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Abstract: Recent attention for reduced carbon emissions has pushed transit authorities to adopt
battery electric buses (BEBs). One challenge experienced by BEB users is extended charge times,
which create logistical challenges and may force BEBs to charge when energy is more expensive.
Furthermore, BEB charging leads to high power demands, which can significantly increase monthly
power costs and may push the electrical infrastructure beyond its present capacity, requiring ex-
pensive upgrades. This work presents a novel method for minimizing the monthly cost of BEB
charging while meeting bus route constraints. This method extends previous work by incorporating
a more novel cost model, effects from uncontrolled loads, differences between daytime and overnight
charging, and variable rate charging. A graph-based network-flow framework, represented by a
mixed-integer linear program, encodes the charging action space, physical bus constraints, and
battery state of the charge dynamics. The results for three scenarios are considered: uncontested
charging, which uses equal numbers of buses and chargers; contested charging, which has more
buses than chargers; and variable charge rates. Among other findings, we show that BEBs can be
added to the fleet without raising the peak power demand for only the cost of the energy, suggesting
that conversion to electrified transit is possible without upgrading power delivery infrastructure.

Keywords: battery electric buses; cost minimization; multi-rate charging; mixed-integer linear program

1. Introduction

Recent calls for a reduced carbon footprint have led transit authorities to adopt battery
electric buses (BEBs). Replacing diesel and CNG buses with BEBs reduces environmental
impact [1], as BEBs provide zero vehicle emissions and can access renewable energy
sources [2,3].

Charging BEBs draws power from the electrical infrastructure. The combined effect
of BEB charging with other necessary loads can exceed the capacity of local distribution
circuits [4–6], leading to expensive infrastructure upgrades. Power providers pass the
cost of upgrades on to customers. Thus, the benefits of large-scale electrified bussing
seem appealing at first but are only practical if infrastructural upgrades can be deferred or
avoided altogether.

One approach to deferring or avoiding upgrades is to intentionally manage when and
at what rates buses should charge. An optimal charge plan must account for a number of
physical constraints and operational realities. For example, buses must exceed a minimum
charge level while adhering to route schedules, batteries must have sufficient time to
charge, and buses must share a limited number of chargers. The focus of this work is to
find an optimal charge schedule which meets these requirements and minimizes the cost of
electricity and grid impacts in the presence of other uncontrolled loads. This problem is
referred to hereafter as the “charge problem”.

Previous work has done much to further state of the art in this regard with solutions
ranging from heuristic approaches and linear programs to battery exchanges (see Section 2
for details). The contributions our paper offers, which we have not observed in the current
literature, is the combination of (1) differences in night and day charging, (2) the ability to
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vary charge rates, (3) incorporating non-BEB grid activity into the optimization scheme,
and (4) the use of a real-world rate schedule which encompasses both time-of-use energy
rates and demand fees to reduce the instantaneous load on the grid.

Without these elements, a charge schedule may not fully utilize the available charging
resources to reduce the monthly cost of energy. For example, Rocky Mountain Power may
charge upwards of USD 15.00 per kW for the largest use of instantaneous power over
a 15 min window, which may account for over a third of the monthly power expenses.
Additionally, Rocky Mountain Power may also charge close to double for energy used
during on-peak hours. While previous work has addressed time-of-use tariffs [7] and in-
stantaneous power demand [8], we have not seen these elements together, and minimizing
using Rocky Mountain Power’s rate schedule provides a clear way of integrating the two.

Another example where our work addresses unsolved issues lies on the use of
night/day charge parameters. In the Utah Transit Authority station in Salt Lake City,
Utah, buses are able to charge on a limited number of fast overhead chargers during the
day, and an unlimited number of slower chargers at night. By breaking the problem into
day and night segments, we encode these differences into the optimization framework.
For a comprehensive list of contributions, please see Section 2.3.

The remainder of this paper is organized as follows: Section 2 describes prior related
work, and Section 3 outlines a graph-based framework for modeling the environment,
including buses, routes, chargers, and uncontrolled loads. Section 4 incorporates the
problem constraints involving battery charge dynamics, and Section 5 extends the the graph
framework to account for differences between day and night operations. Section 6 translates
the rate schedule used for billing into an objective function. Finally, Sections 7 and 8 present
results and describe future work, respectively.

