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Abstract: Recent research demonstrates that the fusion of multimodal images can improve the
performance of pedestrian detectors under low-illumination environments. However, existing
multimodal pedestrian detectors cannot adapt to the variability of environmental illumination.
When the lighting conditions of the application environment do not match the experimental data
illumination conditions, the detection performance is likely to be stuck significantly. To resolve
this problem, we propose a novel transformer–fusion-based YOLO detector to detect pedestrians
under various illumination environments, such as nighttime, smog, and heavy rain. Specifically,
we develop a novel transformer–fusion module embedded in a two-stream backbone network to
robustly integrate the latent interactions between multimodal images (visible and infrared images).
This enables the multimodal pedestrian detector to adapt to changing illumination conditions.
Experimental results on two well-known datasets demonstrate that the proposed approach exhibits
superior performance. The proposed TF-YOLO drastically improves the average precision of the
state-of-the-art approach by 3.3% and reduces the miss rate of the state-of-the-art approach by about
6% on the challenging multi-scenario multi-modality dataset.

Keywords: deep learning; convolutional neural network; multimodal images; pedestrian detection

1. Introduction

Researchers in the field of computer vision have always been interested in pedes-
trian detection since it is a crucial approach for many applications, including intelli-
gent robotics, naturalistic driving, autonomous driving, and intelligent transportation
systems (ITSs) [1–4]. For good illumination conditions, desirable pedestrian detection per-
formance can be achieved using many existing methods [1] which use a visible (VI) image
as input. In contrast, it is quite challenging to achieve robust performance for adverse
illumination conditions, such as nighttime, low light, total darkness, shadows, and overex-
posure, as shown in Figure 1. Since the VI cameras rely on good lighting conditions in the
environment, they tend to capture low-quality images when lighting is poor. According to
the National Highway Traffic Safety Administration (NHTSA) Fatality Analysis Reporting
System (FARS), the majority of pedestrian fatalities due to traffic accidents occur in harsh
lighting scenarios, such as nighttime and bad weather [5]. Therefore, this work focuses on
improving the effectiveness of pedestrian detectors in low-light conditions. Combining
multispectral images (visible and infrared images) has proven useful for robust pedestrian
detection in ADAS applications [6–21]. The signals of visible and infrared images originate
from different modes and can provide scene information from different aspects. Visible
images capture reflected light, while infrared images capture thermal radiation. Therefore,
this combination is more informative than the combination of single-modal signals. Visible
images typically have high spatial resolution, considerable detail, and light–dark contrast.
Therefore, they are suitable for human visual perception. However, these images are easily
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affected by harsh conditions such as poor lighting, fog, and other adverse weather effects,
as shown in Figure 1. Infrared images are resistant to these interferences but typically have
low resolution and poor texture. Therefore, the fusion of visible and infrared images can
improve the performance of object detection in harsh environmental conditions due to
the universality and complementarity of the images utilized. However, it is difficult for
multimodal pedestrian detectors to adapt to the changing environment. The detection
performance is likely to be stuck when the actual application illumination conditions are
different from the illumination conditions of the experiment data.
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Figure 1. Sample images to show the difficult cases for multimodal pedestrian detection. The top are
visible images and the bottom are infrared images.

Therefore, we develop a transformer–fusion-based YOLO detector to effectively com-
bine the multimodal images captured by car-mounted visible and infrared cameras which
aim to detect pedestrians regardless of adverse illumination environments. The main
contributions of this work are summarized as follows.

• A novel transformer–fusion-based YOLO (TF-YOLO) is introduced to effectively fuse
the visible and infrared images for multimodal pedestrian detection, enabling precise
pedestrian detection in low-light conditions.

• In our TF-YOLO, we first design a two-stream backbone of YOLOv7 [22] to extract
multimodal features. Then, we develop a transformer–fusion module to fuse the input
visible and infrared data in the two-stream feature extraction backbone in several
positions. It can efficiently combine the rich semantic features in high-level and
high-resolution detailed features at a low level, which deeply exploits the long-range
multi-modal information.

