. Energy storage systems are
essential components of smart grid and electric vehicle technologies, enabling the efficient
transmission and distribution of energy. With a variety of batteries available on the market,
there are numerous options for energy storage purposes.

For EV applications, battery heat control is crucial. Internationally, EV charging
stations are extensively utilized, and ports at both private and public charging stations have
been increased [1]. Due to the growing dependence on EVs, high voltages, high efficiency,
and longer life-span battery systems are necessary, requiring improved battery monitoring
techniques. Electric vehicles employ battery management systems (BMS) to monitor,
regulate, and shield Li-ion batteries from harsh conditions and abuse. Cell balancing,
which occurs as a result of differences in a cell impedance, temperature, and self-discharge
characteristics, is one of the crucial functions of BMS. Cell balancing systems are divided
into passive and active types [2]. The battery management system may perform a wide
range of tasks, but most academics concentrate on estimating the state of charge (SOC)
and state of health (SOH), and fault diagnostic approaches received little attention until
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recent incidents involving battery systems in EVs. Additionally, if the acquisition sensor
is faulty, other BMS activities that depend on data-gathering may be hampered, further
affecting the battery system’s safety. Hence, sensor fault diagnostics is crucial for ensuring a
BMS’s smooth functioning [3]. A overview block diagram for battery management system
is demonstrated in Figure 1 below.
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Figure 1. Battery Management System for Electric Vehicles.

The battery management systems cannot function without the data that the current,
voltage, and temperature sensors collect. Due to hundreds of such sensors used in electric
vehicle battery packs to monitor the currents, voltages, and temperatures for each battery
cell, the risk of a problem occurring in a single voltage or current sensor has considerably
increased. A sensor malfunction may lead to poor battery performance or possibly signifi-
cant safety risks [4]. The BMS in EVs consists of a large number of circuits, parts, power
electronics, sensors, actuators, diodes, capacitors, inductors, transformers, switches, con-
verters, and safety equipment, all of which are managed by a large number of algorithms,
models, and control signals. The creation of suitable algorithms for BMSs has been the
subject of much study. Model-based techniques and intelligent methods are the strategies
used in BMSs the most often [5].

The organization of this paper is as follows: “Abbreviations and their Definitions” used
in this research are detailed in Table 1 of the introductory section. Section 2 presents related
works, while Section 3 overviews the methodology. Section 4 presents the performance
analysis. Discussions are presented in Section 5, and finally, the conclusions are given
in Section 6.

Table 1. List of Abbreviations.

Abbreviations Definitions

EV Electric Vehicles
BEV Battery Electric Vehicles
BMS Battery Management System
SOC State of Charge
SOH State of Health
ECU Vehicle or Electronic Controller Units
OSMC-EV Operation Service and Management Center for Electric Vehicle
ML Machine Learning
FTA Fault Tree Analysis
IB-DRN Incipient Bat optimized Deep Residual Network
ICC Interclass Correlation Coefficient
SPCA Sparse Principal Component Analysis
PCA Principle Component Analysis
SVD Singular Value Decomposition
PCs Principal Components
QR decomposition QR factorization | Q is orthonormal, and R is higher triangular
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Table 1. Cont.

Abbreviations Definitions

SPCs Sparse Principal Component
PVE Proportion of Explained Variation
EMPA Enhanced Marine Predators Algorithm
ANN Artificial Neural Network
SVM Support Vector Machine
LR Linear Regression
GPR Gaussian Process Regression
UDDS Urban Dynamometer Driving Schedule
TP True Positives
FP False Positives
FN False Negatives
MSE Mean Squared Error
RMSE Root Mean Square Error

2. Related Works

The research in [6] provides a concise overview of several important BMS technologies,
including battery modeling, state estimation, and battery charging. Prior to introducing
the fundamental technologies employed in BMS, a study of prominent battery types used
in EVs is conducted. An electric model, thermal model, and linked electro-thermal model
are only a few of the battery models that are discussed. An improvement in the BMS’s high
accuracy and reliable management is shown [7].

The paper [8] presented a summary of current ideas in cutting-edge systems and
allowed the reader to estimate the factors that must be considered when building a BMS
for a specific application. Several potential battery pack topologies and their effects on the
complexity of the BMS were considered after a brief study of basic requirements [9].

