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Abstract: Signalized intersections can increase the vehicle stops and consequently increase the
energy consumption by forcing stop-and-go dynamics on vehicles. Eco-driving with the help of
connectivity is a solution that could avoid multiple stops and improve energy efficiency. In this paper,
an eco-driving framework is developed, which finds the energy-efficient speed profile both up- and
downstream of a signalized intersection in free-flow situations (eco-FF). The proposed framework
utilizes the signal phasing and timing (SPaT) data that are communicated to the vehicle. The energy
consumption model used in this framework is a combination of vehicle dynamics and time-dependent
auxiliary consumption, which implicitly incorporates the travel time into the function and is validated
with real-world test data. It is shown that, by using the proposed eco-FF framework, the vehicle’s
energy consumption is notably reduced.

Keywords: eco-driving; energy efficiency; real-world measurements

1. Introduction
1.1. Context

In recent years, the transportation sector has been responsible for more than 28%
of the total energy consumption and 26% of the greenhouse gas (GHG) emissions in the
U.S. [1]. One-fourth of these emissions are caused by urban transportation delays at red
traffic lights [2]. Signalized intersections are an important factor in energy consumption
and GHG emissions, as well as the mobility hindrances because of the stop-and-go nature
of traveling through a signalized arterial.

With the growth of intelligent transportation systems (ITS) and connected vehicle
(CV) technology, a vehicle can obtain accurate information about the surrounding traffic
conditions. Vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication
allow for the vehicle to access signal phasing and timing (SPaT) information, and learn the
preceding vehicle’s position, speed and acceleration [3–5].

These data can be used in the vehicle’s motion planning in ecological driving (eco-
driving) to improve the vehicle’s behavior. Eco-driving comprises adjustments in driving
behavior such as speed, acceleration rate, etc., in order to improve energy efficiency,
mobility, emissions and/or congestion.

The goal of this paper is to develop an energy-optimal eco-driving system for a single
automated electric vehicle (AEV) when the vehicle is approaching and departing from a
traffic light using the V2I communication information.

1.2. Literature Review

There has been a large amount of research worldwide regarding energy efficiency
improvements, looking at mobility, emission, safety, and congestion. At the early stages of
energy economic control strategies, the cruising speed was optimized based on the vehicle’s
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internal characteristics [6] or road topography [7,8]. Other strategies adjusted the vehicle’s
speed or acceleration rate to reduce energy loss. Most studies focus on the eco-driving of
a single vehicle, either in the vicinity of an isolated signalized intersection [9–12] or at an
arterial of multiple intersections [13,14].

In [15], a fuel-efficient control strategy for a group of vehicles was developed, in
which each vehicle was optimized separately in a decentralized manner. An ecological
cooperative adaptive cruise control (CACC) for platoons was investigated in [5,16].

Some research works have prioritized traffic flow over energy efficiency and, in fact,
can be considered speed/acceleration advisory systems by reducing the idling time at the
red phase of the traffic light [17–19]. Other works jointly optimize a weighted sum of travel
time and energy efficiency [20–22].

In the existing literature on driver assistance systems, speed advisory systems and eco-
driving, most studies focus on the energy consumption formulation of internal combustion
engines (ICE) such as the Virginia Tech Comprehensive Power-Based Fuel Consumption
Model (VT-CPFM) [4,23,24] and VT-micro [9,11,25]. The formulation and solution of
eco-driving control problems in EVs and internal combustion engine (ICE) vehicles are
fundamentally different [26]. However, there are limited research works on the eco-driving
of electric vehicles (EVs) [26–28] and, among those, the auxiliary consumption has mostly
been ignored [26,28]. Other works minimize a weighted sum of the consumed energy
and travel time [20–22]. To the best of the authors’ knowledge, no paper has incorporated
energy use and time-dependent auxiliary consumption in a single objective function.

When a vehicle leaves an intersection, it usually accelerates back to a desired set
speed or the speed limit. The speed at which the vehicle reaches the intersection affects its
energy consumption after it leaves the intersection. Therefore, optimizing a joint problem
,including up- and downstream, leads to better results rather than two separate prob-
lems. In the majority of the existing literature, the vehicle’s departure behavior has not
been investigated.