• Our method achieves the best performance with an average precision of 87.85% and a
miss rate of 17.27%, which achieves a 5.1% improvement in average precision and a
6.05% improvement in miss rate, respectively, when compared with the state-of-the-art
CFT method [23], on the multi-scenario multi-modality dataset (M3FD) [24].

The remainder of this article is organized as follows. Section 2 reviews related studies
in multimodal pedestrian detection. In Section 3, we present our proposed method in detail.
Section 4 is dedicated to the presentation of results and subsequent discussion. To conclude,
our work is summarized in Section 5.

2. Related Works

Multispectral imagery-related research has experienced a boom over the past decade,
especially for pedestrian detection in Advanced Driving Assistance System applications by
combining the different bands (visible and infrared) captured. Multispectral pedestrian
detection aims to improve pedestrian detection that is resistant to variations in illumination
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and occlusion by utilizing the complementary information of multi-modal data (visible
and infrared). Hwang et al. [6] developed a benchmark and enhanced aggregated channel
features (ACF) to facilitate multispectral pedestrian detection. In recent years, several mul-
tispectral pedestrian detection techniques based on deep convolutional neural networks
(CNNs) have been presented, owing to the rapid growth of CNNs [7–21]. In [7], a CNN is
first adopted for multispectral pedestrian detection, and a two-stream CNN with the late
fusion strategy is proposed. Liu et al. [8] explored several fusion strategies, early fusion,
halfway fusion, and late fusion, on Faster R-CNN [9]. They found that halfway fusion
performs best. Chen et al. [10] found that multi-layer fusion performs better than half-way
fusion and proposed a multilayer fusion technique. Li et al. [11] discovered that illumi-
nation variance has effects on detection confidence. Motivated by this, they carried out a
weighted score fusion by illumination score and suggested an illumination-aware subnet
to forecast the illumination conditions of the input images. A differential modality-aware
fusion module for complementary fusion was introduced in [12] and conducts channel-
wise differential weighting. To balance the detection accuracy and fusion performance,
a deconvolutional single-shot detector with a multilayer fusion method is given in [13].
An adaptive method for fusing multi-modal data was created by Zhang et al. [14] using
guided attentive feature fusion.

To achieve better multispectral pedestrian identification, various systems investigate
the addition of an auxiliary job to multi-modal feature fusion. To concurrently detect and
segment pedestrians, a CNN network is proposed in [15]. Real-time multispectral pedes-
trian identification could benefit from the addition of box-level segmentation supervision,
as suggested by Cao et al. [16]. Zhang et al. [17] created a knowledge distillation network
that uses a teacher network with high-resolution feature fusion to instruct a student network
with low-resolution image-level fusion to overcome the hardware and software constraints
of multispectral pedestrian identification. In [18], a lightweight anchor-free method based
on local and global hybrid attention mechanisms is developed for multispectral pedestrian
detection. Some other methods [19–21] were explored to solve the alignment problem.

Although the above methods have made great contributions to the progress of mul-
tispectral object detection, multispectral pedestrian detection under environments with
changing illuminations still faces unresolved limitations. Therefore, the objective of this
work is to explore generalizable multispectral pedestrian detection to improve the accuracy
and effectiveness of pedestrian detection.

3. Proposed Methods
3.1. Overview

The framework of TF-YOLO is shown in Figure 2. To demonstrate the effectiveness of
our developed transformer–fusion module, we redesign the framework of YOLOv7 [22]
to enable multimodal pedestrian detection. The backbone of TF-YOLO consists of a two-
stream feature extraction network and three transformer–fusion modules. The head of
TF-YOLO has three outputs: Y1, Y2, and Y3. To extract multimodal information, the
two-stream backbone processes the incoming visible and infrared pictures first. Then, the
extracted multimodal features are integrated by the proposed transformer–fusion modules
at three positions of the backbone. Finally, the head network outputs the detection results
of pedestrians.
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Figure 2. Framework of the proposed TF-YOLO. The backbone of TF-YOLO includes a two-stream
feature extraction network and three transformer–fusion modules. The head of TF-YOLO has three
outputs: Y1, Y2, and Y3.