The paper [10] supplied a comprehensive, current assessment of fast-charging tech-
niques for battery electric vehicles (BEV). This research begins with fundamental ideas
about the charging of a single battery cell and existing and potential charging standards.
Then, several common power converter topologies used for this application are given.

The on-depth analyses of various EV range-extending technologies, such as internal
combustors engines, free linear generators, fuel cell, micro gas turbines, and zinc-air
batteries, are provided in [11].

Each range-extending technology is described along with its definition, operational
principles, and most recent advancements. To assist in addressing future research require-
ments, a comparison of the various technologies is also offered, emphasizing their benefits
and drawbacks.

The research in [12] developed the qualitative knowledge of a fire risks and hazards
related to battery-powered EVs by evaluating battery fires in battery electric vehicles,
hybrid EVs, and electric buses. Additionally, key battery fire features discovered via testing
that are present in different EV fire situations were analyzed. For an electric vehicle, a
modular battery managements system is suggested in [13].

Battery voltage, charging currents, discharging current, and temperature can all be
precisely measured by the system, and it also can send the data to a mixed-signal processor
for monitoring battery modules. In order to achieve the integrated optimization of the
vehicle system, a unique Li-ion battery pack circuit, electric motor and power electronics
cooling circuit, an air conditioning circuit, etc., and an integrated thermal system for
vehicles are suggested in [14].

The paper [15] presented certain novel methods that have used to create a reliable
battery management system. Accurate characterization, the reliable estimate of battery
states and characteristics, and effective battery control mechanisms make up the approach
to robust battery management.

The paper [16] offered a machine learning (ML)-based intelligent charging technique
to decide when to charge an EV during a connection session. In order to reduce the total
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cost of vehicle energy, this was accomplished by making real-time charging choices based
on a variety of auxiliary data, such as driving, environment, price, and demand time series.

The paper [17] suggested a deep learning and blockchain-based EV fault detection
system to find many kinds of problems in vehicles, including battery, temperature, and
tire pressure issues. Furthermore, to conduct the defect detection data transactions for EVs
with high scalability and reliability, a fault tree analysis (FTA) is given in [18].

The paper [19] suggested a voltage problem diagnostic detection technique that was
shown via an electric vehicle (EV) with a multiple-cell battery system under real-world op-
erating conditions. This study reveals that the overvoltage problem for Li-ion batteries cell
may be seen from the voltage curves after collecting and preparing the usual data periods
from the Operation Service and Management Center for Electric Vehicles (OSMC-EV).

The paper [20] provided a pathway for detecting battery failure that is supported
by deep learning models. This research provided a large dataset for electric vehicle (EV)
batteries that included cleaned data on battery charging from hundreds of vehicles.

The paper [21] focused on defect detection using the interclass correlation coefficient
(ICC) approach (EVs). The off-trend voltage drop was captured using the suggested
approach to determine ICC values, and the voltages were taken from the Operation Service
and Management Center for Electric Vehicles.

The paper [22] examined the specifics of BMS for stationary (large-scale) energy storage
and electric vehicles. The examination covers a variety of BMS-related topics, such as
testing, component functionality, topology, operation, architecture, and BMS safety issues.

The paper includes an assessment of the current standards and regulations related to
BMS. It examines the technology of batteries, regulatory necessities, and safety factors of
BMS before providing recommendations and implementing BMS to oversee and control
the charging and discharging of rechargeable batteries, as referenced in [23–26].

Problem Statement

When a fault with a vehicle’s charging system causes the operating voltage to fall
below 12 volts, a malfunction appears on the instrument cluster. However, because of
their simplicity, electrical ECM-based techniques are used in most real systems. The
three research issues facing modern BMS are safety, efficiency, and dependability. Issues
concerning display screens, external door lights, broken temperature sensors, uneven paint,
seals, and weather stripping are all common complaints from electric vehicle owners.

