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Abstract: This paper investigates the competition problem between electric vehicle charging and
parking desks for different owners using a non-cooperative Bertrand game. There is growing
attention on electric vehicles from both policy makers and the public charging service provider, as
well as the electric vehicle owners. The interaction between different entities forms a competition
(game), especially between multi-type electric vehicle charging and parking facilities. Most of the
existing studies on charging platforms are about the optimization of the charging platform scheduling
strategy or the game relationship between charging platforms and EV users, but there is a lack
of exploration on the revenue game between charging platforms. In this paper, the competitive
interactions between different charging decks are studied and analyzed using a general game-
theoretic framework, specifically the Nikaido–Isoda solution. In the pricing competition model, the
pricing strategies of all players and physical constraints, such as distribution line capacity, are taken
into consideration. Through the case studies, it is clearly indicated that the game played between
different electric vehicle charging/parking decks will always converge to a Nash equilibrium point.
Both charging service providers and customers could benefit from such an open and fully competitive
energy service ecosystem, which enhances the overall social welfare.

Keywords: electric vehicles; game theory; electricity pricing; distribution network; smart grids

1. Introduction

Recently, clean energy technology has been greatly emphasized and has gained huge
development, meaning that the internal combustion engine which relies on traditional
energy sources has gradually come to an end. Therefore, a new round of transportation elec-
trification is taking place. As an environment-friendly, energy-saving, emission-reducing,
clean, and convenient means of transportation, electric vehicles (EVs) are developing
rapidly in the current social context of advocating environment protection and climate
stabilization [1,2]. Inspired and stimulated by governments’ energy conservation policies,
EVs can respond to the call and create a huge emerging charging service market [3]. At the
same time, the influx of EVs into the market will have a huge impact on the existing utility
grid and distribution network [4]. Due to this fact, the current research focus has become
when and how to consider the interests of power grids, electric vehicle operators, and EV
owners [5,6]. From the perspective of charging network operators, some studies have been
conducted by using optimal charging pricing models for public EV charging stations.

Compared with the traditional relationship between cars and gas stations, the rela-
tionship between EVs and charging decks is more complicated. The electric vehicle goes
to the charging deck for charging; thus, the electric vehicle and the public grid directly
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control the charging through the interface of the charging deck [7]. With the increase in the
number of EVs and the development of EV charging technology, it is foreseeable that the
number of charging/parking decks will also explode. Choosing a suitable charging service
platform can effectively alleviate the overflow and charging peaking problem caused by the
explosion of EVs [8]. The proper configuration of the charging service infrastructure and
technical research of the charging platform can also greatly improve the charging efficiency
of EVs [9].

The commonly used game-theoretic relationship between charging decks and EVs
needs to consider not only the optimization of charging efficiency, but also the discrimi-
native pricing strategy [10,11]. In general, the revenue of EV charging and parking decks
consists of parking fees and charging fees. As the number of EVs and charging decks
existing in the market increases, all charging decks in the region compete to maximize
their own benefits. Therefore, charging decks often adopt different ways to adjust parking
fees and charging fees to achieve different revenue portfolio strategies [12]. Based on
their needs, charging decks may use a low-price strategy to increase revenue indirectly
by gaining more market share, or use a high-price strategy to increase revenue directly.
Each different strategy will have a different impact on the relationship between customers
and other decks. Meanwhile, this influence will be fed back to the deck to make strategy
adjustments or specific price adjustments to maximize their own profits [13]. When all
charging decks and customers in the same region want to maximize their own benefits, the
competition between decks will become fierce and the interplay of strategies can become
extremely complex [14,15]. With a large number of EVs entering the public charging ser-
vice market, the revenue maximization problem of parking lots with high electric vehicle
penetration is highly variable [16]. By studying the competition between these charging
decks, game theory can help them maximize their gains in a much more systematic manner.
In a transparent market environment where charging vehicles and public charging facilities
are increasingly entering the market, studying the relationship between public charging
facilities is conducive to promoting sustainable development progress of all competing
parties and the harmony of the EV service market.