In this paper, the optimization problem was formulated with the objective of min-
imizing energy consumption. This consisted of the incorporation of vehicle dynamics
and time-dependent auxiliary consumption. The proposed objective function minimizes
the energy consumption, while not allowing for the travel time to have irrational values.
This approach is much closer to a realistic energy modeling due to the consideration of
an important cause of energy consumption, and does not require complicated weight-
factor-tuning processes. Furthermore, the proposed eco-FF framework jointly controls
and optimizes the approaching and departure behavior in free-flow situations. Normally,
the decision/control variable of eco-driving problems is speed or acceleration. The travel
time duration depends on the speed and acceleration rate. This makes the calculation of
the energy consumption that is integrated over time impossible. Thus, we propose an
analytical method that parameterizes the energy consumption as a function of speed and
acceleration rate.

Therefore, the main contributions of this paper are as follows:

• Incorporating the vehicle dynamics and time-dependent auxiliary consumption as a
single objective function that accurately models the real-world situation.

• Implementation of a joint eco-approach-and-departure strategy to achieve a global optimum.
• Analytical parameterization of vehicle’s possible motion strategies to eliminate the

time variable in the optimization.

In terms of the paper layout, first, the proposed joint model and its analytical pa-
rameterization process is presented in Section 2. Section 3 discusses the calibration and
validation of the proposed energy consumption model, followed by the numerical results
of the eco-FF framework. Finally, in Section 4, the conclusion and future work ideas
are presented.
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2. Materials and Methods

In this paper, we focus on the eco-driving of an AEV through an urban single-lane
road while approaching and departing from a signalized intersection. The intersection is
assumed to have a road side unit (RSU) that can broadcast the SPAT information to the
vehicles via a dedicated short-range communication (DSRC). We assume that the vehicle
enters the DSRC range with a known speed (vi), and should reach the desired speed (vd)
when it arrives at a certain distance from the traffic light in the downstream.

2.1. Energy Consumption Modeling

The longitudinal vehicle dynamics based on Newton’s second law of motion is

ma = Fw −
1
2

ρCa A f v2 −mgµcos(θ)−mgsin(θ), (1)

where m is the vehicle’s mass, a is the longitudinal acceleration of the vehicle, Fw is the sum
of traction and braking force at the wheels, ρ is the air density, Ca is the aerodynamic drag
coefficient, A f is the frontal area of the vehicle, v is the longitudinal speed of the vehicle, g
is the gravitational acceleration, µ is the friction coefficient, and θ is the road grade.

The instantaneous power (Pw(t)) needed at the wheels is

Pw(t) = Fw(t)v(t). (2)

Therefore, the kinematic energy needed to travel through the road during ∆t = t f − ti
unit of time is

Ew =
∫ t f

ti

Fw(t)v(t)dt =
1

ηD

∫ t f

ti

(ηrma(t)v(t) +
1
2

ρCAv3(t) + mg(µcos(θ) + sin(θ))v(t))dt, (3)

where ti and t f are the initial and final time, respectively, ηD is the driveline efficiency, and

ηr =

{
ηR if a(t) < 0
1 if a(t) ≥ 0

(4)

where ηR is the regenerative braking efficiency.
With the reasonable assumption that the road grade is constant, and with c1 = m,

c2 = 1
2 ρCA, and c3 = mg(µcos(θ) + sin(θ)), the equation is rewritten as

Ew =
1

ηD

∫ t f

ti

(ηrc1a(t)v(t) + c2v3(t) + c3v(t))dt. (5)

Ew represents the wheel-to-distance energy that is needed to travel between two
points, irrespective of the powertrain characteristics. However, the vehicle consumes
additional energy to provide auxiliary functions such as air-conditioning, lighting, energy
management and a driving control system. Auxiliary consumption varies depending on
the travel time. For simplification, we assume that the auxiliary consumption power is
constant. Therefore, the energy needed for auxiliary consumption is

