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Abstract: In a proton exchange membrane fuel cell (PEMFC) system, the flow of air and hydrogen
is the main factor affecting the output characteristics of the PEMFC, and there is a coordination
problem in the flow control of both. To ensure real-time gas supply in the fuel cell and improve
the output power and economic benefits of the system, a deep reinforcement learning controller
with continuous state based on fusion optimization (FO-DDPG) and a control optimization strategy
based on net power optimization are proposed in this paper, and the effects of whether the two gas
controls are decoupled or not are compared. The experimental results show that the undecoupled
FO-DDPG algorithm has a faster dynamic response and more stable static performance compared
to the fuzzy PID, DQN, traditional DRL algorithm, and decoupled controllers, demonstrated by a
dynamic response time of 0.15 s, an overshoot of less than 5%, and a steady-state error of 0.00003.

Keywords: proton exchange membrane fuel cell (PEMFC); gas supply system control; deep reinforcement
learning; fusion optimization

1. Introduction

The fuel cell (FC) is considered to be an alternative to traditional fossil energy sources
such as coal and petroleum in the 21st century. The FC provides an effective approach to
solve the shortage of petroleum energy and environmental pollution and is also related to
future energy security and long-term development. According to the different electrolytes,
fuel cells can be divided into alkaline fuel cell (AFC), phosphoric acid fuel cell (PAFC),
molten carbonate fuel cell (MCFC), solid oxide fuel cell (SOFC), and proton exchange
membrane fuel cell (PEMFC). Among them, the PEMFC is the most widely used.

Compared with fossil energy sources, the PEMFC technology has the following ad-
vantages [1]: high energy conversion efficiency, with an expected efficiency of more than
80% [2]; low or even no emissions can be achieved; low noise, high reliability and easy
maintenance during operation; and the power generation efficiency is less affected by the
load. Therefore, the PEMFC is widely used in many fields such as aerospace, military,
electric vehicle, and distributed electricity applications [3]. However, fuel cells also have
many shortcomings: the fuel cell reaction requires the action of catalysts and has high re-
quirements for catalysts; the use of hydrogen energy as fuel, the storage and transportation
of hydrogen energy have safety and stability problems; the output characteristics are soft
and need to improve the control performance, reduce the impact on the battery due to load
changes and the external environment, and improve the battery life [4,5].

The safe and efficient operation of the fuel cell cannot be achieved without the opera-
tion of its auxiliary system. The auxiliary system regulates the inlet, exhaust, temperature,
and humidity of the stack in real-time according to the load demand power to ensure
that the stack always operates under the ideal working environment. A complete fuel
cell system (FCS) includes a fuel cell stack, gas supply system, temperature control sys-
tem, humidity control system and energy management system. Among them, the gas
supply system includes oxygen supply and hydrogen supply to provide reactants for the
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electrochemical reaction of the fuel cell, which is converted into electricity through the
electrochemical reaction. At the same time, the degree of oxygen and hydrogen supply in
the fuel cell largely affects the output power of the fuel cell [6]. Therefore, effective control
of gases in fuel cells is necessary.

The oxygen supply to the fuel cell is provided by an air compressor that pressurizes
the outside air and feeds it to the stack. Due to the high latency of air compressors and
other equipment, under- or over-supply of oxygen may occur during load current changes.
Insufficient oxygen supply can lead to a decrease in output voltage and power, permanently
damaging the fuel cell; excessive oxygen supply can lead to an increase in parasitic power,
reducing the net system output power [7]. Therefore, the oxygen flow rate needs to be
controlled to ensure the safe and efficient operation of the FCS. In many studies, oxygen
excess ratio (OER) is commonly used to measure the degree of oxygen quantity availability,
as defined in Equation (5).

The control core of the air supply system is the regulation of the flow of air into the
power stack. The main current air system control strategies are classified according to the
control methods: traditional control, advanced control, and intelligent control algorithms.

Traditional control strategies mainly include feed-forward control and PID control.
Feed-forward control establishes the corresponding logic control strategy through off-line
testing and empirical knowledge, which has the advantages of simple design and small
calculation, but the control effect is single and relatively poor. PID methods are widely
used in industrial process control because of their simple structure and high reliability,
but they are prone to overshoot and jitter in some cases. In Ref. [8], feed-forward control
and PID control were used for PEMFCs, and the coordinated operation of different control
methods was simulated to verify the feasibility of the control strategy. Meanwhile, in
order to improve the control accuracy and robustness of traditional PID, researchers have
successively proposed many improved PID algorithms, such as fuzzy PID and adaptive
PID [9]. Ref. [10] uses an adaptive fuzzy PID control method to control the gas supply
system, which ensures a stable variation of the gas supply system with the change of load
power demand and prevents the instability that may be brought by the gas supply system.

