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Abstract: Due to the continuous high traction power impact on the energy storage medium, it is
easy to cause many safety risks during the driving process, such as triggering the aging mechanism,
causing rapid deterioration of the battery performance during the driving process and even triggering
thermal runaway. Hybrid energy storage is an effective way to solve this problem. The ultracapacitor
is an energy storage device that has high power density, which can withstand high instantaneous
currents and can be charged and discharged quickly. By combining batteries and ultracapacitors in
a hybrid energy storage system, energy sources with different characteristics can be combined to
take advantage of their respective strengths and increase the efficiency and lifetime of the system.
The energy management strategy plays an important role in the performance of hybrid energy
storage systems. Traditional optimization algorithms have difficulty improving the flexibility and
practicality of applications. In this paper, an energy management strategy based on reinforcement
learning is proposed. The results indicate that the proposed reinforcement method can effectively
distribute the charging and discharging conditions of the power supply and maintain the SOC of
the battery and, at the same time, meet the power demand of working conditions at the cost of less
energy loss and effectively realize the goal of optimizing the overall efficiency and effective energy
management strategy.

Keywords: hybrid energy storage system; energy management strategy; system modeling; speed
prediction; reinforcement learning

1. Introduction
1.1. Research Background and Motivation

Global transportation is entering a transition to electrification and intelligence, and the
transportation industry landscape is being reshaped. The shift from internal combustion
engine driven to electric driven marks a major change in the future energy system in
transportation. The energy density of the battery has a significant impact on the driving
range of electric vehicles. The performance degradation and capacity decay of the battery
seriously restrict the power capacity of the battery, and electric vehicles often encounter
acceleration, climbing, emergency stops and other operation conditions that require high
power charging or discharging of the battery. As a result, battery aging is accelerated,
and reducing capacity degradation is a crucial aspect of energy storage technology [1].
There are many ways to extend the life of batteries, such as breakthroughs in materials and
improvements in operating conditions. However, this paper mainly focuses on another
perspective, which is from the view of system topology and control strategy.

Due to the continuous high traction power impact on the energy storage medium
during the driving process, it is easy to trigger the aging mechanism and cause rapid
deterioration of the battery performance, even triggering thermal runaway and other safety
risks. Hybrid energy storage is an effective way to solve this problem [2]. For instance,
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a hybrid energy storage system composed of batteries and ultracapacitors can give full
advantage of the high specific energy density of the battery and the high specific power
density of the ultracapacitor, which not only ensures the power demand of the whole
vehicle but also helps to lighten the energy system and comprehensively improves the
reliability and economy of the energy storage system [3]. The extension of battery energy
efficiency, lifetime health, economic management and optimal control techniques to multi-
energy systems is a frontier scientific issue in the field of electrified transport and is of great
research importance.

1.2. Literature Review

The power allocation and energy management strategy is the core of the hybrid energy
storage system. Only a suitable power allocation and energy management strategy can
bring the advantages of hybrid energy storage into full effect and achieve the desired
goals. The purpose of designing a hybrid energy storage system control strategy is to
improve the power output of the system and reduce the load on the lithium-ion battery,
thus increasing the life of the lithium-ion battery and reducing system replacement costs [4].
Existing power allocation and energy management strategies fall into two main categories:
rule-based control methods and optimization-based control methods.

Rule-based control methods include finite state machines [5] and logical threshold
control [6], which are based on empirical intuition or some rough guidelines. Li et al. ob-
tained a logical threshold control strategy by means of the pseudospectral method, which
can obviously reduce the energy loss of the battery [7]. Peng et al. proposed a recalibra-
tion method to improve the performance of rule-based energy management through the
results calculated by a dynamic programming algorithm. Then, an optimization-based
rule development procedure is presented and further validated by hardware-in-loop sim-
ulation experiments. The simulation results show that the improved rule-based energy
management strategy can reduce fuel consumption by 10.4% [8]. Hofman et al. combined
the rule-based and equivalent consumption minimization strategy (RB-ECMS) to realize
the energy management strategy of a hybrid energy vehicle. Compared with DP, RB-ECMS
requires less calculation time to reach similar DP results within an accuracy of 1% [9].
Wang et al. focused on mode selection from different working conditions and power divid-
ing modes and developed a rule-based control and balancing strategy [10]. Ramadan et al.
developed a GPS/rule-based application of Petri nets that can provide energy management
services both with and without GPS operation. The application references diverse driving
circles and journeys. The results proved that the provided strategy reduces the fuel cost and
has a more economic and simple structure [11]. These methods ignore the differences in
the modes of the loads in different time slots and only design power allocation rules based
on the overall statistical characteristics of the loads. The advantage of these methods is that
they are easy and simple to use in real-time management, but the disadvantage is that they
are too rigid and inflexible, and their performance cannot be guaranteed when they are in
local load intervals that clearly do not match the overall characteristics of the system.