Ea =
∫ t f

ti

Padt, (6)

where Ea is the auxiliary-originated energy consumption and Pa is the instantaneous
auxiliary power.
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Therefore, the total energy consumption is the summation of the energy needed at
wheels and the energy needed for auxiliary consumption. With c4 = Pa, the total energy
consumption (E) is

E =
1

ηD

∫ t f

ti

(ηrc1a(t)v(t) + c2v3(t) + c3v(t) + ηDc4)dt. (7)

2.2. Energy Consumption Analytical Parameterization

The definite integral used above cannot be calculated, since v(t) and a(t) have un-
known functions and the travel time (t f − ti) varies according to the vehicle’s speed and
acceleration. To overcome this issue, we define and analytically parameterize a combination
of cruising and accelerating maneuvers. These four scenarios are as follows:

• Cruise (C): Cruising with a constant speed over the whole trajectory.
• Accelerate (A): Accelerating or decelerating at a constant rate over the whole trajectory.
• Cruise–accelerate (C-A): First, cruising at a constant speed over a part of the trajec-

tory; then, accelerating or decelerating with a constant rate over the remainder of
the trajectory.

• Accelerate–cruise (A-C): First. accelerating or decelerating with a constant rate over
a part of the trajectory; then, cruising with a constant speed over the remainder of
the trajectory.

We assume that the vehicle’s speed profile in free-flow is a part of the speed profile
shown in Figure 1. In this regard, part III shows the cruise strategy with t1 = t2 = 0,
part II shows the accelerate strategy with t1 = 0 and t2 = t3, parts I-and-II shows the
cruise–accelerate strategy with t2 = t3, and parts II-and-III shows the accelerate–cruise
strategy with t1 = 0. The main rationale behind this assumption is that the fluctuations in
speed cause energy losses because a part of the kinetic energy is lost while braking and
recuperation of all the kinetic energy is impossible.

Figure 1. Cruise and accelerate combination strategies.

Based on Figure 1, in [0, t1] and [t2, t] (cruising stage), the speed is contant and the
acceleration rate is zero. In [t1, t2] (accelerating stage), the acceleration rate is constant. The
instantaneous speed with a constant acceleration rate is v(t) = at + v0, where v0 is the
initial speed. Therefore, the energy consumption of this scenario during the time interval
of [0, t3] is
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E =
1

ηD

∫ t1

0
(c2v3

1 + c3v1 + ηDc4)dt (8)

+
1

ηD

∫ t2

t1

(ηrc1a(at + v1) + c2(at + v1)
3 + c3(at + v1) + ηDc4)dt

+
1

ηD

∫ t3

t2

(c2v3
2 + c3v2 + ηDc4)dt.

The definite integration in (9) yields

E =
1

ηD
[
1
2

ηrm(v2
2 − v2

1) +
1
2

ρCa A f (v3
1t1 +

1
4a

(v4
2 − v4

1) + v3
2(t3 − t2)) + mg(µL + ∆h)] (9)

+ Pat3,

where L is the length of the path over which the speed profile is optimized, and ∆h is the
corresponding elevation difference, which equals zero on flat roads.

Since the time milestones depend on speed and acceleration, we parameterize t1, t2,
and t3 in each of the four strategies, based on v1, v2, and a. The list of parameterized time
milestones is presented in Table 1. For brevity, we present the analytical parameterization
process of the cruise-accelerate strategy. The parametization of other strategies can be
similarly carried out. During the cruise–accelerate strategy, the traveled distances in part I
and part II are

∆xI = v1t1, (10)

and

∆xI I =
v2

2 − v2
1

2a
. (11)

Thus, the whole path length (L) is the summation of the traveled distance in these two
parts, which is

∆xI + ∆xI I = L. (12)

the constant acceleration rate in the accelerating part (part II) is

a =
v2 − v1

t2 − t1
. (13)

Table 1. Analytical parameterization of t1, t2, and t3 for each strategy.