For the nonlinear and time-varying characteristics of the PEMFC gas supply system,
advanced control strategies such as adaptive control, robust control, and predictive control
have achieved good results. E. S. Kim [11] designed a suitable state feedback controller
to improve the response speed and immunity to disturbances of the PEMFC gas supply
system. In Ref. [12], a fuzzy generalized predictive controller based on a control-oriented
T-S model is designed to control the oxygen excess ratio in the ideal range and effectively
suppress the fluctuation caused by the load change.

Intelligent control mainly uses intelligent algorithms such as neural networks, which
have strong robustness and self-learning capability in OER control. M Sedighizadeh [13]
proposed an adaptive control strategy based on artificial neural networks to control the
PEMFC system to improve the dynamic performance of oxygen flow control. ChunHua Li [14]
used a fuzzy adaptive recurrent neural network to model the PEMFC air supply system to
prevent the occurrence of oxygen scarcity and improve the system response performance.
However, the establishment of neural network models requires a large amount of data
support and too much computational effort.

The structures of hydrogen supply systems can be generally classified as anode blind-
end type and cyclic type. Studies have shown that the cyclic anode structure has a higher
system and stack efficiency when the power is above a certain threshold [15], which has
been widely used in recent years. In a circulating hydrogen supply system, the supply of
hydrogen is performed by a hydrogen tank, which uses a proportional valve to achieve
hydrogen injection and a circulation structure such as a circulation pump to achieve
hydrogen recycling. Similar to the OER, the hydrogen excess ratio (HER) has been used to
measure the effect of hydrogen flow control, which is defined in Equation (4).

An adequate and effective supply of hydrogen can be ensured by controlling the
circulation flow of hydrogen to ensure the effective operation of the electrochemical reaction



World Electr. Veh. J. 2023, 14, 50 3 of 17

while improving the utilization of hydrogen and economic efficiency [15]. The structure of
the hydrogen circuit supply system is relatively simple, and its common control algorithms,
including traditional control and predictive control methods, are able to control the inflow
and outflow of the hydrogen circuit well. In Ref. [16], the fuel cell hydrogen gas pressure
and HER were controlled by a classical proportional-integral differential controller and a
state feedback controller, with good tracking and interference resistance results. In Ref. [17],
a Markov chain and model predictive control (MPC) method was used to control the fuel
cell anode supply system, which further improved the dynamic performance of the anode
gas supply system response. Yao Wang [18] designed an adaptive backpropulsion sliding
mode (ABSM) controller to control the output mass flow rate of a hydrogen circulation
pump, and tested the effectiveness of the ABSM controller by establishing a nonlinear
model of the hydrogen supply system and using vehicle driving cycle data from WVUSUB.

Based on the above discussion, this paper adopts a new control method to solve the
air and hydrogen flow control problem of FCS. The proposed method has the advantages
of enhanced dynamic response performance and stability performance, thereby improving
the output performance and economic benefit of the system. The main contributions of this
paper are as follows.

1. A simplified hybrid model environment of the fuel cell air and hydrogen circuits
is built;

2. An optimal flow control strategy based on net power optimization is proposed;
3. Deep reinforcement learning controllers based on deterministic policy gradient are

proposed to control the oxygen flow and hydrogen flow. The effect of decoupled and
coupled controllers is compared;

4. A controller that integrates fuzzy PID and DRL algorithms is proposed, which has
a faster dynamic response than traditional PID and more stable steady-state perfor-
mance than DRL algorithms.

The structure of this paper is listed as follows: Section 2 presents the dynamic math-
ematical model of the fuel cell gas supply system. In Section 3, the deep reinforcement
learning algorithm principle is presented. Section 4 describes the algorithm of controllers
proposed in this paper. Simulation results and performance analysis are shown in Section 5.
Finally, conclusions are given in Section 6.

2. Fuel Cell Gas Supply System

The PEMFC is an electrochemical device that directly converts the chemical energy of
gas into electric energy and heat energy by electrochemical reaction. Hydrogen and oxygen
(or air) are used as fuel and oxidant of the PEMFC, respectively. Under the action of the
proton exchange membrane (PEM) and catalyst, the gases involved in the reaction undergo
electrochemical reactions to generate electric energy and heat energy. A schematic diagram
of the composition and working principle of a single PEMFC is shown in Figure 1.
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Figure 1. Electrochemical reaction of a fuel cell stack.
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The PEM divides the PEMFC stack into anode and cathode. In the working process of
the battery, the hydrogen at the anode loses two electrons under the action of the catalyst
and is oxidized into H+. The generated H+ reaches the cathode through the PEM in the
form of hydration, and the electrons reach the cathode after working on the load through
the external circuit. After oxygen reaches the cathode, under the action of the cathode
catalyst, it combines with H+ and e− reaching the cathode to generate water. Therefore,
the total reaction process of the PEMFC can be described as:

H2 +
1
2

O2 → H2O

2.1. Fuel Cell Output Voltage Model

The output voltage model of the fuel cell reflects its electrical output performance.
It is a function of the load current, the temperature in the stack, the partial pressure of
the reactants, and the relative humidity of the gas. According to the thermodynamic
equations in the standard state and the relevant thermodynamic data, the thermodynamic
electromotive force of a single fuel cell in the ideal case can be expressed using the Nernst
equation as [19]:

E = 1.229− 0.85× 10−3(Tf c − 298.15) + 4.3085× 10−5Tf c
[
ln(PH2) + ln(PO2)

]
(1)

where PH2 and PO2 are the partial pressures of hydrogen and oxygen, respectively, in atm,
and Tf c is the battery working temperature in K.

In the working process of the fuel cell, the polarization phenomenon will lead to
some inevitable voltage loss, including activation polarization overvoltage Vact, ohmic
overvoltage Vohm, and concentration polarization overvoltage Vconc. The output voltage
of a single fuel cell is shown in Equation (2), which is small. Therefore, multiple fuel cells
are often connected in series to form a stack, and the overall output voltage of the fuel cell
stack is obtained by Equation (3).

Vf c = E−Vact −Vohm −Vconc

= E−
(

V0 + Va(1− e−c1i)
)
− i

tm

σm
− i(c2

i
imax

)c3
(2)

where V0 is the voltage at zero current density in V, i is the current density in A/m2, imax is
the limit current density. imax, c1, c2 and c3 are the constants related to the gas pressure and
temperature. tm denotes the thickness of the PEM in m, and σm is the conductivity of the
PEM, related to the temperature and membrane. The specific expressions of the relevant
parameters are detailed in Ref. [20] and will not be repeated.

Vstack = nVf c (3)

where n represents the number of fuel cells in series.

2.2. Fuel Cell Gas Supply System Flow Mathematical Model

The PEMFC gas supply system includes hydrogen and air supplies. During the
operation of the PEMFC, hydrogen and air enter the stack through the high-pressure
hydrogen storage tank and air compressor, respectively, and flow along the gas flow
channel in the stack to reach each cell. The reacting gas is electrochemically reacted by the
electrode catalyst and the PEM, and the residual gas after the reaction is discharged from
the stack through the regulating valve and other components. After a certain treatment, it
can re-enter the stack for recycling. To better model the gas supply system, the following
assumptions are made about the electrochemical reaction process of the fuel cell:

1. All gases are ideal gases;
2. Air flow, hydrogen flow, temperature, humidity, etc., are controlled separately;
3. The temperature inside the stack is uniformly distributed and always remains constant;
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4. The gas pressure inside the stack is uniformly distributed;
5. The stack gas water vapor inside the stack is saturated; the liquid volume also has no

effect on the system.

Based on the above assumptions and further neglecting the influence brought by
the reaction gas transport pipeline, mathematical models and simulations of the dynamic
description of the supply flow of air on the cathode side and hydrogen on the anode side
can be obtained by the equation of state of ideal gas and the law of conservation of mass of
matter, respectively.

HER and OER are used to measure the reasonableness of the anode hydrogen flow
and the cathode oxygen flow, respectively, defined as the ratio of gas inflow and reaction:

λH2 =
WH2,in

WH2,reacted
(4)

λO2 =
WO2,in

WO2,reacted
(5)

where WH2,in and WH2,reacted, WO2,in and WO2,reacted are the mass flows of hydrogen and
oxygen into the stack and consumed by the electrochemical reaction in kg/s , respectively.

WH2,reacted =
nIst

2F
MH2 (6)

WO2,reacted =
nIst

4F
MO2 (7)

where MH2 and MO2 are the molar masses of hydrogen and oxygen in kg/mol, respectively.
Ist is the stack current in A, F is Faraday constant with 96,487 C/mol.

2.3. Critical Component Models of the Fuel Cell Gas Supply System

In the process of controlling the parameters of the fuel supply effect, such as the
oxygen ratio and hydrogen ratio of the fuel cell gas supply system, the elements that have
a great influence on the control effect include the air compressor and circulating pump.

2.3.1. Air Compressor Model

The air compressor model is mainly based on the compressor rotation parameters and
compressor air flow. The rotational speed dynamics of the air pressure can be modeled
based on the rotational parameters:

Jcp
dωcp

dt
= τcm − τcp (8)

where Jcp is the rotational moment of inertia of the air compressor in kg·m2, ωcp is the
rotational speed of the air compressor in rpm, and τcm and τcp are the motor driving torque
and resistance torque of the air compressor in N·m, respectively.