The optimization-based methods are a group of methods that design objective func-
tions and use certain optimization methods to find the optimal values of the objective
functions to derive the optimal energy management mode. Representative methods include
dynamic programming [12,13], neural networks [14] and model predictive control [15].
Li et al. optimized the parameters through a multi-objective grey wolf optimizer and then
used dynamic programming, a random forest algorithm and a support vector machine to
realize both offline and online strategies [16]. Zhang et al. proposed a procedure to design
an optimized power management strategy. The procedure includes a loss function involv-
ing the energy loss and the operation performance, a newly designed analysis method
based on dynamic programming and adapting the optimizing frame [17]. Shen et al. de-
scribed a framework that targets a multi-objective optimizing problem by minimizing the
energy system and maximizing the battery circulating life and built an autonomy model.
They also used a sample-based searching algorithm to optimize the model [18]. Serrao et al.
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compared three optimization-based methods, including dynamic programming, the Pon-
tryagin minimum principle and the equivalent consumption minimization strategy. The
real-time equivalent consumption minimization strategy achieves the best results with
efficient performance [19]. Chen et al. built quadratic equations for the fuel rate and battery
power. The problem is solved by using quadratic programming and the simulated anneal-
ing method together to find the optimal battery power commands and the engine-on power.
In addition, the health of the battery is considered in the solution [20]. The advantage of
these methods is that they can be oriented towards a specific load band to find the power
allocation method with optimal performance. However, the disadvantage also comes from
the fact that as the basis for obtaining the optimal method is a deterministic load segment,
their power allocation methods have to be generated offline in advance and cannot be
applied in online management situations. The optimality of the power allocation model is
also not guaranteed if the load characteristics in actual use are significantly different from
the predefined load segments.

1.3. Main Contributions

With the rapid development of artificial intelligence, intelligent strategies are gradually
showing the advantages of flexibility and extensiveness, among which reinforcement
learning algorithms stand out for their efficiency and lack of model dependency. Therefore,
this article presents an energy management strategy based on reinforcement learning. The
main contributions of this work are as follows: (1) The topology configuration based on
actual working conditions was investigated and adopted. (2) A speed prediction algorithm
based on the Markov chain is presented for better real-time energy management. The
results indicated that accurate speed prediction can be obtained by the presented algorithm.
(3) A power splitting algorithm based on Q-learning is proposed. Compared with the
rule-based algorithm, the presented Q-learning has a high degree of robustness which can
effectively distribute the charging and discharging conditions of the power supply and
maintain the SOC of the battery and, at the same time, meet the power demand of working
conditions at the cost of less energy loss and effectively realize the goal of optimizing the
overall efficiency and effective energy management strategy.

1.4. Outline of the Article

The outline of the article is as follows: Section 2 provides the system model descrip-
tions, including the structure of the hybrid energy storage system, the model of the vehicle
and the models of the energy storage devices. Section 3 introduces the methodology of
this work, which includes the speed prediction algorithm based on the Markov chain and
the power splitting algorithm based on reinforcement learning. Section 4 presents the
experimental results and discussions. Finally, the conclusions are presented in Section 5.