3. Methodology

Vehicle controllers or ECUs that impose deep-learning and model-tuning algorithms
make use of input sensors data as mainstream to perform continuous learning through
algorithms. The block diagram below represents sensor data collection and the processing
of sensor data that are used for feature extraction and optimization in electric vehicle
controllers. In addition, this paper focuses on techniques for deriving performance analysis
from collected sensor data.

3.1. Process Overview

The article outlines a research principle that focuses on the deep learning-based sensor
fault identification of BMS systems. The research is categorized into six critical steps, as
represented in Figure 2—“Overview of Research Process”.

Step 1—The initial step involves collecting sensor data that reflect the battery’s out-
ward features. New sensors, such as built-in pressure sensors and acoustic sensors, can be
utilized to obtain parameters that characterize battery internal state information, which
helps to achieve specific fault isolations accurately. Table 2 lists out the sensor sample data
utilized for the research.

Step 2—Sample datasets from sensors undergo preliminary processing to ensure their
plausibility and to normalize information using the Z-score, making them ready for primary
processing and analysis.
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Table 2. Sample sensor data.

Battery
Voltage

(V)

Battery
Current

(A)

Battery
Temperature

(◦C)

State of
Charge

(%)

State of
Health

(%)

Charge/
Discharge

Status

Charging
Power
(kW)

Charging
Time (h)

Cell
Voltage

(V)—
Cell 1

Cell
Voltage

(V)—
Cell 2

Cell
Voltage

(V)—
Cell 3

Cell
Voltage

(V)—
Cell 4

Cell
Voltage

(V)—
Cell 5

385 80 35 75 95 Charging 10 2 3.8 3.9 3.7 3.6 3.5

386 82 35.2 75.2 94.9 Discharging 10 2.01 3.9 3.8 3.6 3.7 3.4

387 85 35.4 75.4 94.8 Charging 10 2.02 3.7 3.9 3.5 3.6 3.3

388 88 35.6 75.6 94.6 Discharging 10 2.03 3.8 3.7 3.6 3.5 3.4

389 90 35.8 75.8 94.4 Charging 10 2.04 3.9 3.8 3.7 3.6 3.5

Step 3—The sample datasets are fed into a feature extraction model that is based on the
principle of the “sparse principal component analysis (SPCA)” theorem for data processing
and reorganization from feature extractions.

Step 4 and Step 5—The extracted data are utilized for feature selection, which runs
on the “marine predator’s algorithm” (MPA) to simulate the interactions between marine
predators and their prey, as further explained in the phases outlined in Section 3.5. Ad-
ditionally, the optimization of BMS sensor data feature selections is performed using the
“incipient bat algorithm” to find prey during the search process, as described in detail in
Section 3.6.

Step 6—The final step of the research is to evaluate the “Performance Analysis” for
the framework described in Section 3. The performance analysis is based on the evaluation
of parameters such as mean square error, root mean square error, accuracy, precision, recall,
and f1-score. The results are compared to existing methods, and a detailed analysis is
presented in Section 4 of the research.

3.2. Sensor Data Collection

The data gathered by the sensors only reflect the battery’s outward features not
its inside conditions. Additionally, there is a connection between several faults, and the
characteristics of each fault are not always clear. Therefore, achieving reliable fault detection
and separation from unidentified fault data remains exceedingly difficult. New sensors
(such as built-in pressure sensors, acoustic sensors, etc.) can be used to obtain parameters
characterizing the battery’s internal state information in order to accurately achieve specific
fault isolation. Table 2 lists sensor sample data collected for the feature extraction model.
This is in addition to extracting fault categorization variables based on fault data [27].

3.3. Preprocessing Using Z-Score Normalization

The data obtained from the sensors have undergone preliminary processing in order
to be ready for primary processing and for analysis [28]. Preliminary processing involves
checking the plausibility of data and normalizing the information.
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To accomplish Z-score normalization, also called zero normalization, the mean and
standard deviation for each characteristic in a training set are obtained and divided by
several variables in a training dataset. Mean and standard deviation are determined for
each attribute [29]. The transformation to be performed is specified in the general formula

c =
(c− µ)

σ
, (1)

where the average of c is µ and its standard deviation is σ [30]. All of the features in the
dataset are normalized using the z-score process before training can begin. After a set of
training data has been computed, it is critical to maintain the standard deviation and mean
for each feature so that they may be utilized as weights in the system’s design.