Most of the existing research work has focused on issues such as battery technology,
peak charging demand mitigation, and power distribution. The work in [17] studied the
optimization of the charging peak-to-valley transfer model, and the work in [18] introduced
distributed charging control for EVs. Energy trading between smart grids and plug-in
electric vehicle (PEV) groups was studied in [19]. A smart Parking Garage EV charging
method was proposed in [20], which can significantly reduce power system cost while
maintaining reliability. The study in [21] discusses the charge–discharge coordination
problem between electric vehicles and the grid, emphasizing the method of the multi-level
hierarchical controlled charge–discharge form. In the study of [22], the multi-objective
economic–technical–environmental optimization concept of electric vehicle charging and
discharging was proposed, and the energy cost of end users in the household microgrid en-
vironment was modeled and optimized for the first time. Some game-theoretic approaches
to charging EVs on decks are presented in [23] with many competitive features presented.
The research in [24] studied the competition between electric vehicles and fuel vehicles
in delayed pricing decisions under the constraints of carbon emission reduction policies.
Different EV charging scenarios and charging strategies within the business models are
mentioned in [25,26]. Based on the game-theoretic approach, the work in [25] studied the
problems between capacity configuration, location configuration, construction cost and
operation cost of charging stations. The work in [26] examined the economics of EV parking
lots with renewable energy generation. The problem of charging time was considered in the
research of [27] and the charging speed was improved by improving the transformer. The
method of reinforcement learning was used in [28] to develop the problem of suppressing
traffic oscillation through the cooperation of networking, electric and automatic vehicles, so
as to reduce electric energy. The work in [29] summarized the optimal design of charging
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stations using various optimization algorithms, studied issues such as grid-connected,
off-grid, and renewable energy combinations, and future development directions.

As mentioned above, in general, most research on EVs has focused on the following:

1. Technical level: the charging technology of electric vehicles has been studied, includ-
ing issues such as battery materials, performance, and life aging, as well as issues
such as vehicle endurance and generator technology [30,31].

2. Planning level: issues such as charging pile deployment, electrical infrastructure
construction, and vehicle charging scheduling arrangements have been studied.

3. Economic level: the economic benefits of vehicle-to-grid (V2G) technology, the income
of electric vehicle parking lots, and government support subsidies are studied.

Among them, the research on the economic benefits of both EV platforms and users is
less than the technical aspects, where the research on the price game between platforms
is even scarcer. The research in [32] proposed a model-free structure based on the DRL
approach, which learns directly from realistic data to achieve the goal of maximizing the
profit of charging stations when the charging time, demand, and other conditions are
unknown. Most studies address the interest game between charging platforms and EV
users, hoping to obtain the maximum benefit for both, while the study of the interest game
between charging platforms is lacking. Therefore, in this paper, we address the economic
benefits of electric vehicle charging platforms, study and analyze users with different types
of needs, and then propose the game theory principle to model the parking and charging
service revenue problem. The price strategy is adjusted through the game principle to
maximize the respective benefits of charging platforms.

According to many studies, the relationship between conventional cars and gas sta-
tions is very different from the relationship between EVs and charging decks. The research
on conventional vehicles’ experience cannot be directly applied to the study of the rela-
tionship between parking decks and charging vehicles. However, the two relationships
have some common features that can help understand the transformation of knowledge in
building an attractive and competitive business model. For example, both of them need to
consider the price sensitivity of customers. Therefore, our research on the relationship be-
tween parking platforms and charging vehicles mainly focuses on the differences in service
pricing strategies in the game between different charging platforms and the response of
elastic prices among different customer groups.

The main contributions of this paper can be summarized as follows:

1. The competition and pricing strategy between parking/charging decks is studied
with the local charging service platform as the main body to guarantee the optimal
pricing strategy at the Nash equilibrium point;

2. The paper applies the game theory principles to study the competitive relationship
among parking platforms in order to maximize revenues, explains the nature of the
problem using a special non-cooperative Bertrand game theory model, and provides
an effective solution based on Nikaido–Isoda equations;

3. EVs are divided into three groups according to price sensitivity with the quantified
responses of different groups of customers through the experimental data, which
simulate the customer behavior when the parking decks adopt different pricing
strategies, and we obtain the experimental results for verification.