2. System Model Description
2.1. Structure of the Hybrid Energy Storage System

For the topology of the hybrid energy storage system, three kinds of structures are
mainly considered: passive parallel topology, semi-active topology and fully active topol-
ogy. The passive topology is simple and costs less, but the controllability is worse compared
with the others, so it is difficult to apply in energy management strategies. Considering the
cost and the energy loss of the bidirectional DC/DC converter and the controllability of
the system, the semi-active topology was chosen. In the semi-active topology, the batteries
and the ultracapacitors are connected by the DC/DC converter. Among the different types
of semi-active topology, the battery/ultracapacitor topology designs the ultracapacitor to
be connected with the DC bus directly. This kind of structure controls the states of the
battery more conveniently, but the current of the DC bus will correspondingly become
unstable. The structure adapted here is the battery/ultracapacitor topology, which is shown
in Figure 1. In this kind of structure, the ultracapacitors are connected with the DC/DC
converter, while the batteries are connected with the DC bus, which connects with the load
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through the DC/AC controller. The current of the structure tends to be stable for large
currents and will influence the active life of the battery.

World Electr. Veh. J. 2023, 14, x FOR PEER REVIEW 4 of 15 
 

states of the battery more conveniently, but the current of the DC bus will correspondingly 

become unstable. The structure adapted here is the battery/ultracapacitor topology, which 

is shown in Figure 1. In this kind of structure, the ultracapacitors are connected with the 

DC/DC converter, while the batteries are connected with the DC bus, which connects with 

the load through the DC/AC controller. The current of the structure tends to be stable for 

large currents and will influence the active life of the battery. 

 

Bidirectional 
DC/DC 

Converter

Ultra-
capacitor 

Module

Transmission 

System

Battery 

Module

 

Figure 1. System topology. 

Once the topology of the system is defined, the structure can be configured according 

to the worldwide harmonized light vehicle test procedure (WLTP). The parameters of the 

battery and the ultracapacitor involved are presented in Table 1. The energy storage 

should satisfy the nominal range of the vehicle. The energy requested in the nominal range 

Erange can be calculated as follows: 

=range WLTP range WLTP/E E S S  (1) 

where Srange denotes the WLTP nominal range, and SWLTP denotes the actual range derived 

in the WLTP condition. 

Thus, the total energy storage of the battery module should be no less than Erange. 

Additionally, the series voltage of the battery module should be no less than the DC link 

voltage. The following criteria are given: 

− B,s B,p B,cell Br,cell rangeE E E E E  (2) 

B,s B,cell B,DCN U U  (3) 

where EBr,cell denotes the extra energy waste per cell from the mass increase of the battery 

module. According to our assessment, when the mass of the battery module increases by 

72 g (the mass of one battery cell), it will require approximately 0.07 Wh additional energy, 

which is almost 1% of the energy storage of a battery cell. 

The ultracapacitor module should meet the peak power demand first and be large 

enough to store regenerative energy every time the load power is positive. The maximum 

energy demand can be calculated as follows: 

( )= −
p,

peak WLTP B,nmax

i

i
t

E P t P dt  
(4) 

where PB,n denotes the nominal power of the battery, and tp,i denotes the ith continuous 

period when PWLTP is larger than PB,n. 

Similarly, the maximum energy demand of the regenerative period is defined as fol-

lows: 

Figure 1. System topology.

Once the topology of the system is defined, the structure can be configured according
to the worldwide harmonized light vehicle test procedure (WLTP). The parameters of the
battery and the ultracapacitor involved are presented in Table 1. The energy storage should
satisfy the nominal range of the vehicle. The energy requested in the nominal range Erange
can be calculated as follows:

Erange = EWLTPSrange/SWLTP (1)

where Srange denotes the WLTP nominal range, and SWLTP denotes the actual range derived
in the WLTP condition.

Table 1. Parameters of the HESS.

Item Parameter Symbol Value

Battery cell

Nominal voltage UB,cell 3.2 V
Stored energy EB,cell 103 Wh

Nominal capacity 30 Ah
Nominal charge current 30 A

Maximum discharge current 200 A

Ultracapacitor cell
Nominal voltage Uc,cell 2.7 V

Stored energy EC,cell 3.04 Wh
Nominal capacity CC,cell 3000 F

HESS configuration

Series number of battery cells NB,s 90
Parallel number of battery cells NB,p 2

Series number of ultracapacitor cells NC,s 122
Parallel number of ultracapacitor cells NC,p 4

Thus, the total energy storage of the battery module should be no less than Erange.
Additionally, the series voltage of the battery module should be no less than the DC link
voltage. The following criteria are given:

EB,sEB,pEB,cell − EBr,cell ≥ Erange (2)

NB,sUB,cell ≥ UB,DC (3)

where EBr,cell denotes the extra energy waste per cell from the mass increase of the battery
module. According to our assessment, when the mass of the battery module increases by
72 g (the mass of one battery cell), it will require approximately 0.07 Wh additional energy,
which is almost 1% of the energy storage of a battery cell.
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The ultracapacitor module should meet the peak power demand first and be large
enough to store regenerative energy every time the load power is positive. The maximum
energy demand can be calculated as follows:

Epeak = max
i

∫
tp,i

|PWLTP(t)− PB,n|dt (4)

where PB,n denotes the nominal power of the battery, and tp,i denotes the ith continuous
period when PWLTP is larger than PB,n.

Similarly, the maximum energy demand of the regenerative period is defined as follows:

Eregn = max
∫

tp,i

|PWLTP(t)|dt (5)

where tr,i denotes the ith continuous period when PWLTP is positive.
According to the voltage demand of the DC bus, the following criteria are needed:

3
4

NC,sNC,pEC,cell ≥ max
(

Eregn, Epeak

)
(6)

1
2

UC < UB,sUB,cell < UC (7)

where the voltage of the ultracapacitor should be in the period of (1/2 ultracapacitor,
ultracapacitor) to ensure that the DC/DC converter is working in an efficient state.

With the analysis above, we calculated the appropriate configuration of the hybrid
energy system. The results are shown in Table 1.

2.2. Model Description
2.2.1. Vehicle Power Model

The real-time power demand is calculated as follows [16]:

Pre =
(

µMgcosθ + Mgsinθ + 0.5AρairCairv2 + δcMa
)

v (8)

where µ denotes the rolling resistance coefficient, g denotes the gravitational acceleration,
M denotes the vehicle mass, A denotes the vehicle windward area, θ is the longitudinal
road gradient, ρair denotes the air density, Cair denotes the air resistance coefficient, v is the
velocity, a is the acceleration, and δc is the rotation mass correction coefficient. The values
of the parameters above are listed in Table 2. It should be noted that the circumstances of
actual driving are complex so it is impossible to consider the influence of the road gradient,
so we assume the longitudinal road gradient is zero.

Table 2. Parameters of the vehicle.

Parameter Symbol Value

Vehicle mass M 1360 kg
Rolling resistance coefficient µ 0.0015

Gravitational acceleration g 9.8 m/s2

Longitudinal road gradient θ 0
Air density ρair 1.202 kg/m3

Vehicle windward area A 2 m3

Rotation mass correction coefficient δc 1.04
Air resistance coefficient Cair 0.3

Power transmission system efficiency ηs 0.9
WLTP nominal range Srange 150 km

Battery module voltage UB,DC >400 V
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The electric drive power Pe is formulated as Equation (9):

Pe =

{
Pre/ηs, Pre ≥ 0
ηsPre, Pre < 0

(9)

where ηs denotes the efficiency of the power transmission system; when Pre is positive,
the vehicle is in traction mode, and when Pre is negative, the vehicle is in regenerative
braking mode.

2.2.2. Battery Model

A lithium-ion battery is a kind of nonlinear electrochemical device containing a series
of complex physical and chemical processes, and it is very difficult to accurately model it.
We have considered more accurate model-like nonlinear models in recent research [21], but
the accuracy brings complexity. The key point of the paper is the HESS based on RL, so we
tend to use more simple models.

Considering the complexity and accuracy requirements of the model, this study
uses the Thevenin model to model lithium-ion batteries [22]. Figure 2a is the Thevenin-
equivalent circuit model of the battery, which mainly includes an open voltage source,
an ohmic internal resistance and a parallel RC network. The open-circuit voltage source can
be used to describe the steady-state characteristics of the battery, while the ohmic internal
resistance and parallel RC network can be used to describe the transient characteristics of
the battery. The model considers the transient and steady characteristics of the battery at
the same time, and its accuracy and computational complexity are moderate, so this model
is appropriate for simulation.
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Based on the Thevenin model of the battery, the following expressions can be obtained:

Ub = Uocv −Uo −Up (10)

Ib = −Uo/Ro = −Up/Rp − CpdUp/dt (11)

where Ub is the terminal voltage of the battery, Uocv is the open circuit voltage of the circuit,
Uo is the voltage drop of the ohmic internal resistance, Ib is the charging current, Ro is
the ohmic internal resistance, and Rp and Cp are the polarization internal resistance and
polarization capacitance of the battery, respectively.