The motor drive torque can be obtained by referring to the static equation of the motor:

τcm = ηcmkticm (9)

icm =
vcm − kvωcp

Rcm
(10)

where ηcm is the mechanical efficiency of the air compressor motor, kt, kv and Rcm are the
drive motor constants, icm is the operating current in A, and vcm is the motor operating
voltage in V.
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The resistance torque can be obtained by the thermodynamic equation:

τcp =
CpTatm

ωcpηcp

[(
psm

patm

) γ
γ+1
− 1

]
Wcp (11)

where Cp is the specific heat capacity constant of air in J/(kg·K), γ is the specific heat
capacity at atmospheric pressure, Wcp is the air compressor air flow rate, and ηcp is the air
compressor mechanical efficiency. Psm and Patm are the pressures of the supply pipe and
outside air in kPa, respectively.

2.3.2. Recirculating Pump Model

The working principle of the recirculating pump is similar to that of the air compressor
and will not be repeated. At the same time, its recirculating pump pressure ratio and power
consumption are small, and the effect of power consumption is no longer considered in
this paper. Therefore, this paper only considers the recirculating pump flow model, which
is relatively simple and can be calculated by the difference in the data obtained offline,
expressed as:

Wrcp =
Nrcp

N0
W0 (12)

where Wrcp and W0 are the flow rates at actual and rated speed in kg/s, respectively. Nrcp
and N0 are the actual and rated speed of the recirculating pump in rpm, respectively.

2.4. Fuel Cell Gas Supply System Model

Based on the available literature and the above introduction, a model of the fuel cell
gas supply system can be built, as shown in Figure 2.

In this paper, the flow characteristics of air and hydrogen are mainly studied, and the
main control elements are the air compressor, the recirculating pump, and some valves.
The cooler and humidifier are used to maintain the temperature and humidity inside
the cell, which are not studied. The relevant parameters come from Ref. [20], which are
not repeated.

PEMFC stack

Load

Air in

Back Pressure Valve

Recirculating Pump

Air Compressor

Control valve

H2 in

Cooler

MM

H2

tank

H2

tank

Humidifier

H2 Recycle

Figure 2. Fuel cell system structure diagram.

In addition, considering that in the gas supply system element, the power consumption
of other part elements is much lower than that of the air compressor, the net power is
simplified to Equation (13).

Pnet = Pst − Pcm = Ist ·Vstack − icm · vcm (13)

where Pnet, Pst and Pcm represent the net power, output power, and air compressor power
consumption of the system in W, respectively.
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3. Deep Reinforcement Learning Algorithm
3.1. Deep Reinforcement Learning

David Silver has pointed out that ‘deep learning + reinforcement learning = general
artificial intelligence’ [21]. Deep reinforcement learning (DRL) is the combination of deep
learning (DL) and reinforcement learning (RL).

DL is a deep machine learning model. Its concept comes from an artificial neural
network (ANN), and its depth is reflected in the multiple transformations of features. The
commonly used deep learning model is a multilayer neural network. It can automatically
learn abstract and essential features from a large amount of training data, realize the
approximation of complex functions, and discover the distributed features of data [22,23].

RL is a special, mechanical learning method that uses model feedback as input and
adapts to changes in the model (Environment). It is a method in which an intelligence
(Agent) takes an action to interact with the environment to obtain a reward based on its
states and finally completes an optimal policy to maximize the reward [24]. The basic RL
model includes the strategy, reward function, value function, and environment model [25].

In DRL algorithms, DL refines the data through learning, while reinforcement learning
is mainly used to solve the problem of time series decision-making. Through continuous
interaction and trial and error with the environment, RL can finally obtain the optimal
strategy of a specific task and maximize the cumulative expected return of the task.

According to the different ways that the deep neural network approaches nonlinear
functions, DRL can be divided into value-based methods [26] and policy-based meth-
ods [27]. The value-based DRL uses deep neural network (DNN) to approximate the
reward value function, and the most classical algorithm is the deep Q-learning (DQN)
method, whose actions are discrete values, and the algorithm flow is shown in Algorithm 1.
Approximating the policy with DNN and finding the optimal policy using the policy
gradient method is known as policy-based DRL. The method of the policy gradient has
advantages such as better convergence compared to the value function method, an easier
strategy exploration process, and the ability to learn stochastic strategies.

Algorithm 1 DQN algorithm
Initialize action-value function Q random parameters θQ
Initialize target networks θQ∗ ← θQ
Initialize replay buffer B
for episode = 1, ...M do

Initialize a random process N for action exploration
Receive initial observation state s1
for t = 1, ...T do

Select action at = maxa Q∗(st, a | θQ) according to the current policy and
exploration noise

Execute action at and observe reward rt and observe new state st+1
Store transition tuple (st, at, rt, st+1) in B
Sample mini-batch of N transitions (si, ai, ri, si+1) from B
Set yi = ri + γ maxa′ Q(si+1, a

′
)

Update θQ by minimizing the loss: θQ ← minθQ N−1∑i(yi −Q(si, ai))
2

end
end

3.2. Principles of Deep Reinforcement Learning Algorithm Based on Deterministic Policy Gradient

Deep deterministic policy gradient (DDPG) and Twin Delayed Deep Deterministic
Policy Gradient (TD3), typical DRL algorithms based on deterministic policy gradients, are
used as the control algorithm for fuel cell gas supply system in this paper.
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In the training process, the DDPG algorithm involves four networks: actor current
network π, actor target network π∗, critic current network Q, and critic target network Q∗.
In addition, DDPG uses empirical playback for computing the target Q values.