3.4. Feature Extraction
Feature Extraction Using Sparse Principal Component Analysis

Statistical analysis or the analysis for multivariate datasets for feature extractions
is performed on the principle of sparse principal component analysis (SPCA) [31]. Data
extractions are principally carried out by introducing sparsity structures to input variables,
where SPCA enhances the effectiveness of the traditional technique for dimensionality and
reduction, commonly known as principal component analysis (PCA).

Assume that the data X is a K × P matrix, where K and P represent the number of
variables and observations, respectively. Assume that the column means of X were all zeros
to preserve generality.

K× P = UDVT (2)

Consider that SVD of X is in Equation (3),

X = UDVT (3)

where T denotes transposition. The columns for V are the equivalent loadings of the prin-
cipal components, and U is the unit-length principal component (PC). A “self-contained”
regression-type criterion to generate main components is presented in the following theo-
rem. Consider the first L primary components. Let the P× L matrices be α and β. The ith
row vector of matrix X is designated as Xi. Whenever >0, let the following Equation (4) be(

∝̂β̂
)
= argminα,β∑

n
i=1

∥∥∥Xi − αβT Xi‖2 + λ∑L
j=1

∣∣∣∣∣β j
∣∣2∣∣∣ (4)

Subject to αTTα = IL, then β̂iαVi for i = 1, 2, . . . k, effectively convert the PCA issue
into a ridge regression issue. Here, we discuss the relationship between PCA and regression
and utilize the lasso technique to generate sparser loadings, also known as regression coeffi-
cients. To achieve this objective, we incorporate the lasso penalty into the criterion outlined
in Equation (4) and formulate the following optimization problem listed in Equation (5).
We investigate the following elastic net regularization issue by adding the lasso penalty to
the criterion in order to obtain sparse loadings.(

α̂β̂
)
= argminα,β∑

n
i=1||Xi − αβTXi| | 2 + λ∑L

j=1

∣∣∣∣∣β j
∣∣2∣∣∣+ ∑L

j=1 λ1,j
∣∣β j
∣∣1 (5)

Subject to αTTα = Ik.
By selecting the proper λ1 and λ1,j, we arrive at a sparse solution, from which we

derive a sparse vector V̂i =
β̂

|β̂| of unit length that approximates Vi.

An optimization problem can be formulated for SPCA by introducing an elastic net
constraint for a fixed α. To address this issue, an alternate minimization procedure can
be utilized to minimize the SPCA criteria. Detailed mathematical formulas are available
to implement SPCA. Due to its sparsity, SPCA has been widely used in gene expression
analysis as it facilitates the understanding of data and the identification of key genes. In
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addition, sparsity can aid in the generalization of a learned model and prevent over-fitting.
Therefore, incorporating sparsity in face recognition can potentially lead to improved
recognition results.

One of the disadvantages of PCA is that, as previously stated, every component of a
loading matrix V is often non-zero, which makes it difficult to understand the generated
PCs and may impede the identification of important trends and patterns in datasets. In
order to produce a sparse V matrix, sparse principal component analysis is used to decrease
the number of variables which explicitly have non-zero loadings. To conduct SPCA, PCA
is reconfigured as a regression-type optimization problem with a quadratic penalty.

A following optimization problems is addressed in order to acquire the sparse principal
component (SPCs), taking into consideration that in the first k PCs, xi denotes the ith row
vector of an original data matrix X, Ap×K = [α1, α2, . . . , αk] and BP×K = [β1, β2, . . . , βk].
Equation (6) is described below:

(
ÂB̂
)
= ArgminA,B∑n

i=1

∣∣∣∣∣∣xi − ABT
∣∣∣∣∣∣2 + λ∑k

j=1

∣∣∣∣β j
∣∣∣∣2 + ∑k

j=1 λ1,j
∣∣∣∣β j

∣∣∣∣1 (6)

Subject to AT A = IK×K.
Where λ1,j is permitted to penalize the loadings of various PCs and λ > 0 and different