The open-circuit voltage Uocv in the formula can be obtained from the curve table
of OCV-SOC through experiments and then from the electrochemical model. Taking the
combined model as an example, the OCV of the battery can be written as:

Uocv = k0 + k1SOC2 + k2SOC + k3/SOC + k4 log(SOC) + k5 log(1− SOC) (12)

where k0 to k5 are the model coefficients.
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2.2.3. Ultracapacitor Model

As shown in Figure 2b, the standard RC model of the ultracapacitor is adopted in this
study, which consists of an ideal capacitor Cu and an equivalent series resistance Ru [22].
This model can accurately reflect the external electrical characteristics of the ultracapacitor
during charging and discharging. By analyzing this circuit, the following expressions can
be obtained:

Uu = Ru Iu + Uc (13)

dUc/dt = Iu/Cu (14)

where Uu is the terminal voltage of the ultracapacitor, Uc is the voltage across the equivalent
series resistor, Iu is the charging current, and Cu and Ru are the ideal capacitor and the
equivalent series capacitor, respectively.

3. Methodology
3.1. Speed Prediction Based on Markov Chain

To apply the energy management strategy in some real-time calculations, accurate
speed prediction is needed. The method employed in the speed prediction in this research
is the Markov Chain. According to the operation condition of the WLTP, the velocity and
the acceleration were divided into limited states:

a ∈
{

a1, a2, . . . aNa
}

(15)

v ∈
{

v1, v2, . . . vNv
}

(16)

where Na is the number of acceleration states, and Nv is the number of velocity states.
According to the data in the WLTP, the range of the acceleration is −1.5–1.7 m/s2, and then
the acceleration is separated with a gap of 0.1 m/s2. The range of velocity is 0–36.5 m/s,
and then the velocity is separated with a gap of 0.5 m/s.

Next, the velocity and acceleration of each moment were reflected into the quantities
of states vl and ai, and then the acceleration during n moments in the future was recorded,
which will be reflected into the quantities of states where n denotes the length of prediction.
Thus, the state transition probability can be defined:

Pn
il,j = Pr

{
ak+n = aj

∣∣∣ak = ai, vk = vl
}

(17)

The number of times the acceleration transmits is counted from ai to aj in n steps when
the velocity is exactly vl , which is supposed to be mn

il,j. mn
il denotes the number of times the

acceleration transmits from ai to all acceleration states in n steps when the velocity is vl .
We have:

Pn
il,j = mn

il,j/mn
il (18)

When the velocity is vl , all the transition probabilities in n steps form the state transition
probability matrix Pn

l :

Pn
l =

 Pn
1l,1 · · · Pn

1l,Na
...

. . .
...

Pn
Na l,1 · · · Pn

Na l,Na

 (19)

From the matrix above, the velocities in n steps in the future can be predicted: (1) reflect
the actual velocity and acceleration to the state quantity vl and ai at the current moment;
(2) calculate the expectation of acceleration after n steps based on the state transition
probability matrix; and (3) according to the expectation of acceleration above, calculate the
acceleration in m steps (1 ≤ m ≤ n).
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3.2. Power Splitting Based on Reinforcement Learning
3.2.1. Basic Concepts

In this section, the Q-learning algorithm is adopted to optimize the overall efficiency
and obtain an effective energy management strategy for the WLTP. A series of basic
concepts of reinforcement learning need to be introduced hierarchically to define the
Q-learning algorithm.

Reinforcement learning solves and improves the control performance of Markov de-
cision problems. Its main architecture revolves around a so-called learning agent, which
has access to sensing the environment state and taking actions that conversely affect the
controlled environment. To improve control performance, a reward signal is defined that
can guide the agent to achieve higher cumulative values through a trial-and-error mecha-
nism. Reinforcement learning can be divided into two categories: model-based learning
and model-free learning. In model-based learning, considering the multi-step reinforce-
ment learning task, the machine has modeled the environment, which can simulate the
same or similar situation with the environment inside the machine. Regarding model-free
learning, in a realistic reinforcement learning task, it is often difficult to know the transition
probability and reward function of the environment or even how many states there are in
the environment. If the learning algorithm does not depend on environment modeling, it is
called model-free learning, which is much more difficult than model-based learning.