3.2. Transformer–Fusion-Based Two-Stream Backbone

The adverse illumination environment usually has nighttime, dense smoke, dust, bad
weather, etc., which are likely to make the pedestrian poorly visible. The effectiveness of
pedestrian detection can be enhanced by using multispectral data, which consists of both
visible and infrared images. Existing multispectral feature fusion strategies mainly include
summation fusion, concatenation fusion, and illumination-aware fusion. However, These
fusion algorithms are primarily centered on local characteristics, which are neither resistant
to the complexity and variety of the environment in autonomous driving situations, nor
do they adequately utilize long-range contextual information in both intra-modality and
cross-modality. Recent research [23,25] has demonstrated the usefulness of transformers in
representing long-range relationships when compared to convolutional neural networks
(CNNs). This encourages us to use a transformer to take advantage of the distant con-
textual relationships between various input items. The self-attention mechanism in the
transformer uses axial attention to model long-range dependencies, which is beneficial to
the network learning global contextual features. When performing two-stream network
feature fusion, local and global context information can be enhanced at the same time,
maximizing the fusion of infrared and visible light information while avoiding information
loss. Thus, we develop a transformer–fusion module to deeply integrate the visible and
infrared information. The reason why the proposed fusion module can adapt to changes
in environmental illumination is that infrared and visible light information are adaptively
fused through learning. The module can dynamically adapt to the fusion according to
changes in input information. Unlike fixed fusion rules, some important information will
be lost due to changes in input information.

Figure 3 displays the architecture of our developed transformer–fusion module. By
using the RGB feature map FVI and the thermal feature map FIR as inputs, the proposed
transformer–fusion module creates the multi-modal fusion feature map FM. We first per-
form 3-D attention weights for the input feature maps to enhance the feature representation
capabilities. In particular, the inputs FVI and FIR are fused with themselves via a dot prod-
uct after passing through 3-D weights, respectively. Subsequently, the flattened features
F′VI and F′IR are concatenated along the channel dimension to produce the feature vector
F′C. After that, a learnable positional embedding is added with F′C to generate the input
which will then be sent to the transformer blocks. The positional embedding can encode
the position information into F′C which helps differentiate spatial information between
different tokens at training time. The transformer module consists of 8 transformer blocks,
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each with two normalization layers, a multi-head attention mechanism, and an MLP which
consists of a two-layer fully connected feed-forward network with a GELU activation [26].

T′ = MultiHead(Q, K, V) = Concat(T1, . . . , Th)ω
O (1)

Ti = Attention
(

QωQ
i , KωK

i , VωV
i

)
(2)

where the subscript h means the number of heads, and ωO indicates the projected matrix of
Concat (T1, . . . , Th). Q, K, V are three-input weight matrices of multi-head attention which
are projected by I. ωO, ωO, and ωO are weight matrices. The self-attention layer computes
the weights of attention using scaled dot products between QωQ

i , KωK
i , VωV

i and it is then
multiplied by the values to infer the refined output Ti.
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3.3. Training
3.3.1. Loss Function

A summation of the regression loss (Lbbox) of the bounding box, the classification loss
(Lcls), and the confidence loss (Lcon f ) forms the overall loss function,

L = Lbbox + Lcls + Lcon f (3)

The Lbbox, Lcls, and Lcon f are calculated by the following functions, where a General-
ized Intersection over Union (GIoU) loss [27] is adopted to calculate the Lbbox.

Lbbox = ∑S2

i=0 ∑N
j=0 Cobj

i,j ·LGIoUi = ∑S2

i=0 ∑N
j=0 Cobj

i,j ·[1− GIoUi ] = ∑S2

i=0 ∑N
j=0 Cobj

i,j ·
[

1−
Bg

i ∩ Bp
i

Bg
i ∪ Bp

i
+

Bc
i \
(

Bg
i ∪ Bp

i
)

Bc
i

]
(4)

Lcls = ∑S2

i=0 ∑N
j=0 Cobj

i,j ·∑cεclasses pi(c)log
(

pi (̂c)
)

(5)