Strategy t1 t2 t3

C 0 0 L
v2

A 0 2L
v1+v2

2L
v1+v2

C-A 2aL+v2
1−v2

2
2av1

2aL−(v2−v1)2

2av1

2aL−(v2−v1)2

2av1

A-C 0 v2−v1
a

2aL+(v2−v1)2

2av2

By substituting Equations (11) and (12) in the Equation (10), t1 is parameterically
calculated as

t1 =
2aL + v2

1 − v2
2

2av1
. (14)

similarly, by substituting Equation (14) in the Equation (13), t2 will be

t2 =
2aL− (v2 − v1)

2

2av1
. (15)

since t2 = t3, all the time milestones of the cruise–accelerate strategy are parameterically known.
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2.3. Eco-Ff Problem

In each scenario of the eco-FF problem, depending on whether the vehicle is upstream
or downstream, the decision variables are v2 and a, and v1 and a, respectively. With v1 = vi
upstream and v2 = vd downstream, the energy consumption in the upstream, Eup, and
downstream, Edown, is

Eup =
1

ηD
[
1
2

ηrm(v2
s − v2

i ) +
1
2

ρCa A f (v3
i t1u +

1
4au

(v4
s − v4

i ) + v3
s (t3u − t2u)) (16)

+ mg(µLu + ∆hu)]Pat3u,

and

Edown =
1

ηD
[
1
2

ηrm(v2
d − v2

s ) +
1
2

ρCa A f (v3
s t1d +

1
4ad

(v4
d − v4

s ) + v3
d(t3d − t2d)) (17)

+ mg(µLd + ∆hd)] + Pat3d.

where vs in the vehicle’s speed when it reaches the traffic light stop line, t1u, t2u, and t3u
are the parameterized time milestones upstream, t1d, t2d, and t3d are the parameterized
time milestones downstream, Lu and Ld are the length of the upstream and downstream
path, and ∆hu and ∆hd are the elevation differences between the upstream and downstream
paths, respectively.

Consider the vehicle enters the traffic signal’s DSRC range, which is Lu distance units
from the intersection, and its initial speed is vi. The shortest time in which the vehicle can
reach the intersection is

ts =
2amaxLu + (vmax − vi)

2

2amaxvmax
, (18)

where amax is the maximum allowed acceleration rate and vmax is the maximum speed limit.
Based on the SPAT information, consider p ordered green periods as τ1, τ2, . . . , τp. Each τq

for q ∈ {1, 2, . . . , p} is τq = [τq1, τq2). ts falls into the Qth interval, τQ, if τ(Q−1)2 ≤ ts ≤ τQ2.
Therefore, the eco-FF optimization problem

min
vs ,a

Eup + Edown (19a)

s.t. vmin ≤ vs ≤ vmax (19b)

amin ≤ a ≤ amax (19c)

τ(Q−1)2 ≤ t3u ≤ τQ2, (19d)

where vmin is the minimum possible speed that is equal to zero and amin is the maximum
allowed deceleration rate. In this problem, Equations (19b) and (19c) correspond to the
speed and acceleration limits, and Equation (19d) prevents the red signal violation. The
Equation (19a) is a five-degree polynomial optimization problem (w.r.t vs). According
to [29] finding analytical solutions for polynomial problems is extremely difficult compared
to finding numerical ones. Additionally, the existence of a green and red timing creates
a non-convex problem that further complicates the provision of an analytical solution
of Equation (19a). To the best of the authors’ knowledge, there is no analytical approach
that can solve such a complex problem. However, as the decision variables have three
dimenstions, numerical solutions such as global search can be utilized. Therefore, a global
search approach is used in this research.