1 are acceptable.
Let V̂ =

[
V̂1, . . . V̂k

]
represent the altered PCs, commonly known as SPCA. tr

(
V̂TV̂

)
is too pessimistic to accurately reflect the overall variance because the columns for V̂ are
correlated. We can quickly obtain an adjusted variance by using the QR decomposition
and accounting for the correlations between the columns of V̂. If Q is orthonormal and R is
higher triangular, then assuming V̂ = QR, Equations (7)–(10) are

SV =

[
diag

(
qr
(
XV̂
))]2

n
(7)

PVE =
SV

sum(SV)
× 100% (8)

Ê =
sum(SV)

P
× 100% (9)

[
V̂, Ê

]
= SPCA(X, N, K) (10)

The SPCA proportion of explained variation (PVE) is indicated, where the X is the data
matrix; the number of selected PCs is k; in each SPC, N = [N1, N2, . . . , NK](1 ≤ Ni ≤ p) is
the required NNZL; V̂ =

[
V̂1,V̂2, . . . , V̂k

]
is the vectors of sparse loading; and the cumulative

percent variance of SPCA is Ê.

3.5. Feature Selection Using Enhanced Marine Predators’ Algorithm

An innovative population-based optimization technique that has seen extensive usage
in practical optimization applications is the improved marine predator’s algorithm (EMPA).
However, due to a lack of population variety in the late stages of optimization, EMPA
may quickly enter a local optimum. The three stages of the marine predator’s algorithm
simulates the interactions between marine predators and their prey as shown in Table 3
of enhanced MPA algorithm matrix. The following is a summary of these actions, which
indicate the predator’s stride size as it pursues its prey.
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Table 3. Enchased MPA Algorithm Matrix.

Algorithm: The Enhanced MPA

Initialize search agents or the prey population i = 1,· · · ,N
t = 1

while (t < Max T)

Calculate the fitness and create the Elite matrix

i f t < 2∗Max−T
3

Update prey using Equation (11)

else if Max−T
3 < t < 2∗Max−T

3

for i = 1 : 0 N
2

Update prey based on Equation (14)

for i = N
2 : N

Update prey based on Equation (19)

else if
(

t > 2∗Max−T
3

)
Update prey based on Equation (22)

End if

Achieve memory saving and update Elite matrix

Apply the effect and update using Equation (24)

Accomplish memory saving and update Elite matrix

end while

Phase 1: When the velocity ratio is large (V > 10), the predator outruns the prey.
This phase begins in the first third of exploration iterations, and the following equations
represent it mathematically. According to Equations (11)–(13),

−→
preyi =

−→
preyi =

−→
P.RandB

⊗ −→
stepsizeii f t <

Max− T
3

(11)

−→
stepsizeii f t =

−→
P.RandB ⊗

( −→
Elitei −

−→
RandB ⊗

−→
preyi

)
, i = 1, . . . , N (12)

−→
RandB =

1√
2π

exp
(
−x2

2

)
(13)

where R is the vector made up of random values between 0 and 1. Entry-wise multipli-
cations are indicated by the notation, and p = 0.5. Max T is the maximum number of
iterations, where t is the current iteration and N the population size. Using the Brownian

motion,
−→

RandB creates a vector of random integers that derives the step size from a normal
distribution with a mean of 0 and unit variance of 1. The fittest solution is included in
the

−→
Elitei matrix, which is suggested as a top predator. We may determine the probability

density function (PDF) at a location x using this motion and the formula in Equation (13).
Phase 2: The predator and a prey are represented by unit velocity ratio (V ≈ 1) move

at same velocity. The Lévy distribution utilizes Brownian motion exploitation. As a result,
the algorithm explores the first half of a population, whereas the other half is reserved for
abuse. The prey movement is updated by the distribution of Lévy as follows. The following
Equations (14)–(18) are described below,

−→
preyi =

−→
preyi +

−→
P.RandL ⊗ stepsizei,i = 1, . . . N/2if

Max− T
3

< t <
2 ∗Max− T

3
(14)
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−→
stepsize =

−→
RandL ⊗

( −→
Elitei −

−→
RandB ⊗

−→
preyi

)
(15)

z = 0.05× Q

|Y|1/α
, Q N

(
0, σ2

)
, Y Normal(0, 1) (16)