Lcon f = ∑S2

i=0 ∑N
j=0 Cobj

i,j ·
(

ci − ci
ˆ
)2

+ ∑S2

i=0 ∑N
j=0 Cnoobj

i,j ·
(

ci − ci
ˆ
)2

(6)

where S2 and N represent the quantity of image grids and prediction boxes, respectively,
in each grid throughout the prediction process. Bg, Bp, andBc are the ground truth, the
prediction box, and the smallest closed box surrounding Bg and Bp, respectively. The
coefficient Cobj

i,j represents whether the jth prediction box of the ith grid is a positive sample.
The classification loss Lcls takes the form of cross-entropy, pi(c) denotes the probability
of the real sample belonging to class c, and pi (̂c) denotes the probability of the network
predicted sample belonging to class c. The final confidence loss contains two units, both
squared error losses. The definition of the parameter Cnoobj

i,j is opposite to the coefficient
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Cobj
i,j . Finally, c and ĉ represent the true confidence value and the network-predicted

confidence value.

3.3.2. Training Details

The network is optimized during training using a stochastic gradient descent (SGD)
algorithm, with the initial learning rate set to 10−2, the momentum set to 0.937, and the
weight decay set to 0.0005. All experiments are conducted on a machine under Ubuntu
18.04 with an Intel Xeon (R) Gold 5218R 2.1 GHz central processing unit (CPU), 64 GB
random-access memory, and one NVIDIA GeForce RTX 3090 GPU. Inspired by the Mosaic
method [28], our model is trained for 100 epochs with a batch size of 4, and we use a
pre-trained YOLOv7 model on the COCO dataset [29] as the initial weight. Our programs
are based on Pytorch, which necessitates the use of the CUDA deep neural network library
and compute unified device architecture (cuDNN).

4. Results and Discussions
4.1. Datasets

4.1.1. Multi-Scenario Multi-Modality Dataset (M3FD)

The multi-scenario multi-modality dataset (M3FD) [24] includes 4200 pairs of aligned
visible and infrared images for fusion-based detection tasks. The synchronized system for
capturing visible and infrared images contains one binocular optical camera (1024 × 768)
and one binocular infrared sensor (640 × 512 before alignment). The synchronized system
calibrates the visible images while the homography matrix is added to distort the infrared
images artificially. The M3FD was captured under various lighting scenarios, i.e., Daytime,
Overcast, Night, and Challenge, with ten sub-scenarios. It should be emphasized that
the shooting scenes of this dataset contain many overexposed scenes caused by car lights
or traffic and scenes containing a large amount of smoke, making object detection more
challenging. In addition, the dataset contains pedestrians of various scales and a variety
of postures, which are suitable for surveillance and autonomous driving. A large amount
of data and the diversity of the M3FD dataset provide convenience for the training and
verification of target detection tasks based on multi-sensor fusion. We separated the entire
dataset into sections for testing and training. There are 3360 pairs of photos in the training
section, 420 pairs in the validation phase, and 420 pairs in the testing part. Labels and
bounding box coordinates are present in the ground truth.

4.1.2. UTokyo Multispectral Object Detection Dataset

The UTokyo dataset [30] contains a total of 3740 sets of images taken during the day
and 3772 sets of images collected at night, including 1446 sets of pixel-level aligned infrared
and visible images, with a resolution of 320× 256. The dataset was collected at a rate of one
frame per second using visible, far-infrared, mid-infrared, and near-infrared sensors and
contains five labeled categories, namely bike, car, car_stop, color_cone, and person. This
dataset contains a large number of nighttime scenes. In addition to nighttime scenes with
street lights or car lights, it also includes a large number of almost completely dark scenes,
which are very challenging. Therefore, this dataset is suitable for evaluating object detection
methods based on multispectral sensor fusion. In this paper, we use 1446 sets of aligned
infrared and visible images for testing to evaluate the performance of pedestrian detection.

4.2. Evaluation Metrics
4.2.1. Precision and Recall

The precision–recall curve is a frequently employed statistic for assessing object detec-
tion techniques. True positive (TP), false positive (FP), and false negative (FN) are the three
groups into which detection results are classified based on the overlap between anticipated
bounding boxes and ground truth boxes. TP stands for pedestrians that are accurately
anticipated. A projected bounding box is usually regarded as a TP if the overlap ratio
between it and the ground truth is more than 0.5. Whereas FP accounts for non-pedestrian
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regions that are mistakenly designated as pedestrian zones, FN measures the number of
missing pedestrians. The definitions of recall and precision are, respectively, TP/(TP + FP)
and TP/(TP + FN). By varying the confidence score threshold, accuracy scores at uniformly
spaced recall levels are averaged to determine the average precision (AP). To compute AP,
we split the recall levels evenly between 0 and 1 and set the AP value to 100.