2. Problem Formulation

In this paper, we modeled a deck that provides parking and charging services in a
local area based on game theory. In order to maximize its own revenue, each electric vehicle
charging deck chooses a corresponding pricing strategy, adjusts and optimizes the response
of other parking decks and customers to the strategy, and finally achieves a balanced state
in which each local charging/parking deck can maximize its own interests. According
to the specific needs of electric vehicle customers in reality, this paper divides users into
loyal customers who are not subject to changes in conditions, customers with high price
sensitivity, and customers with low price sensitivity. For the problem formulation, the
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following general process will be followed. The detailed explanation will be provided in
the following sections.

1. The initial conditions of all parking/charging decks in the game theory model are the
same, including electricity costs, parking fees, geographical advantages, etc.

2. The game theory model uses the relaxation algorithm and Nikaido–Isoda function
in the iterative process. The Nikaido–Isoda function is used to iteratively update the
pricing strategy until the conditions are met to end the iterative process.

3. The model will eventually reach an equilibrium point. Under the condition that other
parking/charging decks keep their pricing strategies unchanged, no matter how this
deck changes its strategy, it cannot continue to improve its own revenue.

Figure 1 shows the hypothesized relationship between different EV decks, the utility
company, and EV customers and also indicates the revenue structure of EV decks.
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Figure 1. The envisioned system architecture of multiple EV charging/parking facilities.

The revenue of the ith EV charging/parking deck consists of two parts, parking
income and charging income, which are independent of each other and do not interfere
with each other. The goal of the deck is to obtain the maximum revenue, so the goal revenue
function for the ith deck is:

Max(R i= Rci+Rpi−Ci
)

(1)

Among them, Rci and Rpi represent the charging and parking revenue, respectively,
Ci represents the cost of each deck per day, thus Ri is the daily net income of the ith deck.

2.1. Parking

According to the different needs and preferences of electric vehicle users, all users are
divided into three categories of customers; Table 1 describes the groups of customers and
gives typical examples of each group of customers.

For the provision of parking services on deck i, the income received can be expressed
as follows:

Rpi = ∑24
t=1 Ni,parking×ρi,parking (2)

Ni,parking represents the number of customers who receive parking service on deck i at
time t during time period ∆t.

Ni,parking= ai1(t)+bi(t)+ci(ρi, ρ−i, t) (3)

where ai1(t), bi(t), and ci(ρi, ρ−i, t) represent the number of LC, LSC, SC, respectively, who
arrive at deck i for parking at time t.
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Table 1. Customer groups with different attributes.

Customer
Categories Description Whether Sensitive

to Parking Price
Whether Sensitive
to Charging Price Examples

Loyalty
customers (LC)

Consists of loyal customers who
spend the same amount time

charging on a fixed deck
each day.

No No
Customers who live or work
locally and do not care about

financial expenses.

Less-sensitive
customers (LSC)

Consists of customers who
choose the same deck each day,
but whose charging duration

varies with the charging price.

Yes No

Customers who live or work
locally, care about financial

expenses, and care more
about convenience between
economy and convenience.

Sensitive
customers (SC)

Consists of customers who use
variable charging decks and

have variable charging durations
whose choices are influenced by
both the price of the ith deck and

the average price of all
other decks.

Yes Yes
Passing customers who are

willing to spend time on
economic planning.

2.2. Charging

With Ni,charging, we denote the number of customers arriving at the ith deck at time t:

Ni,charging(t)= ai2(t)+g
(
ρi,ch, ρ−i,ch

)
×bi(t)+ci(ρi(t), ρ−i(t)) (4)

In the formula, ai2(t) represents the number of LC who arrive at deck i for charging or
parking service during time period ∆t. Since LC are not affected by the price, the number
of LC who arrive at deck i for charging at time t is only related to the time t.

The charging situation of SC will be restricted by three factors: time t, charging price
of deck i, and charging prices of other decks; therefore, the number of SC is expressed
as ci(ρi(t), ρ−i(t)), which is the same with the number of parking situations. ρi(t) means
parking and charging fees of the ith deck at time t, and ρ−i(t) represents the average of the
sum of charging and parking charges for all other decks at the same time.