2.4. Human Driver Simulation

As a benchmark, we compare the eco-FF results with the Gipps model and Intelligent
Driver Model (IDM) to resemble a human driver.
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According to the Gipps model [30], the vehicle’s instantaneous speed can be calculated
based on (20)–(22).

ve(t + τ) = min[vacc, vdec] (20)

vacc = ve(t) + 2.5aeτ(1− ve(t)
vdes(t)

)

√
0.025 +

ve(t)
vdes(t)

(21)

vdec = beτ +

√
(beτ)2 − be[2(xp(t)− xe(t)− Sp)− ve(t)τ −

vp2(t)
bp

] (22)

where ve(t) is the controlled vehicle’s speed at time t, ae is the maximum acceleration of the
controlled vehicle, τ is the reaction time, vdes(t) is the desired speed at time t, be is the most
severe braking of the controlled vehicle (and is negative), xp(t) is the preceding vehicle’s
position at time t, xe(t) is the controlled vehicle’s position at time t, Sp is the minimum
distance to the preceding vehicle, vp(t) is the preceding vehicle’s speed at time t, and bp is
the most severe estimated braking of the preceding vehicle (and is negative). In this regard,
ae, be, bp, Sp, and τ are parameters that can be calibrated and adapted based on the case,
e.g., the weather conditions. The Gipps model is capable of driving simulations either in
the presence of a preceding vehicle or in free-flow situations. To make the Gipps model
simulate free-flow situations, one can assume that the preceding vehicle is a very far and
fast-moving vehicle. In this regard, xp → ∞, vp → ∞, bp = 0, and Sp = 0.

The second benchmarking baseline is the IDM [31]. According to the IDM, the vehicle’s
instantaneous acceleration rate can be calculated based on Equations (23) and (24)

aidm(t) = am[1− (
vc(t)
vdes

)δ − (
s∗(t)
sc(t)

)2] (23)

s∗(t) = s0 + vc(t)T +
vc(t)[vc(t)− v1(t)]

2
√

ambm
(24)

where aidm(t) is the controlled vehicle’s acceleration at time t, am is the maximum accelera-
tion of the controlled vehicle, vc(t) is the vehicle’s speed at time t, vdes is the desired speed,
δ is the free acceleration exponent, sc(t) is the vehicle’s location at time t, s0 is the minimum
distance between the controlled vehicle and the preceding vehicle, T is the desired time
gap, v1(t) is the preceding vehicle’s speed at time t, and bm is the absolute value of the
vehicle’s maximum braking rate. am, bm, s0, δ, and T are the model parameters: the first
four were chosen in accordance with the eco-FF problem and the latter was chosen based
on [31].

3. Results

In the first part of this section, we present the calibrated real-world measurements of
our work. In these measurements, a BMW i3 vehicle was used, on which several sensors
were installed to accurately measure the energy consumption, location, vehicle dynamics,
and corresponding time. A detailed description of the vehicle specifications is presented
on the manufacturer’s website [32]. The majority of the measured data were gathered in
Brussels, Belgium. Other values related to environmental parameters were set based on
[33]. All the aforementioned parameters and their values are presented in Table 2.

3.1. Measurement

The energy consumption of the vehicle was calibrated based on real-world measured
data. During the calibration process, the driveline efficiency and regenerative braking
efficiency were calibrated to 92% and 79%, respectively. Based on the environmental
temperature and desired cabin temperature, three different levels of auxiliary power
consumption were derived: 970 W, 1760 W, and 2550 W for low, medium, and high
auxiliary power consumption, respectively.
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Table 2. Parameter values of measurements.

Parameter Value Parameter Value

Driveline efficiency: ηD 0.92 Frontal area: A f 2.38 (m2)
Regenerative efficiency: ηR 0.79 Vehicle’s mass: m 1270 (Kg)

Rotating parts’ mass factor: fm 1.05 Upstream distance: Lu 300 (m)
Friction coefficient: µ 0.01 Downstream distance: Ld 200 (m)

Gravitational acceleration: g 9.81 (m/s2) Min. acceleration: amin −3.5 (m/s2)
Air density: ρ 1.176 (Kg/m3) Max. acceleration: amax 3.5 (m/s2)

Air drag coefficient: Ca 0.29 Max. speed limit: vmax 70 (km/h)

Figure 2 illustrates the theoretical prediction and real-world measured power con-
sumption of the used vehicle. The auxiliary power consumption in this figure is 1760 W,
which corresponds to the medium auxiliary power consumption. This shows that the
model predicts the power consumption with high accuracy. The Normalized Root Mean
Squared Error (NRMSE) is 0.0728, which indicates high model precision.
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Figure 2. Theoretical prediction and real-world measurement of energy consumption.