2. Literature Review

This section summarizes prior work related to the charge problem and includes
discussion on battery charging and managing runtime costs. The final subsection discusses
the contributions of this paper and how they relate to prior methods.

2.1. Battery Charging

Recharging BEBs is more time consuming than refueling diesel and CNG buses [9].
A diesel or CNG engine can refuel in several minutes, but an electric bus may require several
hours to charge, making the extended charge time a primary concern for BEB conversion.

To circumvent long refuel times, refs. [10,11] propose an approach which replaces
batteries when the state of charge is low. The exchange would replace the current battery
with one that is fully charged and recharge the spent batteries afterward. Exchanging
batteries reduces the down time but is non-trivial because battery swapping requires
specialized tools and/or automation.

Another alternative is to inductively charge buses while they are in motion. Dynamic
charging simplifies logistics because it eliminates the need for stationary charging. Both [12]
and [13] propose methods that inductively charge BEBs using specialized hardware in the
road. Furthermore, dynamic charging is supported by various planning algorithms, such
as [14–16].

Recharging BEBs at a station requires only the development of an intelligent charge
schedule. Following a charge schedule requires minimal modifications to the charging
infrastructure and utilizes existing charging ports in the BEBs with no need for additional
tools or automation. Algorithms for planning use foreknowledge of the runtime environ-
ment and battery dynamics to identify when and to which buses chargers should connect.
Planning algorithms discussed in this review are considered on a scale from “reactive” to
“global”, where reactive methods respond to stimuli at the present, and global techniques
assume complete knowledge about the operating environment to form a plan.

Because reactive planning generally focuses on present circumstances, it requires
minimal knowledge of the operational environment, making reactive planning extremely
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versatile and scalable. Methods of this type are both computationally efficient and adapt to
many use cases. One such example is illustrated in [17], which splits the total power draw
between the grid and an external battery to regulate the instantaneous load. The authors
of [18] give another approach which uses a Markov Decision Process to instantaneously
make decisions.

Reactive algorithms can be enhanced by encoding details for future events to improve
decision making. If only event details within a finite horizon are used, the algorithm
becomes a hybrid, containing features of both reactive and global techniques. For exam-
ple, [19] describes a technique for optimizing a charging schedule out to a scheduling
horizon. Changing the horizon adjusts both the scope and computational complexity
of the solution. In stochastic environments, a smaller window is beneficial, as charge
schedules must be frequently recomputed, whereas in more stable circumstances, longer
windows can yield improved performance. Multi-agent collaboration has also been studied
in the present context [20] and includes methods for load distribution both temporally and
spatially [21,22]

Global algorithms include all information from the beginning to the end. Because global
algorithms assume complete foreknowledge of future events, they provide globally optimal
plans and achieve the highest performance. Global algorithms can encompass a number of
scenarios, including hardware that is either distributed [23] or collocated, although many
times, a distributed scenario is not feasible due to the added cost or scarce charger locations.

The authors in [9,24–27] present techniques that formulate constrained optimization
problems which provide solutions in terms of binary charge decisions for each bus at
each timestep while constraining the power use to comply with contractual obligations.
Work from [7] even minimizes the total cost of power using a time of day pricing schedule.
The authors in [28] take a somewhat different approach by encoding the bus constraints in
a graph and solving for an optimal solution using a network-flow approach. The discrete
nature of the graph-based approach allows [28] to model a non-linear charge dynamic
based on the constant current constant voltage model. The methods given by [24,25,28,29]
address the problem of scheduling buses while meeting the constraints for power use;
however, this technique could be extended by considering non-BEB activity on the grid.
In particular, results from [29] will be used as a comparison for this class of algorithms later
in this paper.

The authors of [30] provide a technique which accounts for grid activity by assuming
that the external grid behavior is known a priori and incorporating its effects into a cost
function. Other methods such as [31] similarly rely on a priori data but focus on price
management in the presence of an ever-changing electrical market. However, in locations
such as Salt Lake City, Utah, the electrical market is heavily regulated, and the price of
energy has a fixed cost given by the power provider so that market-driven strategies are
less applicable.