TD3 is an extension algorithm of the DDPG algorithm, that proposes three key tech-
niques based on DDPG:

1. Dual network: K (usually 2) sets of critic networks are used, and the smallest is taken
when calculating the target value, thus suppressing the network overestimation problem;

2. Target policy smoothing regularization: when calculating the target value, a per-
turbation is added to the action of the next state, thus making the value evaluation
more accurate;

3. Delayed update: the actor network is updated only after every d updates of the critic
network, thus ensuring a more stable training of the actor network.

The overall algorithm flow for the training process of DDPG and TD3 is shown in
Algorithm 2, where K and d are both 1 in DDPG and an integer greater than 1 in TD3.

Algorithm 2 DDPG/TD3 algorithm
Initialize K critic networks Qk(k = 1, 2..., K), and actor network π with random
parameters θQk , θπ

Initialize target networks θQ∗k
← θQk , θπ∗ ← θπ

Initialize replay buffer B
for episode = 1, ...M do

Initialize a random process N for action exploration
Receive initial observation state s1
for t = 1, ...T do

Select action at = π(st | θπ) +Nt according to the current policy and
exploration noise

Execute action at and observe reward rt and observe new state st+1
Store transition tuple (st, at, rt, st+1) in B
Sample mini-batch of N transitions (si, ai, ri, si+1) from B
Set yi = ri + γQ∗(si+1, π∗(si+1 | θπ∗) | θQ∗), where Q∗ = mink=1,2,...K Qk
Update θQk by minimizing the loss: θQk ← minθQk

N−1∑i(yi −Qk(si, ai))
2

if t mod d then
Update θπ by the deterministic policy gradient:

∇θπ
π |si= N−1∑i∇aQθ1(si, a) |a=π(si)

∇θπ
π(si)

Update target networks:

θπ∗ ← τθπ + (1− τ)θπ∗

θQ∗k
← τθQk + (1− τ)θQ∗k

end
end

end

4. Deep Reinforcement Learning Algorithm Based on Fusion Optimization
4.1. Adaptive Expectations

In this paper, the variables related to the control objectives include the OER and
the HER. In most studies, their optimal values are set to fixed values of 2 and 1.5 [28],
respectively. However, in practice, their desired values are generally set to adaptive values
related to the load demand to improve the hydrogen utilization and the output efficiency
of the stack.

In this paper, the hydrogen system adopts a cyclic structure with a high hydrogen
utilization rate [28]. Moreover, considering that the power consumption of the hydrogen
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circuit components is much lower than that of the air compressor, it is no longer taken into
account in the auxiliary system power consumption in order to simplify the calculation.
Therefore, the expected value of the HER satisfies that the hydrogen demand and the
pressure difference between the two poles of the stack can be maintained, so it is still set to
1.5, or λ∗H2

= 1.5. For the hydrogen circulation system, the rotation speed of the circulation
pump is used to control the circulation amount of hydrogen, and its expected value is
shown in Equation (14), using Equations (6), (4) and (12).

Nrcp,re f =
(

λ∗H2
− 1
) (nIst MH2)/2F

W0
N0 (14)

For the oxygen supply system, the net power is mainly affected by the air mass flow
rate and the system current during the actual operation, so to improve the efficiency and
power output, the maximum net power is set as the target of the expected value of the OER.
Figure 3a shows the relationship between the OER λO2 and net power at different current
values from 100 A to 300 A by offline simulation experiments. At a certain load current,
with the increase in λO2 , the net power of the system shows a trend of first increasing and
then decreasing.