3.2. Results and Comparison

By virtue of the power consumption model that was verified in the previous section,
in the following, we study the performance of the eco-FF framework. The Gipps model
and IDM were utilized as a baseline for the performance benchmark.

Figure 3 represents the optimal speed profiles of eco-FF, Gipps, and IDM models in
four different settings, in which the initial and desired speeds provide realistic values at the
interval of [0 70] km/h, in accordance with the general urban speed limits.The auxiliary
power consumption (c4) was selected as 970 W and 2550 W to represent low and high
consumption levels, respectively, based on the real-world data measurements. For the
Gipps model, τ was assumed to be 0.5 s, ae as amax, be and bp to be amin, vdes to be vd, and Sp
to be zero. For the IDM, T was assumed to be 0.5 s, am to be amax, bm to be |amin|, vdes to be
vd, s0 to be zero, and δ to be 4. Additionally, the corresponding green and red light periods
for each plot are shown by their color at the bottom of the figures. Figure 3a shows that
the eco-FF method chose the A− C and A strategies in up- and downstream, respectively.
In the A− C strategy, the speed profile was chosen to catch the beginning of the second
green period while avoiding sudden speed changes. However, the Gipps model and IDM
led to an overshoot of speed and reached the intersection during the red period, which
increased the energy consumption and reduced the comfort level. The difference in energy
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consumption between the eco-FF and Gipps models was 0.0531 kWh, which is equal to
28.49% energy savings. The difference in energy consumption between the eco-FF and IDM
was 0.0304 kWh, which is equal to 18.58% energy savings. The strategy chosen in Figure 3b
by the eco-FF model was A and A for both up- and downstream. The same energy-saving
behavior was observed in the speed profile of the eco-FF method, whereas the Gipps model
and IDM underwent an unnecessary acceleration and deceleration, resulting in a higher
energy consumption. The difference in energy consumption between the eco-FF and Gipps
models was 0.0562 kWh, which is equal to 33.86% energy savings. The energy consumption
difference between the eco-FF and IDM was 0.0161 kWh, which is equal to 12.77% energy
savings. Figure 3c,d were plotted for two different values of c4 to indicate the importance
of auxiliary power consumption in the speed profile of the considered methods. We can
see that, regardless of c4, the Gipps model and IDM had almost identical behaviors in both
cases. In contrast, the eco-FF method actively adjusts its speed to take advantage of the
imposed conditions. When the auxiliary power consumption is low, the eco-FF model
prefers reducing the acceleration and increasing the travel time (almost 45 s). In this case,
power consumption was dominated by the changes in speed. However, for higher values
of c4 the eco-FF method chose to utilize increased accelerations and reach the desired speed
and location in a shorter time (36.5 s) because the total energy consumption was dominated
by the auxiliary energy consumption. The difference in energy consumption between the
eco-FF and Gipps models was 0.0141 kWh and 0.0109 kWh, which is equal to 15.25% and
9.56% energy savings, respectively. The energy consumption difference between the eco-FF
model and IDM was 0.0184 kWh and 0.0149 kWh, which is equal to 19.05% and 12.66%
energy savings, respectively.
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(d)
Figure 3. The eco-FF, Gipps, and IDM models’ speed behaviors. (a) vi = 0 (km/h), vd = 70 (km/h),
and c4 = 970 (W). (b) vi = 30 (km/h), vd = 70 (km/h), and c4 = 970 (W). (c) vi = 20 (km/h),
vd = 50 (km/h), and c4 = 970 (W). (d) vi = 20 (km/h), vd = 50 (km/h), and c4 = 2550 (W).
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In Figure 4, the blue boxes show the interquartile range, which contains the most
probable energy-saving values, and the gray planes show the min/max values. In Figure 4a,
which represents a low level of auxiliary power consumption, there is a high performance
difference between the eco-FF and Gipps model, especially for higher values of both vi
and vd. As c4 increases, the difference between these two models decreases, as shown in
Figure 4b. This behavior is also observed in Figure 3c,d, where the speed profile of both
models became more similar when the auxiliary power consumption was increased.