2.2. Cost Optimization

In addition to physical constraints such as bus routes and charging dynamics, this
paper focuses on minimizing the cost associated with charging and minimizes fees assessed
for on- and off-peak energy use, on- and off-peak power demand, and facilities power
charges [32]. Prior work dealt with charge costs in various ways. The authors in [33]
propose a method to forecast power use. The work conducted by [8] proposes a method
which reduces the demand charge by using power forecasts to plan charge times [33].
When forecasting is not possible, both refs. [17,34] propose methods that decrease the
power demand by observing the load and drawing additional power from on-site battery
packs. Additionally, ref. [24] minimize over on/off-peak energy as part of their work.

2.3. Contributions

This paper develops a novel charge schedule planning framework, which extends the
planner proposed by [28] to include multi-rate charging, uncontrolled loads, night/day



World Electr. Veh. J. 2023, 14, 351 4 of 27

charging, and the rate schedule given in [32]. Our method formulates the bus charge
problem as a mixed-integer linear program (MILP) and is unique because the objective
function is the cost for the transit authority (bus fleet operator) and includes charges for
on-peak and off-peak energy use, on-peak and off-peak power demand, and facilities
demand. The proposed framework handles contention for charging resources in a globally
optimal manner, which guarantees charger availability even when chargers are scarce.

Prior work also made assumptions for night time charge behavior. Our work elimi-
nates the need for such by including both day and night charging in the charge schedule.
The modeling of night and day charging also includes their respective operational con-
straints, such as charge rates, bus availability, and the number of available chargers.

Our work also seeks to understand how the variable rate, as compared to single rate
charging, affects the cost optimality and contributes a more accurate representation of
battery charging dynamics.

Furthermore, because the proposed method includes operational characteristics, such
as the number of buses, the number of chargers, the battery capacity, and various route
metadata in the constraints, it complements prior work which determined such parame-
ters [35,36].

The final contribution is recognizing that our framework is a tool that enables the
prediction of monthly costs for transit authorities and infrastructure demand for power
providers. Optimized charging schedules reduce the power demand and extend the lifetime
of the electrical infrastructure.

3. Graph-Based Problem Formulation

This section formulates the charge problem as an optimization problem where the
variables are defined in a graph. The first subsection describes the intuition behind this
graph-based approach, and the second develops a series of equality and inequality con-
straints resulting in a mixed-integer linear program (MILP).

3.1. Graph Formulation

A solution to the bus charge problem is a schedule of actions for charging equipment.
A schedule states both when and to which bus a charger should connect, suggesting a
model with two dimensions. The first dimension represents time and is given discretely in a
left to right fashion. The second dimension encodes the charger state and extends vertically
as shown in Figure 1. The charger may be in one of several possible states. For example,
it may be connected to one of the N buses, or it may be unconnected, giving a total of
N + 1 different states. This (time, state) 2-D representation is encoded as a rectangular grid
of nodes. Node ni,j represents the charger in the ith state during the jth time index (see
Figure 1). For example, n1,0 from Figure 1 represents a state where a charger is connected
to Bus 1 at t0.

We want the grid of nodes to encode the times at which each bus is at the station and
available for charging. Therefore, let a node be present in the grid when the corresponding
bus can connect to a charger, and delete nodes from the grid when a bus is away from the
station. Consider the two-bus scenario from Figure 1, where buses 1 and 2 are away from
the station at t0, t3, and t6. The schedule is encoded by removing n1,0, n2,0, n1,3, n2,3, n1,6,
and n2,6 to reflect the grid shown in Figure 2.
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Bus: 2

Bus: 1

None

n1,0 n1,1 n1,2 n1,3 n1,4 n1,5 n1,6

n2,0 n2,1 n2,2 n2,3 n2,4 n2,5 n2,6

n0,0 n0,1 n0,2 n0,3 n0,4 n0,5 n0,6

t0 t1 t2 t3 t4 t5 t6

Figure 1. Grid of nodes showing discrete timesteps advancing from left to right and charger states
ascending vertically.

Bus: 2

Bus: 1

None

n1,1 n1,2 n1,4 n1,5

n2,1 n2,2 n2,4 n2,5

n0,0 n0,1 n0,2 n0,3 n0,4 n0,5 n0,6

t0 t1 t2 t3 t4 t5 t6

Figure 2. Grid of nodes displaying times when buses are available for charging.