The biggest advantage of model-based learning is that agents can plan in advance, try
possible future choices in advance when they go to each step, and then clearly choose from
these candidates. The biggest disadvantage is that agents often cannot get the real model
of the environment. If the agent wants to use the model in a scene, it must learn completely
from experience, which will bring many challenges. The biggest challenge is that there is
an error between the model explored by the agent and the real model, which will cause the
agent to perform well in the learning model but not well in the real environment. In order
to obtain an energy management strategy that can cope with the real environment well,
the model-free learning method is used here. There are two kinds of methods in model-
free reinforcement learning: the Monte-Carlo update and temporal-difference update. In
actual working conditions, the required power is changing every second. According to this
characteristic, Q-learning is selected to explore energy management. At the same time, the
rule-based method is used to provide another integrated energy management system and
be compared with Q-learning to verify its effectiveness.

3.2.2. Power Splitting Based on Q-Learning

Q-learning was proposed for solving Markov decision problems. As one of the most
popular off-policy RL methods, Q-learning is expected to maximize the total reward ∑ R.
Consequently, the optimal value function that guides the decision process of the policy can
be defined as the distribution over the given current state S(t) and control action A(t).

In the integrated energy management system, there are three kinds of changing
states: the SOC representing the battery state, state-of-voltage (SOV) representing the
capacitor state, and Pdem representing system output. The constraints of the state variable
S(t) = {SOC(t), SOV(t), Pdem(t)} can be defined as:

0.4 ≤ SOC(t) ≤ 0.9
0.2 ≤ SOV(t) ≤ 0.9
−40 ≤ Pdem(t) ≤ 40

(20)

where Pdem is the required power (unit: kW).
The constraints of the control variable A(t) = {Ic(t), Iv(t)} are defined as:{

20 ≤ |Ic(t)| ≤ 40
20 ≤ Iv(t) ≤ 40

(21)

where Ic is the battery current, and Iv is the ultracapacitor current (unit: A).
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The reward function is:
R = {η + γ|∆SOC|} (22)

where η is a variable; with the size of the total loss value under each second working
condition, it is randomly selected in the corresponding interval. When the total loss is less
than the required power of 20%, γ is 1; otherwise, γ is −1.4SOC = SOC − SOCpre, is used
to limit the SOC range of battery packs.

Rt is the reward at a single time step t; for estimating the long-term return, the return
Gt is used to represent the cumulative value of reward Rt after time t, and its recursion
form is:

G(t) =
∞

∑
k=0

γkR(t + k) = R(t) + γ(R(t + 1) + γR(t + 2) + . . .) = R + γG(t + 1) (23)

where γ∈(0,1) is the discount factor.
Strategy b is a mapping from the state to the likelihood of selecting each action. The

state value function vb(s) is defined as the expected return starting from state s and following
strategy b, expressed as:

vb = Eb[G(t)|S(t) = s] (24)

where S(t) is the state at time t.
Meanwhile, the action value function qb(s, a) is also defined as the expected return

starting from state s, taking action a and following strategy b:

qt(s, a) = Eb[G(t)|S(t) = s, A(t) = a] (25)

where A(t) is the action at time t. Then, again, the recursive form can be derived:

qt(s, a) == R(t) ∑
s(t+1)∈S

p(s(t + 1)|s(t), a(t)) ∑
a(t+1)∈A

b(a(t + 1)|s(t + 1))qb(s(t + 1), a(t + 1)) (26)

where s(t) and s(t + 1) represent specific states at time t, and t + 1. a(t) and a(t + 1) represent
the specific actions at time t and t + 1.