(a) (b)

Figure 4. Energy consumption savings of the eco-FF model with respect to the Gipps model with low
and high auxiliary power consumption levels. (a) c4 = 970 (W). (b) c4 = 2550 (W).

Figure 4 illustrates the energy consumption savings of the eco-FF model in comparison
to the Gipps model. The x-axis and the y-axis represent the vi and vd, respectively. For
each pair of (vi, vd), 100 randomly generated realizations of SPaT are simulated. In every
realization, the SPaT is 15 s and 35 s for red and green intervals, respectively, which sums
up to a 50 s periodic timeline. During the green timespan of each 50 s timeline, there is
a 50% probability of a one-time actuation caused by crossing vehicles or pedestrians. If
actuation is requested, a 5 s red light will occur during the 35 s green light. Additionally, to
determine the beginning phase of the traffic signal (green or red), the phase was randomly
chosen based on a uniform distribution between 0 and 50. Figure 5 shows 25 realization
examples of SPaT.

10 20 30 40 50 60 70 80 90 100

25

20

15

10

5

Figure 5. Signal green and red intervals for 25 realizations.
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Figure 6 illustrates the travel time difference between the eco-FF model and the Gipps
model. The x- and y-axes are the same as in the previous plot. The boxes show the
percentage of travel time reductions in the eco-FF model in comparison to the Gipps model.
The blue boxes represent the realizations in which the eco-FF model travel time was shorter
than the Gipps model. The red boxes show the increase in eco-FF model travel time in
comparison to the Gipps model. Comparing the Figure 6a,b, which represent the low and
high levels of c4, respectively, one can see that, by increasing c4, the behavior of the eco-FF
model tends to choose higher levels of speed. At high levels of c4, the time-dependent
auxiliary consumption is dominant. Additionally, both plots illustrate that, at lower desired
final speeds, the eco-FF model outperforms in terms of travel time. This is because the
Gipps model tends to reach the desired speed as soon as possible and then cruise at that
speed, while the eco-FF model speed is optimally determined based on the SPaT, c4, and
the initial and desired final speeds.

(a) (b)

Figure 6. Eco-FF travel time difference compared to the Gipps with low and high auxiliary power
consumption levels. (a) c4 = 970 (W). (b) c4 = 2550 (W).

4. Conclusions

The research work in this paper developed an eco-FF framework to optimize AV
energy consumption levels when approaching and departing from a signalized intersection.
The eco-FF framework jointly optimized the AV’s behavior both up- and downstream. In
addition, by adding the time-dependent auxiliary power consumption, the travel time was
incorporated into the cost function. The framework used the SPaT information collected
via V2I communication to calculate the optimal AV speed profile. The problem was
analytically parameterized under the assumption that the road grade is constant. These
simulations showed that the energy consumption savings were greater at lower auxiliary
power consumption levels. This reduction in energy consumption reached 63.09% and
56.66% at low and high levels of auxiliary power consumption, respectively. In addition,
the eco-FF model travel time saving reached 54.52% and 67.27% at low and high levels of
auxiliary power consumption, respectively. Therefore, the simulation results reveal the
strong influence of auxiliary power consumption on the optimal speed profile. To calibrate
the model parameters and verify the precision of the presented energy consumption model,
real-world measurements were used, focusing on the energy consumption, location and
speed profile of a BMW i3 in the city of Brussels, Belgium.

At present, the proposed framework is exclusively applicable to free-flow traffic. In
the future, we plan to use the presented eco-FF framework as the higher level of a com-
prehensive eco-driving logic in the presence of other road users. We could integrate the
eco-driving by using cooperative adaptive cruise control as the lower layer of the compre-
hensive framework. Moreover, we will use the optimization-based control algorithms for
real-time use. Additionally, the auxiliary consumption term can be modified for use in
different vehicle operation modes at different levels of auxiliary power consumption.
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