The state of a charger at any time is represented by existing in a particular node.
Changes in charger state over time are represented by the transitions from a node to
multiple possible next nodes. These transitions are called edges (see Figure 3) and represent
four possible decisions: connect to a bus, charge a bus, remain idle, or disconnect from
a bus. Edges are associated with actions, and that action is determined by the nodes on
either end. Consider the edge from n0,0 to n0,1 in Figure 4. This edge represents a no-charge
decision because the nodes on both ends represent the disconnected charge state at times
t0 and t1. Chargers cannot charge while disconnected, so the edge decision is no charge.
Similarly, the edge between n1,1 and n1,2 indicates a decision to charge, as both n1,1 and
n1,2 represent states where a charger is connected at times t1 and t2. Both to-charge and
no-charge decisions are represented by horizontal transitions in the graph and only reflect
the passing of time, as no changes to the physical hardware are made.

Node 1 Node 2
Weight: nCharger

Figure 3. Node-to-node connection.

n0,0 n0,1 n0,2 n0,3

n1,1 n1,2

Con
ne

ct
Ed

ge

Charge
Edge

Disconnect

Edge

No-Charge
Edges

Figure 4. Illustrates different types of edges: connect, disconnect, and charge edges.
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Conversely, diagonal transitions imply physical hardware changes because they repre-
sent decisions where chargers connect to or disconnect from a bus. One such example from
Figure 4 includes the edge from n0,0 to n1,1. The state represented by n0,0 is disconnected.
This edge represents an interval where a charger is disconnected at t0 and connected at t1,
implying a ‘to-connect’ decision. The same logic applies in reverse for the edge between
n1,2 and n0,3. Hence, the bus charge problem can be described in terms of nodes and edges
(i.e., a graph) where nodes represent bus availability for charging and edges encode all
possible charge decisions.

A charge schedule can be thought of as a list of charge decisions that govern charge
behavior. Because decisions are represented by edges in the graph, a schedule is also
represented by a sequence of connected edges that form a path through the graph. If an
edge is selected, or active, it is considered part of the path. Active and inactive edges are
represented edge weights equal to 1 and 0, respectively.

A graph with binary edge weights can only represent a plan for one charger. This
representation can be expanded to represent an arbitrary number of chargers by using
integer valued weights, where each weight gives the number of chargers in the transition.

Consider a three-charger scenario using the graph in Figure 5. A solution where
one charger is connected to Bus 1 from t1 to t2 and to Bus 2 from t4 to t5 would be
expressed by assigning unit weights to the appropriate connect, charge, and disconnect
edges. The second charger remains idle as illustrated by the active edges along the bottom
row of charger states (see Figure 6).

Bus: 2

Bus: 1

None

t0 t1 t2 t3 t4 t5 t6

Figure 5. Graph-based model of the complete decision space.

In summary, the graph encodes bus availability with nodes, decisions with edges,
and schedules with edge weights. Solving the bus charge problem becomes a matter
of finding the optimal set of edge weights, where optimal is meant to denote the most
cost-effective charge plan.

Bus: 2

Bus: 1

None

t0 t1 t2 t3 t4 t5 t6

2 2 2 2 2 2

1

1

1

11

1

Figure 6. A solution to a 2-bus 3-charger scenario expressed as edge weights above each edge.
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3.2. Graph Constraints

Finding the optimal charge schedule can be expressed as an optimization problem,
where the graph is used to derive equality and inequality constraints for a mixed-integer
linear program (MILP)

min
y

rTy subject to

Fy = f, Qy ≤ q,
(1)

where the equality and inequality constraints are encoded in F, f, Q and q. The variable y
is a vector containing the elements of the solution and has the form

yT =
[
xT dT gT eT pT p̂off-peak p̂on-peak

]
, (2)

where x, d, g, e, p, p̂off-peak, and p̂on-peak represent the edge weights of the graph, the bus
state of charge, the changes in the state of charge, the energy used, the average power at each
timestep, the maximum off-peak power, and the maximum on-peak power, respectively.
Each variable will be defined as unknown elements in a mixed-integer linear program and
will receive greater attention throughout this paper.