4.2.2. Log-Average Miss Rate (MR)

The log-average miss rate (MR) versus a false positive per image (FPPI) range of
(10−2, 100) is also used for assessing the performance of the presented method. MR
describes the index of detecting the missed detection rate in the detection results, which
is calculated by 1-recall; the lower the value of the miss rate, the better. FPPI describes
the average false detection rate per image. Suppose there are N images and the number
of false checks in the result is FP, then FPPI is calculated by FP/N. MR-FPPI is similar to
precision–recall. They are two mutually exclusive indicators. The improvement of one
performance will inevitably decrease the other performance, which can reflect the overall
performance of the detector. As commonly used settings, the detected bounding box and
the ground truth bounding box are matched by selecting a 0.5 minimum overlap ratio.

4.3. Detection Evaluation on the M3FD

The performance of the proposed TF-YOLO is evaluated by comparing it with three
other approaches, including ACF + T + THOG [6], MFDSSD [13], and CFT [24]. Figure 4
presents the precision–recall curves and miss rate versus FPPI curves, respectively. It can
be observed that our approach obviously outperforms all other methods and achieves the
highest AP of 86.56% and the lowest MR of 17.27%, which evidently outperforms the state-
of-the-art results of CFT. Furthermore, the performance gap is quite large when compared
with MFDSSD [13] and ACF + T + THOG, with 87.85% AP of ours versus 75.71% AP of
the MFDSSD and 42.95% AP of the ACF + T + THOG, respectively. The proposed method
is dramatically superior to all other methods, which demonstrates that the proposed
transformer–fusion module can significantly improve the accuracy of pedestrian detection
with bad illuminations. The results of our method outperform all other techniques, which
makes sense because the M3FD is taken under environments with low visibility and bad
weather, and the proposed transformer–fusion mechanism can dramatically increase the
detection accuracy of different illumination and weather conditions.
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Figure 5 displays a comparison of visual detection results for three example images
covering challenging scenes including people of varying proportions, low illumination, and
smog. Visual comparison clearly shows that our method outperforms all other methods.
The state-of-the-art methods produce many false negatives and false alarms. However,
our method successfully detects pedestrians at different scenes. One can see that the CFT
and MFDSSD methods falsely detected pedestrians and missed pedestrians, while the
ACF + T + THOG method produces many false alarms. We can conclude the proposed
method is effective in pedestrian detection from different illumination and weather con-
ditions. This result demonstrates that our transformer–fusion module can robustly fuse
multispectral data.
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4.4. Detection Evaluation on the UTokyo Dataset

We additionally assess the developed approach’s effectiveness using the Utokyo
multispectral dataset. The MR-FPPI and precision–recall curves are displayed in Figure 6,
respectively. Our approach performs 3% better in AP and 6.01% better in MR than the
CFT method.

Figure 7 shows the visual detection results of all methods. We can see that our method
detected all pedestrians correctly while other methods generated many false alarms and
missing instances. This detection result is reasonable because the UTokyo multispectral
dataset involves the presence of many pedestrians in a dark environment. Our method
can effectively fuse visible and thermal images through the proposed fusion module and
correctly detect pedestrians under adverse lighting conditions.
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4.5. Comprehensive Comparison

We make a comprehensive comparison to compare both the detection performance
and the average computation time on the M3FD dataset. As shown in Table 1, it is obvious
that our TF-YOLO outperforms all other methods in terms of detection performance
under all evaluation metrics. Although CFT has the same detection speed (0.05 s/f) as
our method, the average precision and miss rate of CFT is quite worse than our method.
Therefore, the proposed TF-YOLO has a better trade-off between detection speed and
detection performance.

Table 1. Comprehensive comparison on M3FD dataset.