The g
(
ρi,ch,ρ−i,ch

)
in (4) is used to represent the influence coefficient of the price change

of the charging platform on the user, which is negatively correlated with the price. When
prices increase, users tend to reduce their charging time requirements, and vice versa. ρi,ch
represents the charging price of the ith deck, and ρ−i,ch represents the average charging price
of other decks. Thus, we use g

(
ρi,ch,ρ−i,ch

)
to fix the number of LSC charging on the deck.

From the perspective of game theory, we can assume that, in this game, all players
(parking/charging decks) satisfy the following properties:

∂g
(
ρi,ch, ρ−i,ch

)
∂ρi,ch

≤ 0 (5)

∂g
(
ρi,ch, ρ−i,ch

)
∂ρ−i,ch

≥ 0 (6)

∂2g
(
ρi,ch, ρ−i,ch

)
∂ρ−i,ch

2 ≤ 0 (7)

Equation (5) shows that when the price of charging deck i increases and the prices
of other decks remain unchanged, customers are less likely to choose deck i; Equation (6)
shows that when the price of charging deck i does not change and the prices of other decks
increase, customers are more likely to choose deck i; and Equation (7) shows that when the
price increases to a certain extent, this possibility factor will converge to a certain stable
value state.
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In summary, we define g
(
ρi,ch, ρ−i,ch

)
as the following expression, as in previous

work [16].
g
(
ρi,ch, ρ−i,ch

)
= −ρi,ch

2+αρ−i,ch −
α

4
ρ−i,ch

2 (8)

where α is a positive number.
Therefore, the amount of charge Di(t) that deck i needs to provide is:

Di(t)= Ni,charging(t)×Pcharging (9)

The total revenue of the ith deck is expressed as:

Rci = ∑24
t=1(ρ i,ch−ρi,buyin(t)×Di(t) (10)

where ρi,buyin(t) represents the price of electricity purchased by deck i and Di(t) represents
the required electricity.

2.3. Charging Constraints of Electric Vehicles

This paper does not involve the vehicle-to-grid (V2G) situation, so there is only charg-
ing behavior and no discharging behavior. The specific constraints are divided into charging
demand constraints, grid dynamic constraints, and electricity price dynamic constraints.

The dynamic constraints of electricity prices have been discussed in the parking and
charging part of electric vehicles, so we will discuss other constraints in this section.

2.3.1. Constraint of Charging Demand

Due to the limitation of the battery capacity of EVs, the charging demand of EVs
should be less than the difference between the maximum capacity of the battery and the
capacity of the charging initial state:

SOCdem ≤ SOCmax − SOCini (11)

where SOCdem represents the charging demand of EVs, SOCmax represents the upper limit
of EV battery charging, and SOCini represents battery level before charging.

SOCdem =
∆T ∑ pchg

t schg
t η

chg
EV

CAPEV
(12)

where schg
t represents the charging state of EV in time period t, pchg

t represents charg-
ing power, η

chg
EV represents charging efficiency, and CAPEV represents the capacity of

the EV battery.

schg
t =

{
1, EV charges in time period t

0, EV does not charge in time period t
(13)

2.3.2. Constraint of Dynamic Grid

Due to the randomness of the charging behavior of EVs, when large-scale electric
vehicles are connected to the grid at the same time, it will bring burden to the local
distribution network. Therefore, safe operation of the grid at limited charging levels needs
to take into account the dynamic constraints of the grid, including transformer and line
constraints, phase unbalance, and voltage stability within the network. Generally, system
constraints on charging vehicles are mainly in terms of transformer capacity, line current,
voltage drop, and phase offset [33].

The specific constraints are expressed as follows:

VTxx∅,t ≤
1
3

Pmax
Tx ×130%, ∅ ∈ {A, B, C} (14)
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x∅,t ≤ xmax
∅ , ∅ ∈ {A, B, C} (15)

xmax
k,t ≤ xmax

k (16)

where VTx represents distribution transformer source voltage, x∅,t represents total cur-
rent generated by all single-phase loads on the phase, Pmax

Tx represents transformer rated
power, xmax

∅ represents backbone cable rated current, and xmax
k represents service line

rated current.
In Equations (15) and (16), because the backbone and service lines usually have differ-

ent specifications, we introduce separate constraints for each stage of the backbone network.