σ2 =

[
Γ(1 + α)∗sin πα

2

α∗Γ
( 1+α

2
)
∗ 2 α−1

2

]1/α

, α = 1.5 (17)

−→
RandL =

γΓ(1 + α)sin
(

πα
2
)

πz(1+α)
(18)

where z defines the step size, σ2 is the variance, and =1.5 and Q and Y are two random
values generated from the normal distribution computed by generating two random

numbers and applying Gaussian distribution quantities Q and Y.
−→

RandL is a vector for
random data produced using the Mantegna method of Lévy distribution. We revise
the employment of the second half of the Brownian motion equation and the predator
movement population. According to the following Equations (19)–(21):

−→
preyi =

−→
preyi + P.CF⊗

−→
stepsizei,i =

N
2

, . . . , Nif
Max− T

3
< t <

2 ∗Max− T
3

(19)

−→
stepsize =

−→
RandB ⊗

( −→
Elitei −

−→
RandB ⊗

−→
preyi

)
(20)

Cf =
(

1− t
Max_T

)(2∗ t
MAX_T )

(21)

where CF is an adaptive variable that regulates the motion of the predator’s step size.
Phase 3: With a low velocity ratio (V = 1), a predator outruns the prey by a factor of

three in the last third of repetitions. This is mathematically expressed as the following
Equations (22)–(24):

−→
preyi =

−→
Elitei + P.CF⊗ stepsizei,i =

N
2

, . . . , nift >
2 ∗Max− T

3
(22)

−→
stepsize =

−→
RandL ⊗

( −→
RandL ⊗−

−→
Elitei −

−→
preyi

)
(23)

−→
preyi =

{
−→

preyi + CF
[ −→

Xmin +
−→
R
⊗( −→

Dmax −
−→

Dmin

)⊗ −→
B
]

ifr

≤ FAD
−→

spreyi + [FADs(1− r) + r]
( −→

preyrand1 −
−→

preyrand2

)
ifr > FADs

(24)

3.6. Incipient Bat-Optimized Deep Residual Network

Incipient bat algorithm is an optimization method that draws inspiration from the way
that bats use echolocation to find their meals as shown in Table 4 enhanced MPA-Incipient
Bat algorithm. The initial additions to a bat search algorithm were made, and simulations
were run in accordance with several idealistic guidelines.

• Each bat employs the advantages of echolocation to look for prey and avoid obstacles.
• Each bat searches for food by flying at a velocity vi, location xi, constant frequency

fmin, variable wavelength, and loudness L0. Depending on how close the target is,
bats may automatically change the frequency of their produced pulses and the rate of
pulse emission r in the range [0, 1].
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• A minimal constant value Lmin and a large positive number L0 represent the range of
loudness Lm.

Table 4. Enchased MPA—Incipient Bat Algorithm.

Algorithm: Incipient Bat Algorithm

1 Define the objective function (x);

2 Initialize the bat population xi(i = 1, 2, . . . , n);

3 for each bat xi in the population do

4 Initialize the velocity vi, the pulse rate ri and loudness Ai;

5 Define the frequency fi at position xi;

6 while termination criterion not reached do

7 for each bat xi in the population do

8 if rand > ri then

9 Select one solution among the best ones.

10 Generate local solution around the best one.

11 Generate a new solution by flying randomly.

12 if rand < Ai and ψ(xi) < ψ(x∗) then

13 Accept the new solutions.

14 Increase the ri and reduce Ai;

15 Rank bats and find current best solution x∗

The location and velocity of the bat at time t should be specified and updated through-
out the optimization process. Equations (25)–(27) provide the new location xt+1

i and velocity
vt+1

i at time t + 1.
fi = fmin + ( fmax − fmin)β (25)

vt+1
i = vt

i +
(
xt

i − x∗
)

fi (26)

xt+1
i = xt

i + vt+1
i (27)

where fi is the uniformly drawn pulse frequency of bat I, as represented by ( fmin, fmax). The
outcome of comparing all the solutions among all bats is x, which represents the current
global best position (i.e., solution). x is a random integer in the range [0, 1]. Once one of
the best current solutions has been chosen, a new solution is created locally for each bat
using random walk. This procedure may be thought of as a local search and is described
by Equation (28)

xnew = xold+ ∈ LT (28)