This subsection formulates two sets of constraints. The first represents the graph struc-
ture, enforces the conservation of chargers, and defines the number of chargers through a
set of net-flow constraints. The second prevents the charger from thrashing between con-
nected/disconnected states and enforces one-bus/one-charger connectivity by enforcing
what we call “group flow” constraints.

3.2.1. Net-Flow Constraints

Network flow constraints are expressed in matrix–vector form as

Ax = c f , (3)

where A is the graph incidence matrix, x is the nE × 1 vector of edge weights and corre-
sponds to x in Equation (2), and c f is nN × 1 and equals the difference between incoming
and outgoing edge weights, or net-flow. The parameter nE is the number of edges, and nN
is the number of nodes.

An incidence matrix organizes relationships between nodes and edges by describing
which edges leave and enter which nodes. The matrix A is an nN × nE matrix and expresses
incoming connections between the ith node and jth edge by Ai,j = 1. Similarly, outgoing
connections are given by Ai,j = −1, and no connection with Ai,j = 0. For example,
the graph in Figure 7 is represented as follows.

Node 1 Node 2

Node 3 Node 4

Edge 1

E
d

ge
4 Edge 3

E
d

ge
2

Edge 5

Figure 7. A generic directed graph consisting of nodes and edges.
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−1 0 −1 1 0
1 −1 0 0 0
0 0 0 −1 −1
0 1 1 0 1

. (4)

The difference between the number of chargers entering and leaving, or the net-flow,
can be expressed in terms of A as seen in Equation (3). Because the number of chargers
does not change, the number of chargers entering and leaving a node must be equal. This
is expressed in linear form as aT

i x = 0, where ai is the ith row of A. The only exceptions
occur at source and sink nodes.

A source node represents the beginning state for all chargers. Because edges originate
here, there are no incoming edges, and the net-flow will be minus the number of chargers.
This is described in linear form as aT

i x = −nC, where nC is the number of chargers.
Sink nodes represent the final state, where all edges terminate (see Figure 8). Be-

cause sinks have no outgoing edges, they maintain a positive net-flow equal to the number
of chargers and is expressed by aT

i = nC.

Source Sink

Figure 8. Network flow illustrating sources and sinks, where any non-source/sink node is given
in gray.

Therefore, the flow constraints require the elements of c f to be equal to zero for all
non-source and non-sink nodes as seen in Equation (5):

Ax =
[
0 . . . − nC . . . 0 nC . . . 0

]T . (5)

Equation (5) can be formulated in terms of y by appropriately zero-padding A such that

c f =
[
A 0

]
y

= Ãy.
(6)

3.2.2. Group Flow Constraints

Another flow type, known as group flow, can be used to regulate the number of
chargers entering a set of nodes. This is desired for two reasons. First, it prevents chargers
from connecting multiple times during an interval when a bus is available for charging,
and it limits the number of chargers connecting to a bus to be one at most.

Define a charge group as the set of all nodes for a given bus corresponding to one
station visit as shown in Figure 9. The group flow is the number of chargers that enter a
group and is represented as the sum of all incoming edge weights (see Figure 10).

Denote the nG × nE group incidence matrix as B, where nG is the number of groups
and Bi,j is 1 if the jth edge enters the ith group and 0 otherwise. For example, the group
incidence matrix corresponding to the graph in Figure 11 contains 1 in the 7th and 10th
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columns for Group 1, and the 12th and 15th columns for group 2 as given in Equation (7)
so that

B =

[
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

]
. (7)

Group 1 Group 2

Figure 9. Example of groups in a network flow graph with Group 1 encirlced in orange, and Group 2
encircled in red.

Group 2Group 1

Figure 10. Incoming group edges.

Group 2Group 1

Ed
ge

7

Ed
ge

10

Ed
ge

12

Ed
ge

15

Figure 11. Connect edge example for groups.