Method AP (%) MR (%) Average Computation Time (s/f)

ACF + T + THOG 42.95 67.91 0.13
MFDSSD 75.71 32.28 0.06

CFT 84.55 23.32 0.05
TF-YOLO (ours) 87.85 17.27 0.05

4.6. Ablation Experiments

In this section, we conduct an ablation study using the M3FD dataset to verify the
effectiveness of the proposed TF-YOLO. In the first simulation, we removed the transformer–
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fusion module and only retained the two-stream YOLOv7 (fusion by summation) for
experiments to check performance. Then, we use visible images and infrared images to
train YOLOv7, named YOLOv7-VI and YOLOv7-IR, respectively. This simulation is to
evaluate how the proposed two-stream backbone of YOLOv7 contributes to detection
performance. Table 2 shows the AP for each simulation.

Table 2. Ablation experimental results on M3FD dataset.

Method AP (%)

YOLOv7-VI 75.10
YOLOv7-IR 79.21

Two-stream YOLOv7 82.46
TF-YOLO

(Transformer–fusion + Two-stream YOLOv7) 87.85

As shown in Table 2, adding the transformer–fusion module to two-stream YOLOv7
significantly improves the detection performance of AP by 2.77%. It can be seen from
the comparison that the combination of infrared and visible branches by the proposed
transformer–fusion module is effective in boosting detection performance. In addition, the
two-stream YOLOv7 is evidently better than both the YOLOv7-VI and YOLOv7-IR. This
result demonstrates that the proposed two-stream backbone of YOLOv7 that fuse infrared
and visible images significantly improves detection performance.

4.7. Discussion
4.7.1. Explanation of Results

The effectiveness of the presented TF-YOLO is evaluated by empirical studies, which
are covered in Section 4.5. The detection accuracy of TF-YOLO can be significantly increased
using the developed transformer–fusion module. We compare our approach with several
published state-of-the-art approaches on two well-known datasets in Sections 4.3 and 4.4.
We discovered from the experimental findings that our proposed TF-YOLO performs
noticeably better than alternative approaches.

In addition to being applied to pedestrian detection in autonomous driving scenarios,
the proposed method can also be migrated to object detection in other scenarios, such
as surveillance systems, military reconnaissance, drone search, etc. Since applications
involving outdoor scenes are often easily affected by the natural environment, such as
lighting, weather, and other factors, common object detectors based only on visible cameras
have limitations, as mentioned in Section 1. However, the proposed pedestrian detector
based on multi-modal sensor fusion overcomes this limitation and has a wider range of
application scenarios. The proposed method is scalable and universal. For example, our
method can be extended to pedestrian re-identification, animal detection, vehicle detection,
saliency detection, etc., by transfer learning.

4.7.2. Limitations of the Proposed Method

As Figure 8 illustrates, our technique demonstrates state-of-the-art detection accuracy
and real-time detection speed but fails to perform effectively in some scenarios. Occlusions
and extremely rare occurrences are the causes of the failure cases. One person in the crowd
is not seen in Figure 8a. In Figure 8b, one person with a small scale is not detected. In
Figure 8c, two small-scaled pedestrians occluded by cars are not detected. Thus, pedestrians
with occlusions and small scales may reduce detection performance, which is a common
issue with most methods. In future works, we will consider exploring depth estimation or
a new CNN architecture to resolve these challenges.
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5. Conclusions

This paper introduces a new transformer–fusion-based YOLO (TF-YOLO) for accurate
multimodal pedestrian detection. Our TF-YOLO contains a transformer–fusion-based
two-stream backbone network in which a novel transformer–fusion module is proposed to
maximize the complementary characteristics of visible and infrared information to ensure
that the detector is not susceptible to interference from the adverse environment, such as
adverse illumination and weather conditions. Empirical experiments are conducted on the
M3FD dataset and UTokyo datasets to validate the effectiveness of the proposed method.
Our TF-YOLO shows state-of-the-art performance with an 87.85% average precision and a
17.27% miss rate on the M3FD dataset and a 92.89% average precision and a 6.21% miss
rate on the UTokoyo dataset. We anticipate that our findings will help future multispectral
pedestrian detection studies.
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