Vdrop
h,t = ∑h

j=1

(
Ij ∑j

k=1 zk−1, k

)
(17)

where Vdrop
h,t represents the difference between transformer voltage and charging

station voltage.
VTx − Vdrop

h,t > Vmin (18)

Equation (18) ensures that the voltage of each line can be maintained at a normal level,
not lower than the minimum value for normal operation.

To keep our constraint set linear, we express the phase imbalance as a percentage
deviation from the average phase loading:∣∣∣x∅,t − 1

3 (x A,t+xB,t+xC,t

)∣∣∣
1
3 (x A,t+xB,t+xC,t

) < p, ∅ ∈ {A, B, C} (19)

3. Game Theory and Solution
3.1. Game Theory Definition and Concepts

This section describes the game theory algorithm used to solve the problem. Based on
the game theory, this paper treats each deck as a player, and all decks together participate
in a competitive game in order to maximize revenue. We set X to represent the strategies of
all decks, in which each vector Xi represents the strategy adopted by deck i, set f represents
the payoff of all decks, and each element fi represents the payoff of the ith deck when all
decks correspond to strategy X. When (yi |x ), it means that when other decks adopt the
(x1, . . . , xi−1, yi, xi+1, . . . , xI) strategy set, the ith deck adopts the strategy of yi, so according
to the definition of the Nash equilibrium:

x∗ = (x∗1 , . . . , x∗I ), ∀i (20)

fi(x∗)= max(Xi|x∗)∈ρfi(Xi |x ) (21)

X = X1×X2× . . .×XI (22)

Therefore, when the competition for maximum revenue among all decks reaches a
Nash equilibrium, the strategies adopted by all decks satisfy the following conditions:

fi
(
x∗i |x

∗) ≥ fi
(
xi |x ∗

)
, ∀i (23)

It can be seen from formula (13) that a single deck cannot achieve an increase in
revenue when other decks do not change their strategies, no matter how it changes its
own strategies.

3.2. Nikaido–Isoda Function

The search problem of the Nash equilibrium point can be transformed into the op-
timization problem of the Nikaido–Isoda function for computational solutions [34]. The
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point of the Nash equilibrium could be found by the Nikaido–Isoda iterative process. The
Nikaido–Isoda function can be expressed as:

F(x, y) = ∑I
i=1[fi(yi |x )−fi(x)] (24)

Before the game reaches the equilibrium point, when the strategy of a deck changes
from xi to yi while the strategies of all remaining decks remain unchanged, the revenue of
deck i can be improved. Therefore, F(x, y) represents the sum of the gains from unilateral
strategy changes across all decks.

The Nash equilibrium is reached when the total increase in revenue of all decks
unilaterally adjusting their strategies is 0, that is, no deck can achieve an increase in revenue
by merely adjusting its own strategy.

Max(x∗y)∈XF(x∗, y)= 0 (25)

Reaching Nash equilibrium requires that g
(
ρi,ch, ρ−i,ch

)
is a convex and concave

function in the case of a concave function, so we need to ensure that the conditions are
satisfied [35]:

Z(x) = argmaxy∈XF(x, y) x, Z(x) ∈ X (26)

3.3. Relaxation Algorithm

The expression of the relaxation algorithm is as follows:

xs+1 = (1−αk)x
s+αkZ(xs) (27)

where 0<αk<1.
In the formula, the iteration of the (s + 1)th step consists of the current point xs and

the Z(x) value of the sth step. Such expressions ensure that the algorithm can converge
under certain conditions [36,37]. Since we only know the past strategy and revenues of
each deck, the information on the equilibrium point cannot be directly obtained through
the relaxation algorithm. Therefore, we assume that the principle of strategy selection is
the same for each deck and does not change.

In order to simplify the calculation process, we set the value of xs to 0.5. In this way,
it converges to an equilibrium point when enough iterations are made. The number of
iterations depends on the convergence precision we set. The conditions for stopping the
iteration are as follows [38]:

Max(xs,y)∈XΨ(xs, y)<δ (28)

δ is an extremely small number we use to control the precision.