Let x be the edge weights as before and cg be an nG × 1 vector, where the ith element
gives the group flow for group i. The group flow is then computed as

Bx = cg. (8)

Note that group flow is required to be one at most to avoid connection thrashing. This is
expressed by the inequality given in Equation (9):

Bx ≤ 1. (9)

Similarly to (6), Equation (9) can also be expressed in terms of y with appropriate zero
padding as [

B 0
]
y = B̃y, (10)

so that
B̃y ≤ 1. (11)
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3.3. Section Summary

In summary, the bus charge problem can be formulated as a graph with nodes and
edges, where charge plans are encoded as a path with unit edge weights. The charge
problem aims to find a feasible path which minimizes the cost of power. Feasibility is
defined through a set of net-flow and group-flow constraints. Net-flow constraints are
encoded through an adjacency matrix and enforce both the conservation and total number
of chargers. The group-flow constraints prevent connection thrashing and limit to one the
number of simultaneous charger-to-bus connections.

4. Battery State of Charge

The battery state of charge (SOC) plays a central role in the bus charge problem
because a charge plan must ensure that all buses are adequately charged throughout the
day. Therefore, the charge decisions must account for buses with lower SOC values and
higher discharge rates along their respective routes. This section presents a formulation
for tracking the expected SOC for each bus and imposes constraints on the optimization
framework so that the SOC for each bus is guaranteed to exceed a minimum threshold
throughout the day. Additionally, this method is run over a 24 h period, and the results
are extrapolated to anticipate the cost over a month. Therefore, additional constraints are
given so that buses begin and end each day with the same SOC.

A SOC thresholding constraint requires that battery charge levels be modeled. The kth
SOC for bus i is denoted di,k, where k is the node index. The node indices used here are not
directly tied to specific timesteps. For example, di,k+1 represents the bus SOC at the node in
the graph following the node where di,k is the SOC as seen in Figure 12. The set of all di,k
can be organized as the vector d from Equation (2).

d1,1 d1,2 d1,3 d1,4

d2,1 d2,2 d2,3 d2,4

g2,1 g2,3

g1,1 g1,3

t0 t1 t2 t3 t4 t5 t6

Figure 12. Depiction of which edges increase SOC for the single rate case with yellow nodes depicting
“connected” states, and purple for “disconnected” states.

Because no charging is performed while on route, di,k will assume its lowest value
when buses enter the charge station. Let di,k+1 be the charge level for bus i as it enters the
charge station, and δi represent the power discharged while on route. The entrance SOC
can be expressed as

di,k+1 = di,k − δi, (12)

where di,k is the previous departure SOC for bus i. Consider the example in Figure 13,
where buses 1 and 2 leave the station at t2 and enter at t4. The corresponding change in
SOC is given as d1,2 = d1,1 − δ1 and d2,2 = d2,1 − δ2 for buses 1 and 2, respectively.



World Electr. Veh. J. 2023, 14, 351 11 of 27

d1,1 d1,2

d2,1 d2,2

−δ1

−δ2

Figure 13. Relationship between exit nodes (left) and entrance nodes (right) as δ.

The constraints from Equation (12) can be expressed in linear standard form as

[
−1 1

][ di,k
di,k+1

]
= δi. (13)

Equation (13) can be expressed in terms of y with appropriate zero padding and expanded
to account for the decrease in SOC for all buses outside the station. The expanded constraint
is given as [

0 . . . −1di,k
0 . . . 1di,k+1

]
y = dδ

Dδy = dδ,
(14)

where −1di,k
and 1di,k+1

represent −1 and 1 in locations corresponding to di,k and di,k+1,
respectively. Similar notation will be used throughout this paper as a means to imply a
corresponding index for other variables.

Time periods between entrance and exit nodes represent the time spent in the charge
station and have the potential to charge the battery. An edge over which charging occurs
is referred to as xi,k, where k gives the index of the edge’s outgoing node, and i refers to
the bus. When a charger occupies xi,k, the resulting increase, or gain, in battery charge is
denoted as gi,k, where i and k mirror the edge indices (see Figure 12).

The value for gi,k is computed using a single charge rate. Multiple charge rates can
be encoded by connecting bus nodes with multiple edges, denoted xi,k,l , where each edge
has a distinct charge rate and gain denoted gi,k,l (see Figure 14). Having multiple charge
rates gives the option for fast charging when necessary and slow charging when possible
to preserve battery health and decrease the electrical load [37].

g1,1,3
g1,1,2
g1,1,1

g1,1,3
g1,2,2
g1,2,1

Figure 14. Multi-rate charging.