The control indicator function is obtained by nonlinearly fitting these optimal points
(black points in Figure 3b), as shown in the red curve in Figure 3b. The final optimal control
reference λ∗O2

is a function of the stack current Ist, shown as:

λ∗O2
= 9.453× 10−7 I2

st − 0.002Ist + 2.439 + 31.397I−1
st (15)

Additionally, the control quantity related to the overshoot ratio is mainly the com-
pressor voltage, and a stable value of the overshoot ratio under steady-state conditions
shows a constant compressor input voltage. Therefore, the value of the compressor voltage
corresponding to the best OER λ∗O2

in Equation (15) for different load current demands is
obtained by offline training, as shown in Figure 3c.
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Figure 3. Optimum OER and air compressor voltage under different stack currents, where the black
points indicate the optimal points: (a) the relationship between OER and the net power output of the
fuel cell system under different current requirements, (b) the optimal OER under different current,
(c) the optimal air compressor voltage under different current.
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4.2. Deep Reinforcement Learning Controller

The integrated controller for the gas supply system described in this paper has three
main control objectives: (1) to ensure proper OER or air flow; (2) to ensure proper HER or
hydrogen flow; (3) to ensure the stability of the pressure difference between the two poles
of the stack. To further simplify the complexity of the control algorithm, a follower control
algorithm is used for the control of the two-pole pressure difference, resulting in a certain
coupling between the control of the hydrogen circuit and the oxygen circuit.

Therefore, the structures of the DDPG and TD3 controller used in this paper are shown
in Figure 4, whose agent consists of an actor and a critic network. The DQN controller is
similar to Figure 4, except that the agent does not contain the critic network, which is not
drawn here. The controller obtains the optimal OER and HER according to the demand
load current typed by the outside world and takes the fuel cell gas supply system as the
environment of the controller.
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Figure 4. Structure of the DRL algorithms.

To better control the two-way gas supply, decoupled and uncoupled DRL control
algorithms are designed, respectively. In the decoupled controller, called 2-DRL, there
are two agents, which are used to control the hydrogen and the air circuit, respectively.
However, in the uncoupled DRL controller, only one agent is used to control two gas
supplies at the same time. The relevant parameter settings of the two algorithms are shown
in Table 1 and the rewards are defined in Equations (16)–(18). Besides, to ensure that the
overall complexity of the two DRLs is similar, the network structure of the two agents in
2-DRL is consistent with that in DRL and the number of neurons in each layer is half of
that in DRL.

Table 1. Action, state, and reward settings in DRL algorithms.

Parameters 2-DRL DRL
agent_O2 agent_H2

action Vcm(a1) Nrcp(a2) Vcm, Nrcp

state Ist, eOER, ∆eOER, Vcm, ∆Vcm Ist, eHER, ∆eHER, Nrcp, ∆Nrcp
Ist, eOER, ∆eOER, Vcm, ∆Vcm,
eHER, ∆eHER, Nrcp, ∆Nrcp

reward ROER + Ra1 RHER + Ra2 ROER + Ra1 + RHER + Ra2

The setting of the reward function requires several factors to be considered. The first
consideration is the effect of the controlled amounts, λH2 and λO2 . To ensure that the error
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of the controlled quantity gradually decreases and converges to 0, errors (eOER, eHER) and
their variation(∆|eOER|, ∆|eHER|) need to be considered, as shown in
Equations (16) and (17).

ROER =


100
(
0.1− |eOER|

)
+ 9, |eOER| < 0.1

10
(
1− |eOER|

)
, 0.1 ≤ |eOER| < 1

−1
(
|eOER| − 1

)
, 1 ≤ |eOER| < 2

−0.1
(
|eOER| − 2

)
− 1, otherwise

+

{
1, ∆|eOER| < δ
−0.2∆|eOER|, otherwise

(16)

RHER =


100
(
0.1− |eHER|

)
+ 8, |eHER| < 0.1

20
(
0.5− |eHER|

)
, 0.1 ≤ |eHER| < 0.5

−1
(
|eHER| − 0.5

)
, 0.5 ≤ |eHER| < 1.5

−0.1
(
|eHER| − 1.5)

)
− 1, otherwise

+

{
1, ∆|eHER| < δ
−0.2∆|eHER|, otherwise

(17)

where δ represents a very small positive number.
In addition, to avoid the problem of the action amount changing too much in the actual

working process, the influence of the action amount changing value is also considered in
the reward function.

Rai =

{
1, |∆ai| < 0.01
−0.1|∆ai|, otherwise

(18)

where ai(i = 1, 2) represents the normalized action values of Vcm and Nrcp respectively.

4.3. Deep Reinforcement Learning Controller Based on Fusion Optimization

To improve the steady-state performance of the controller, a method of DRL and fuzzy
PID fusion is introduced. The overall structure is shown in the Figure 5. Among them, the
input of the fuzzy logic in the fuzzy PID controller is the error and error variation of OER
and HER, and the output is the PID control parameters, as shown in Figure 6. The fusion
algorithm adopts the strategy of fuzzy logic, whose input is as shown in Figure 6 and the
output is the weight of the fuzzy PID, as shown in Figure 7.

Controller

Fuzzy PID

Fuzzy 

Logic
PID

Kp

Ki

Kd

DRL

Actor

Critic Q

action

state

E

dE

u

PEMFC System
Nrcp

Vcm

Fusion 

OptimizationWeight

e

state

Ist

Figure 5. Overall structure of the controller.
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Figure 6. Fuzzy PID parameters: (a–c), (d–f) represent the PID parameters Kp, Ki, and Kd of the
fuzzy logic output of OER and HER, respectively.