4. Numerical Results
4.1. Experiment Settings and Condition Configuration

In the simulated system settings, in order to exclude the influence of non-experimental
factors, it is assumed that all goals are to maximize their own benefits. The unit power cost
per charging/parking deck is the same as the operating cost. In addition, all decks are not
restricted by other external factors when making strategic adjustments. That is, all decks
independently adjust electricity prices and parking fees with the goal of maximizing profits.

We set up six decks owned by six different subjects in the system, and the parameters
in Table 1 show parameters of LSC and SC customer weighting function g

(
ρi,ch, ρ−i,ch

)
,

charging power, start point, and tolerance.
The experiment set a minimum time span of 1 h and studied the hourly arrivals of

EVs on decks to receive parking or charging services (24 h a day). Different prices can be
set for each deck at each hour of a day (up to 24 different price strategies can be set). The
process of making price decisions in the system based on game theory is shown in Figure 2.
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Figure 2. Flowchart of the proposed game-theoretic algorithm.

At the beginning of the competition, we set all decks to the same initial conditions.
In the process of adjusting the price strategies, we used the Nikaido–Isoda function and
relaxation algorithm for calculation to find the Nash equilibrium point. The iteration is
ended when the difference between the impact of the next decision on the revenue and
the impact of the current decision is greater than the coefficient of ending the iteration.
Otherwise, it goes to the next iteration.

In the following experiments, we first studied the convergence of the pricing of each
deck in the game to verify that the game can reach the Nash equilibrium point. Second,
we studied the effect of operating conditions between decks on the price decision and
the impact on the earnings of other groups of decks. Finally, we investigated the impact
of different customers on the pricing strategy and revenue of decks, while changing the
weight of different customer groups by keeping the total number of customers on each
deck constant.

4.2. Case Study
4.2.1. Check of Convergence

We assume that the six local decks are owned by six different subjects that are only
in competition with each other. Therefore, the goal of all decks is to maximize their own
benefits under the same environmental background and resource constraints. In the same
area, the number of electric vehicle customers remains basically the same, but the price
strategy of each deck will be different because the decks will have different operating
conditions in different time periods.

We set the same charging price and parking fee for all decks. When the iteration starts,
each deck adjusts according to its own price strategy, and the price changes begin to differ
from each other. In Figure 3a,b, we can see that as the number of iterations increases, the
charging prices and parking fees for all decks eventually converge around a certain value.
We control the number of iterations by setting the precision that satisfies the iteration stop.
When the iteration is stopped, the system reaches a Nash equilibrium. At this point, neither
deck can improve its own income under the condition that the strategies of other decks
remain unchanged.
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In Figure 4, the revenues of the six decks vary widely due to the differences in parking
fees and electricity prices. Decks 1, 4, 5, and 6 adopt the strategy of reducing the charging
electricity price, and decks 2 and 3 adopt the strategy of increasing the charging electricity
price. All decks have a strategy of raising parking fees, but decks 1, 3, and 5 have a
larger price increase. Under different strategies, the final revenue of each deck is shown in
Figure 3c. Deck 3 obtains the highest payoff and deck 4 obtains the lowest payoff.
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4.2.2. Evaluate Customer Influences

Since the direct source of the deck’s income is the customer, whether or not the
customer chooses to park or charge on a certain deck is very important to the deck’s income.
As described in Table 1, this paper divides all EV users into three groups according to their
needs. This section mainly examines the impact of different pricing strategies adopted by
the decks on customers and other decks. Feeding this influence back to the player side
enables decks to have more information to refer to when making pricing decisions.

In order to study the operating conditions of one of the decks (here measured by
the number of vehicles parked and charged on that deck), we reduced the number of SC
customers in that deck to zero for the most intuitive and obvious effect. We observe the
changes in the number of customers and pricing strategies of other groups of decks when
the number of SC customers in this group of decks reaches zero. Figure 4 shows how the
pricing strategies of all decks have changed.

From Figure 5, we can see that when there are no price-sensitive customers in a deck,
the decks tend to take higher prices, and a change in this behavior does not affect the
pricing of the deck with the same composition of other customers.
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Figure 5. The charging price, parking fee, and total revenue after the number of LSC customers in
deck 6 was reduced to zero.