The rate is selected by setting xi,k,l = 1. All gains associated with unselected rates are
set to zero. Gains that correspond to selected rates are computed using the constant current
constant voltage (CCCV) model as derived in [28], which gives:

di,k+1 = āldi,k − b̄l M, (15)

where āl ∼ (0, 1] depends on the charge rate and is experimentally determined, M is the
battery capacity in kWh, and b̄l = āl − 1. Equation (15) is used to show that

di,k+1 = āldi,k − b̄l M

di,k+1 − di,k = āldi,k − b̄l M − di,k,
(16)
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but the gain is equal to the difference in di,k+1 and di,k such that gi,k,l = di,k+1 − di,k. So

gi,k,l = āldi,k − b̄l M − di,k

gi,k,l = (āl − 1)di,k − b̄l M.
(17)

Therefore, {
gi,k,l = di,k(āl − 1)− b̄l M xi,k,l = 1

gi,k,l = 0 xi,k,l = 0
. (18)

The conditions given in Equation (18) can be rewritten as
gi,k,l ≤ di,k(āl − 1)− b̄l M
gi,k,l ≥ di,k(āl − 1)− b̄l M

xi,k,l = 1

gi,k,l ≤ 0
gi,k,l ≥ 0

xi,k,l = 0

⇒

gi,k,l ≤ di,k(āl − 1)− b̄M − M(1 − xi,k,l)
gi,k,l ≥ di,k(āl − 1)− b̄M
gi,k,l ≤ 0 + Mxi,k,l
gi,k,l ≥ 0,

(19)

where M is the battery capacity. The results of Equation (19) obtain a switching effect.
When xi,k,l = 1, Equation (19) becomes

gi,k,l ≤ di,k(āl − 1)− b̄l M

gi,k,l ≥ di,k(āl − 1)− b̄l M

}
Active

gi,k,l ≤ M

gi,k,l ≥ 0

}
Inactive.

(20)

The active constraints imply equality for gi,k,l = (āl − 1)di,k − b̄l M. The inactive constraints
imply that gi,k,l is greater than zero and less than the battery capacity, which are trivially
satisfied. When xi,k,l = 0, Equation (19) becomes

gi,k,l ≤ di,k(āl − 1)− b̄l M − M

gi,k,l ≥ di,k(āl − 1)− b̄l M

}
Inactive

gi,k,l ≤ 0

gi,k,l ≥ 0

}
Active,

(21)

where the inactive constraints are again trivially satisfied, and the active constraints imply
equality for gi,k,l = 0.

Equation (19) can be expressed in standard form as

−gi,k,l + di,k(āl − 1) + xi,k,l ≤ M(b̄l + 1)

gi,k,l − di,k(āl − 1) ≤ −b̄l M

gi,k,l − Mxi,k,l ≤ 0

−gi,k,l ≤ 0,

(22)

and in matrix form as 
−1 āl − 1 1
1 1 − ā1 0
1 0 −M
−1 0 0


gi,k,l

di,k
xi,k,l

 ≤


M(b̄l + 1)
−b̄l M

0
0

. (23)
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Equation (23) can be expanded to include constraints for all gi,k,l . Because each value for
gi,k,l , di,k, and xi,k,l is an element of y, the constraints from Equation (23) can be written as

Gy ≤ bg. (24)

The value of di,k can be expressed as

di,k+1 = di,k + ∑
l

gi,k,l , (25)

or
di,k+1 − di,k − ∑

l
gi,k,l = 0, (26)

because a non-zero element of gi,k,l is only present for one corresponding l. This relationship
is described in terms of an equality constraint such that

[
1 −1 . . . −1

]


di,k+1
di,k

gi,k,1
. . .

gi,k,l

 = 0. (27)

Equation (27) can be appropriately zero padded to give[
1di,k+1

−1di,k
. . . −1gi,k,l

]
y = 0. (28)

and expanded to define the values for all di,k ∋ k > 0 as

Ddy = 0. (29)

The values for di,0 are defined with initial SOC conditions with additional equality con-
straints denoted as d0 such that

1d1,0 0 0 . . . 0
0 . . . 1d2,0 0 0
...