Figure 7. The weight value of FPID output by fuzzy logic: (a) OER control, (b) HER control.

5. Simulation Results and Analysis
5.1. DRL Controller Training and Testing Results

For the training of the DRL controllers of the fuel cell gas supply system, the relevant
parameters used are shown in Table 2. In the training process, to improve the adaptability
of the controller to different load currents, the input to the training is a step load current of
random amplitude (100–300 A), and the training time is 10 s per cycle.

Table 2. DRL training parameters.

Symbol Value Unit Instructions

M 1000 - Maximum number of
cycles

Ts 0.01 s Sampling period

T 1000 s Maximum steps per
cycle

γ 0.9 - Discount factor
τ 5× 10−4 - Learning rate

To better compare the control effects of the DQN, DDPG, and TD3 algorithms on
the two gas supplies, the DRL algorithm is used to control the air and hydrogen loops
separately, and the changes in the average reward values during training are shown in
Figure 8. The results show that DDPG has the relatively best control effect for both gases,
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and its convergence values are close to the expected value (21,000/20,000). DQN has a
better control effect for both gases, although it can reach a certain large expected value, but
not as good as DDPG, and the convergence values of hydrogen circuit have a larger gap.
This is due to the discrete action of action in DQN and the possible oscillation of the control
effect under static conditions. TD3 has a better control effect for the air path and requires a
shorter number of cycles to reach convergence, while in the hydrogen circuit, the training
stability value of TD3 is much smaller than its expected value, which is because the TD3
network has two critic networks. Although too many evaluation networks improve the
generalization ability of the controller, the accuracy of the simpler model is also reduced,
leading to unsatisfactory control of the hydrogen circuit. Therefore, TD3 correlation will
not be used as the control algorithm for the hydrogen circuit in the subsequent study.

Figure 8. Reward values during training of OER and HER individual DRL controllers.

Therefore, to better compare the control effects of decoupled and uncoupled, DQN,
DDPG, and TD3 networks, the average reward value variation during training is further
designed to compare the uncoupled DQN and DDPG algorithms, as well as the decoupled
2DQN, 2DDPG, DDPG-DQN, (where DQN is used for oxygen and DDPG for hydrogen
circuit) and DDPG-TD3 (where TD3 is used for oxygen and DDPG for hydrogen circuit), as
shown in Figure 9. The overall reward value in the decoupled DRL controller is the sum of
the reward values in the two agents.

(a) (b)

Figure 9. Reward values during DRL controller training. (a) Reward changes in relation to episode.
(b) Reward changes in relation to time.

As seen, the DDPG, 2DDPG, DDPG-DQN, and DDPG-TD3 algorithms can all converge
the controller’s reverse to the desired value (41,000), and the training cycles they need to
reach 90% of the desired value do not differ much, but DDPG has a faster training speed and
takes less time to reach the steady state. 2TD3 and TD3 algorithms have a shorter training
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rise time than other algorithms, but their training final steady-state values are smaller,
which indicates that the hydrogen supply training is still very poor and cannot be used as a
control algorithm. For the DQN and 2DQN, the convergence stability values have a large
gap with the expected value, which indicates that the overall control effect of the controllers
cannot achieve the expected effect well. This is mainly because the action of DQN is discrete
and its action value may oscillate around the optimal value in the steady-state operating
condition. Additionally, considering that the 2DQN and DDPG-DQN, DDPG and TD3 are
similar in structure, only the DQN, DDPG, MDQN (DDPG-DQN), and MTD3 (DDPG-TD3)
controllers are studied for detailed comparison in the subsequent study.

5.2. Controller Comparison Test and Result Analysis

After controller training, the control effect is verified using random load currents, and
the set current values are shown in Figure 10.
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Figure 10. Test stack current profile.

To further demonstrate the control performance of the proposed method, the control
results of the two other control methods are discussed and compared. The first is feed-
forward open-loop control, whose prior control quantity is determined by the stack current,
calculated by Figure 3c and Equation (14). The second method is fuzzy PID control, whose
parameter settings are as shown in Figure 6. Figures 11 and 12 show the control results and
expected control values for the control quantities and in each of the six methods.

Figure 11. Test results of hydrogen excess ratio control: (b–e) are the enlarged figures of (a) near 4 s,
12 s, 16 s, 26 s when the load current changes, respectively.
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Figure 12. Test results of oxygen excess ratio control: (b–e) are the enlarged figures of (a) near 4 s,
12 s, 16 s, 26 s when the load current changes, respectively.