The optimal action value function q*(s, a) is defined as the maximum action value
function in all strategies, and its recursive form can be expressed as:

q ∗ (s(t), a(t)) = R(t) + ∑
st+1∈ S

p(s(t + 1)|s(t), a(t))maxa(t+1)q ∗ (s(t + 1), a(t + 1)) (27)

If q*(s, a) is known, the optimal strategy b* can be obtained by maximizing q*(s, a).
As the real value of the optimal action value function is difficult to obtain, the estimated

value of q*(S(t), A(t)) − Q(S(t), A(t)) is used. In a sequential difference method including
Q-learning, the difference between the estimated value Q(S(t), A(t)) and the better estimated
value R(t) + γQ(S(t), A(t)) is used to update Q(S(t), A(t)):

Q(S(t), A(t)) = Q(S(t), A(t)) + α(R(t) + γQ(S(t + 1), A(t + 1))−Q(S(t), A(t))) (28)

where α is the learning rate.
The algorithm block diagram is shown in Figure 3, which demonstrates the basic

method of the algorithm, including the usage of previous work. The exact procedures of
the QL algorithm in this article are shown in Algorithm 1.
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Algorithm 1: Q-Learning

1. Initialization of Q-learning: Determine algorithm parameter boundary: α∈(0,1), γ∈(0,1),
numbers of episodes N, working condition duration T, initialize action value target Q with
random weights Q(s, a)’ and experience pool D with capacity N

2. for episode = 1: N do
3. for t = 1:T do
4. With probability π select a random action A(t)
5. Otherwise, select A(t) = arg maxQ(S(t), A(t))
6. execute action A(t) and observe reward R(t) and next state S(t + 1)
7. update Q follows: Q(S(t), A(t)) = Q(S(t), A(t)) + α[R(t) + γmaxQ(S(t + 1), a) − Q(S(t),

A(t))]
8. update S(t) and A(t)
9. end for
10. end for
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4. Results and Discussion
4.1. Model Verification

First, at 25 ◦C, the open-circuit voltage of the battery under different SOCs was
measured. After fitting with Equation (12), the lithium-ion battery model can be identified
according to the RLS algorithm. The voltage prediction result is shown in Figure 4a, and the
error between the voltage prediction result and the actual voltage is shown in Figure 4b. The
polynomial fitting values of the ohmic resistance, polarization capacitance and polarization
internal resistance with respect to the SOC are shown in Table 3. Generally, the voltage
curve predicted by the recursive least square method is almost consistent with the actual
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measured curve, and the root mean square error of the voltage is 0.0015 V, which meets the
requirements of model accuracy.
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Table 3. Battery parameter fitting.

SOC Ro/Ω Cp/×104 F Rp/Ω

0.1 0.0014 3.2301 0.0042
0.2 0.0013 3.2723 0.0043
0.3 0.0012 3.4376 0.0045
0.4 0.0013 3.8351 0.0047
0.5 0.0011 3.7726 0.0050
0.6 0.0012 4.2605 0.0053
0.7 0.0011 4.8798 0.0063
0.8 0.0012 5.0248 0.0078
0.9 0.0015 4.9906 0.0109

In addition, it can be found that the error between the voltage prediction result and
the real value is obviously larger at the beginning of the experiment (the SOC is close to 1)
and before the end of the working condition (the SOC is close to 0). This is because there
are two logarithmic functions in Equation (12) of the combined model. When soc is close to
1 or 0, the logarithmic functions quickly approach infinity, so there is a large error. On the
other hand, when the SOC is close to 1 or 0, “overcharge” and “overdischarge” will affect
the performance and life of the battery. Considering the large error when the SOC is close
to 1 or 0 and the possible problems of “overcharge” and “overdischarge”, we should try
our best to make the battery work in SOC∈(0.1, 0.9) when modeling and experimenting.

Through the RLS algorithm, the ultracapacitor model can be identified similarly to
the battery model, and the voltage prediction results and errors are shown in Figure 4c,d.
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As the model of the supercapacitor is simple, the error of voltage prediction of the RLS
algorithm after convergence is very small, which meets the modeling requirements. The
identification values of Cu and Ru of the ultracapacitor can be regarded as fixed values, as
shown in Table 4.

Table 4. Parameter identification of the ultracapacitor.