In the above case, we studied the impact of changes in customers of one deck on the
pricing strategies and revenues of other decks. Next, we studied the impact of pricing
strategies on price-sensitive customers. We reduced all decks by 100 SC users and added
them as a combination of LC and LSC customers to each deck. Under these conditions, we
can find that each deck will tend to incur higher parking and charging fees. This is not
difficult to understand—the decks do not need to consider that they will lose customers if
they raise prices. Therefore, they can use higher prices in order to obtain higher returns.
This is consistent with the facts.

As can be seen from Figures 4–8, SC customers are more sensitive to price; therefore,
the number of SC customers has a greater impact on the pricing of decks. Generally, a large
change in the number of customers in a deck will affect the price fluctuations of that deck,
whereas changes in the number of customers in the LSC and LC groups have less impact
on the pricing of decks. However, because the number of LSC customers accounts for the
majority of the total number of customers in a deck, the loss of LSC customers will cause
huge losses to the deck.
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in all decks and including them in Group LSC.

Then, we removed all LC customers in all decks and added them to Group LSC, or
halved the number of LSC customers and added them to Group LC to further investigate
the impact of changing customer weighting. Figure 9 shows the electricity price, parking
fee, and total revenue after reducing all LC customers in all decks and including them
in Group LSC, while Figure 10 shows the electricity price, parking fee, and total revenue
after reducing half of all LSC customers in all decks and adding them to Group LC. More
or less, there is an increasing trend in revenues for both deck 1 and deck 6 in these two
situations. For decks 2 and 3, their revenues tend to increase when the number of LC
customers increases, and decrease as the number of LC customers decreases. For decks 4
and 5, their revenues tend to increase when the number of LSC customers increases, and
decrease as the number of LSC customers decreases.
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In this case, Group SC customers, who obtain the highest level of flexibility, have the
most influence on pricing strategies of all decks. The changes/number of LC customers
and LSC customers in one deck have limited influence on pricing strategies of other decks.
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However, the change of numbers in these customers of one deck has considerable influence
on the changes in Group SC customers. The influence that different customer groups have
on the decks’ revenue varies a lot. Decks 1, 2, 3, and 6 rely more on Group LC customers,
while decks 4 and 5 rely more on Group LSC customers. In the real world, deck owners may
apply rebate policies or other benefit policies in order to attract different kinds of customers,
improving their revenue in other ways on top of changing their pricing strategies.

According to the study, it can be concluded that the LSC customer group has the
largest number of EV customers and has the greatest impact on the revenue of decks. When
a specific pricing strategy of a certain EV charging service deck cannot attract enough
customers from the LSC group, the competence among different charging decks will
become more intensive. Additionally, Group SC customers are extremely sensitive to the
charging price, and the number of such customers is quite small. Considering this, it is
actually wise for deck owners to first reduce parking fees to attract more types of incoming
customers and later increase charging prices to increase revenues if they find that there are
fewer SC customers and more LSC and LC customers in the deck.

5. Conclusions

This paper studies the revenue maximization problem of the EV charging service
based on a game theory model. The model transforms the problem into finding the Nash
equilibrium point through relaxation function iteration, and solving the problem using
the Nikaido–Isoda relaxation algorithm. The increased revenue is obtained by adopting
different pricing strategies among multiple decks in a specific area and in an open full
competitive market environment. The simulation results demonstrate that each player
(i.e., charging deck) in the game model can reach the Nash equilibrium and achieve its
own best pricing strategy at the same time. In addition to studying the impact of the game
formed by the competitive relationship between multiple charging posts in the same region
on the charging posts’ own pricing strategies, this paper also investigates the impact of
EV customers with different sensitivities on charging pricing and ultimate revenue. In
summary, the revenue maximization game model of the charging service studied in this
paper can help promote the optimization of the fair competition in the EV charging/parking
service market with a suitable business model being designed. In the paper, the changes in
customer demand, dynamic tariffs, real-time grid conditions constraints, etc., have not yet
been developed and studied in depth, which will be the next step in the work.
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