In addition, four parameters are used to measure the control effect of the controllers:
the rise time Tr (error less than 5%), the maximum overshoot Md, the root mean square
error within 2 s RMSE+2s after the abrupt change of operating conditions, and the root mean
square error RMSEst when the system reaches stability, which are defined in
Equations (19) and (20). The calculated results are shown in Table 3, and the value
marked in red represents the optimal effect value of a control algorithm in a variety
of control algorithms.

RMSE =

√
1
n

n

∑
i=1

(
xi,real − xi,ref

)2
(19)

Md = max
i

(
|
xi,real − xi,ref

xi,ref
|
)
× 100% (20)

where n is the number of sampling steps of the whole process, and xi,real and xi,ref are the
actual and expected values of the ith sampling time, respectively.

Table 3. Control effect parameter values of multiple algorithms, where the red values indicate the
best values for each algorithm in the table.

Algorithm HER OER
RMSE+2s RMSEst Tr(s) Md(%) RMSE+2s RMSEst Tr(s) Md(%)

Feed-
Forward 0.1215 0.000046 0.89 31.22% 0.0611 0.000052 0.16 2.90%

Fuzzy-PID 0.0699 0.000033 0.36 9.09% 0.0561 0.000014 0.12 3.20%
DQN 0.0643 0.011157 0.28 8.28% 0.0485 0.004120 0.11 1.02%

DDPG 0.0386 0.005113 0.15 2.44% 0.0420 0.005646 0.11 0.64%
MDQN 0.0508 0.005309 0.26 5.64% 0.0481 0.004019 0.11 1.04%
MTD3 0.0519 0.003132 0.71 5.95% 0.0472 0.000828 0.07 0.40%

FO-DDPG 0.0370 0.000033 0.15 4.36% 0.0441 0.000031 0.11 1.01%
FO-MTD3 0.0545 0.000035 0.24 7.30% 0.0487 0.000010 0.10 0.92%

The experimental results show that DQN and MDQN are far inferior to DDPG and
MTD3. The MTD3 algorithm has good dynamic characteristics, short rise time, and small
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overshoot for oxygen supply control, while the coupled DDPG algorithm has good dynamic
control for hydrogen supply; when considering the hysteresis of the air compressor, in
the control of two-stage differential pressure, it is the anode that follows the cathode, i.e.,
the hydrogen inflow. HER controlled by the regulating valve on the hydrogen circuit
will be affected by the state of the system on the air circuit. In the decoupled control of
gas on both sides, the state of the other side is generally not considered, so HER works
better in the coupled control. The air circuit belongs to the autonomous control, which
is less influenced by the cathode, that is, the state of hydrogen circuit is an irrelevant
variable for OER control, so OER is better controlled in the decoupling control, but still
not too much better than the coupling control. Although the common DRL algorithm can
effectively improve the dynamic response speed of the system, its steady-state performance
is far inferior to the common feedforward and fuzzy PID control. FO-DDPG integrates
the advantages of DDPG and PID algorithms, improves the dynamic response speed and
steady-state performance of the system, and makes the system have better robustness and
stability. In a comprehensive comparison, the FO-DDPG algorithm has an overall better
control performance.

6. Conclusions

In this paper, a DRL controller with continuous state based on fusion optimization
was proposed for a PEMFC gas supply system. By controlling the in and out of air and
hydrogen, the combined control of two gas flows in the fuel cell gas supply system was
realized. A control strategy based on net power optimization and high economy was also
introduced in the experiments, and the need for decoupled control of the two gases was
also investigated. These control algorithms were compared with feedforward controllers,
fuzzy PID and discrete DRL control algorithms DQN, and conventional continuous DRL
algorithms DDPG.

The experimental results show that the FO-DDPG algorithm proposed in this paper
has a faster dynamic response and stable static performance compared to the traditional
fuzzy PID, DQN, and DDPG algorithms. Specifically, for the two controlled quantities, the
dynamic response time is only 0.1 5 s, the overshoot is less than 5%, and the stability error
of the control quantity is only about 0.00003. That is, the controller can meet the real-time
control requirements of the gas supply system under different load conditions, effectively
avoiding the undersupply or oversupply of oxygen and hydrogen, and improving the
power and economic efficiency of the system.

PEMFC is a highly complex system involving many components, and many areas
need to be controlled. The research in this paper is limited to ensuring sufficient supply of
the reaction gas and is somewhat ideal for environmental settings. In a real fuel cell system,
factors such as temperature and humidity inside the stack can affect the electrochemical
reaction and the output voltage of the fuel cell, and the bipolar pressure can also affect
the transport of the PEM. In future research, other meta-components can be introduced
to further improve the efficiency of the fuel cell by constructing a multi-physical quantity
multi-dimensional fuel cell model and designing a gas-water-heat-electric coordinated
integrated controller to realize the joint control of power, pressure, temperature, and
humidity of the fuel cell.
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