Model Parameter Parameter Identification Result

Ideal capacitance 3053.3 F
Equivalent series resistance 0.0037 Ω

4.2. Speed Prediction Results

The speed prediction results and prediction error are plotted in Figure 5a,b, from
which we can infer that the speed prediction based on the Markov chain is an accurate
approach with WLTP working conditions.
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4.3. Power Splitting Results

In this section, to study the effectiveness of the QL method, the results are com-
pared with the rule-based strategy, and standard WLTP working conditions were used for
simulation verification.

Figure 6a,b show the power allocation based on the rule strategy and reinforcement
learning, respectively. Under WLTP conditions, the power allocation of the two strategies
can fully meet the power demand by the battery when the power demand is low and meet
the demand by the battery output power with a small amount when the power demand
is high. Compared with the traditional pure battery drive, both strategies greatly save
battery energy.
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Figure 7a shows the comparison of power allocation between the rule-based strategy
and reinforcement learning strategy. To protect the battery, according to the specific working
conditions, when the outside world needs power from the power supply system, the current
output by the battery is limited from 20 to 40 A, and the current input when the battery is
charged is limited from −40 to −20 A. This choice can keep the input and output power
of the battery in a stable range, making the power output more stable, thus protecting the
battery and prolonging the battery life.
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Obviously, compared with the rule-based approach, the work points in the learning-
based strategy are not only more concentrated but also more located in the low fuel
consumption zone, thus achieving a more reasonable distribution. At the same time, in
terms of energy management, we can see that compared with the rule-based method, when
the power supply system needs to output power, the reinforcement learning method does
not always choose the battery output power but appropriately increases the output power
of the capacitor according to the size of the output energy required by the power supply
system to meet the power demand and charge the battery. This energy management mode
breaks through the rule-based charging and discharging modes and provides a brand-new
energy management idea.

Figure 7b shows the SOC trajectory comparison between rule-based and reinforce-
ment learning. Compared with the rule-based method, the reinforcement learning method
chooses working power. The SOC value in a period of time does not change much com-
pared with the average SOC value, and the final SOC value of reinforcement learning is
higher than that of the rule-based method. Compared with the rule-based method, the
reinforcement learning method can better maintain the SOC. Compared with the rule-based
method, the energy management method obtained by reinforcement learning can make full
use of the advantages of ultracapacitors in the composite power supply system when the
power demand (e.g., from 600 to 1200 s) is large and changes rapidly and effectively main-
tain the SOC of the battery while providing the system power demand, thus prolonging
the service life of the battery. This result verifies the effectiveness of reinforcement learning
in delaying battery use.

Table 5 shows the comparison of comprehensive efficiency. It is calculated by dividing
the total energy required under the WLTP condition by the total energy output of the battery.
Compared with the rule-based strategy, the strategy based on reinforcement learning can
fully meet the power demand and greatly improve the comprehensive efficiency. This result
verifies the effectiveness of the energy management strategy of reinforcement learning
in energy saving. Combined with the previous results, it can be seen that in facing the
complex, nonlinear and dynamic WLTP working condition, the proposed reinforcement
method can effectively distribute the charging and discharging conditions of power supply
and maintain the SOC of battery and, at the same time, meet the power demand of working



World Electr. Veh. J. 2023, 14, 57 14 of 15

conditions at the cost of less energy loss and effectively realize the goal of optimizing the
overall efficiency and effective energy management strategy.

Table 5. Efficiency comparison.

Strategy Comprehensive Efficiency

Reinforcement learning 0.3096
Rule-based 0.2096

Pure cell 0.1016

5. Conclusions

The energy management strategy is significant for hybrid energy storage systems.
Traditional optimization algorithms have difficulty improving the flexibility and practicality
of applications. In this paper, an energy management strategy based on reinforcement
learning is proposed. Moreover, the speed prediction algorithm based on the Markov chain
is employed for better real-time energy management. The results indicated that accurate
speed prediction can be obtained by the presented algorithm. The power splitting algorithm
based on Q-learning is proposed, and the results showed that the proposed reinforcement
method can effectively distribute the charging and discharging conditions of the power
supply and maintain the SOC of the battery and, at the same time, meet the power demand
of working conditions at the cost of less energy loss and effectively realize the goal of
optimizing the overall efficiency and effective energy management strategy. Future work
will focus on improving the efficiency and application of reinforcement learning algorithms.
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