When a bat finds a prey during the search process, the loudness typically drops and
its pulse emission progressively rises. The loudness Li or pulse emission ri were updated
in accordance with Equations (29) and (30) under the assumption that Lmin = 0 indicates
that a bat has located his prey (i.e., a solution):

Lt+1
i = βLt

i (29)

rt+1
i = r0

i [1− exp(−γt)] (30)

whereas γ is a positive constant and β is a random integer in the range [1, 1].
Consider A as an example of a useful function that the residual network learns. When-

ever there are no skip connections present, the identity function must be matched by
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adjusting the weights and bias values. The nonlinearity in the layers makes it consid-
erably more difficult to learn the identity function from scratch, which, in turn, causes
degeneration. Equations (31) and (32) defined below.

h(x) = g(x) + x (31)

The model’s capacity to learn and adjust to novel circumstances is facilitated by this.
To create a straightforward linear function, we may have inserted a skip link before the relu
block in the residual network using a single weight layer.

F(x) = W(x) + x (32)

4. Performance Analysis

The overall behavior of the recommended framework is discussed in this section.
Figures 3–8 shows the comparison of parameters, such as mean square error, root mean
square error, accuracy, precision, recall, f1-score for existing, and proposed methods. The
approaches include the artificial neural network (ANN), support vector machine (SVM),
linear regression (LR), Gaussian process regression (GPR), and incipient bat-optimized
deep residual network (IB-DRN).
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To determine a test’s accuracy, it must correctly distinguish between patient and
healthy samples. Calculating the ratio of positive to negative results across all instances is a
good way to obtain a sense of a test’s reliability. The accuracy Equation (33) is described
given below:

Accuracy = TP + TN TP + TN + FP + FN (33)

Figure 3 displays the results of the accuracy calculations for both the proposed and
the existing procedures. According to the aforementioned graph, the proposed approach of
incipient bat-optimized deep residual network (IB-DRN) has a 98% higher accuracy than
the existing methods, such as artificial neural network (ANN), support vector machine
(SVM), linear regression (LR), and Gaussian process regression.

Precision is determined by dividing the total numbers of true positives and false
positives by the imbalanced classification problem’s two classes. According to the following
Equation (34)

Precision =
TP

TP + FP
(34)

Figure 4 represents the precision results of the proposed and existing methodologies.
As shown in Figure 4, the suggested approach of IB-DRN has a higher precision (90%) than
the existing methods, such as ANN, SVM, LR, and GPR.

By dividing the real positives by anything else which should have been projected as
positive, recall (also known as the true positive rate) is obtained. The recall results utilizing
both the suggested and current methodologies are shown in Figure 5. Figure 5 above
demonstrates that the suggested approach of IB-DRN has a higher recall than the existing
methods. Equation (35) is given below:

Recall =
TP

TP + FN
(35)

The geometric mean of recall and accuracy is used to obtain the F1 score. The recall of
the harmonic mean is a substitute measure for the more often used arithmetic mean. This
is often useful when calculating an average rate. We calculate the average of accuracy and
recall for the F1 score. Equation (36) described below:

F1score =
TP

TP + 1
2 (FP + FN)

(36)
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Figure 6 depicts the F1 score calculations for the proposed and existing methodologies.
The aforementioned graph shows that the suggested method of IB-DRN has a greater F1
score than the existing techniques.

One of the methods most often used to assess the accuracy of forecasts is root mean
square error, also known as the root mean square deviation. It illustrates the Euclidean
distance between measured true values and forecasts. Equation (37) is described below:

RMSE =

√
∑N

i=1 ‖ y(i)− ŷ(i) ‖2

N
(37)

Figure 7 represents the precision results of the proposed and existing methodologies.
As shown in Figure 7, the suggested approach of IB-DRN has a lower root mean square
error (50%) than the existing methods, such as ANN, SVM, LR, and GPR.

In statistics, the term “Mean Squared Error” (MSE) refers to the average or mean of
the square of a disparity between the observed and predicted values. Equation (38) is
calculated as follows:

MSE =
1
n∑n

i=1

(
Yi − Ŷi

)2 (38)

The recall results utilizing both the suggested and current methodologies are shown in
Figure 8, which demonstrates that the existing methods, such as artificial neural network,
support vector machine, linear regression, Gaussian process regression, have a higher mean
square error when compared to the proposed IB-DRN method.

Figure 9 presents the data on car speed accumulation at the lower and higher ends
of curves. The graph visually depicts how the car’s speed changes as it navigates curves,
with data points representing the accumulation of speed during these maneuvers.
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Figure 10 showcases the observed current profile for different vehicle speed profiles.
Figure 11 further illustrates plot for exhaust gas emissions. The graph provides

additional data points and analysis to better understand the impact of vehicle speed on
current consumption and emissions.

In Figure 12, the SOC curves and accompanying automobile speed, current profile,
exhaust gas emission, and UDDS cycle tested on the MATLAB platform are shown.
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5. Discussions

The architecture of artificial neural networks necessitates the use of parallel processing
hardware. Closer-to-the-hyperplane data points, known as support vector machines, have
an impact on the hyperplane’s location and orientation. When the target classes overlap
and the dataset includes more sound, it does not operate very well. A support vector
machines will perform poorly when there are more attributes for each data point than
training data specimens are present.

Figures 3–8 are the comparisons of the accuracy, precision, recall, F1 score, root mean
square error, and mean square error for both existing methods and the proposed method.
Included existing approaches are the artificial neural network (ANN), support vector
machine (SVM), linear regression (LR), and Gaussian process regression (GPR), whereas
the suggested technique is the incipient bat-optimized deep residual network (IB-DRN).
The proposed incipient bat-optimized deep residual network technique achieves a high
level of accuracy (98%), especially when compared to the existing methods of artificial
neural network (53%), support vector machine (73%), linear regression (82%), and Gaussian
process regression (66%) that are currently in use. In terms of precision, the proposed
method of incipient bat-optimized deep residual network displays a 90% precision rate,
while the existing methods of artificial neural network, support vector machine, linear
regression, and Gaussian process regression are 57%, 64%, 73%, and 81%, respectively,
revealing that when compared to the proposed method, the existing methods perform low
in terms of precision. In terms of recall, the proposed method of incipient bat-optimized
deep residual network is 97% and the existing methods of artificial neural network, support
vector machine, linear regression, and Gaussian process regression, 60%, 59%, 81%, and
73%, respectively, hence the suggested technique performs well in terms of recall when
compared to the existing techniques. In terms of the F1 score, the proposed method of
incipient bat-optimized deep residual network has a score of 94% and the existing methods
have scores as follows: the artificial neural network is 67%, the support vector machine is
85%, the linear regression is 65%, and Gaussian process regression is 73%, so the suggested
technique performs well in terms of F1 score when compared to the existing methods. In
terms of root mean square error, the proposed method of the incipient bat-optimized deep
residual network has a score of 50% and the existing methods of artificial neural network,
support vector machine, linear regression, Gaussian process regression have scores of 96%,
77%, 83%, and 65%, respectively; thus, the existing techniques perform well in terms of root
mean square error when compared to the suggested technique. The proposed technique
of incipient bat-optimized deep residual network achieves a low level regarding mean
square error (55%), especially when compared to the existing methods of the artificial
neural network (93%), support vector machine (65%), linear regression (85%), Gaussian
process regression (74%).

6. Conclusions

This article discusses the principles of battery design and management for electric
vehicles with a focus on sensor fault detection. Safety in electric vehicles depends heavily
on BMSs, which control the electronics of the rechargeable battery pack or individual cells.
To improve the safety and reliability of battery management systems, this article proposes
a false battery data detection and classification system based on incipient bat-optimized
deep residual networks (IB-DRN). Compared to current approaches, the IB-DRN system
achieves high accuracy (98%), precision (90%), recall (97%), and F1 score (94%) but has poor
performance in root mean square error (50%) and mean square error (55%). Additionally,
this paper details a unique BMS hardware design and experimental findings. Future
work should include potential upgrades for battery models, sensor data visualization, and
continuous fault monitoring.
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