...
...

0 0 0 . . . 1di,0

y = d0, (30)

or
D0y = d0. (31)

Once all values for di,k are computed, they must be constrained to remain above
threshold τ. The SOC thresholding constraint can be expressed as an inequality constraint
such that

di,k ≥ τ

⇒− di,k ≤ −τ

⇒
[
0 . . . −1di,k

. . . 0
]
y ≤ −τ.

(32)

Equation (32) can be expanded to a matrix Dτ , where each di,k contains a corresponding
constraint row such that

Dτy ≤ −τ1

≤ dτ .
(33)

In summary, the minimum SOC for all feasible charge plans must exceed a given
threshold. SOC values are computed while the bus is in the charge station. SOC values are
updated when a bus enters by subtracting the discharged energy from the previous SOC
estimate. SOC values are updated for in-station periods by adding the charge gains as given
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in Equation (25). Gains are computed using a switching constraint, which sets them to zero
when not charging; otherwise, they follow the CCCV model as set forth in Equation (17).
Initial SOC values are handled with the equality constraint given in Equation (31), and the
SOC is constrained to remain above the threshold τ in Equation (33). All constraints for d
can be concatenated such thatD0

Dδ

Dd

y =

d0
dδ

0

,
[

Dg
Dτ

]
y ≤

[
dg
dτ

]
, (34)

and expressed as
Deqy = deq, Dineqy ≤ dineq. (35)

5. Multi-Graph Additions

An additional contribution this work offers is the expansion to the joint optimization
of both night and day charging in a single optimization problem. Day and night operations
differ in two aspects: number of chargers and bus availability. During the day, the buses
can charge only at the charge station. The number of chargers in the station are limited,
causing contention between buses. At night, each bus docks in a holding stall with one
charger per stall, eliminating charger contention. Furthermore, nighttime charging is slow
compared to daytime charging. Our model uses different rates for day and night charging.

Bus availability also changes because buses do not leave their stalls at night. This
simplifies the charge problem because buses are always available for charging.

Equation (5) in Section 3.2.1 describes the net-flow constraints which constrain the
number of chargers in the source and sink nodes. Because the number of chargers are
different from night to day, a separate graph is used at each transition as shown in Figure 15.

Morning Graph

t0 t1

Night Graph

t6t5

Day Graph

t1 t2 t3 t4 t5

Figure 15. Night and day graphs.

Each graph is connected by equating the appropriate SOC values. Consider the multi-
graph formulation given in Figure 16. The morning graph is related to the day graph
because d1,1 and d2,1 represent the same SOC values as d1,2 and d2,2, respectively. The same
applies for the day and night graphs, where d1,5 and d2,5 represent the SOC values for d1,6
and d2,6. This equality relationship can be expressed as an equality constraint where

dgraph 1 − dgraph 2 = 0, (36)

or by

Dmulti-graphy = 0, (37)
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where Dmulti-graph is an nBus × nVar matrix such that

Dmulti-graphy = dgraph 1 − dgraph 2. (38)

Because all SOC values d are contained in y, forming the matrix D amounts to placing
1 and −1 at the indices corresponding to dgraph 1 and dgraph 2, respectively, and zero other-
wise.

Morning Graph

t0 t1

d1,0 d1,1

d2,0 d2,1

Night Graph

t6t5

d1,6 d1,7

d2,6 d2,7

Day Graph

t1 t2 t3 t4 t5

d1,2 d1,3 d1,4 d1,5

d2,2 d2,3 d2,4 d2,5

Bus 1 SOC

Bus 2 SOC

Bus 1 SOC

Bus 2 SOC

Figure 16. Bus SOC between night and day graphs.

6. Objective Function

The objective function in this work models the rate schedule used in [32], where the
cost is modeled as the monthly charge a transit authority receives from the power provider.
The objective function includes charges for energy, power, and facility use and implements
both on- and off-peak rates.

The objective function also includes the effects and costs of uncontrolled loads. Uncon-
trolled loads might include the effects of patrons charging personal electric vehicles, electric
trains passing through, CNG stations, etc. The loads used in this work were recorded at the
UTA Intermodal Hub station in Salt Lake City (SLC), Utah, as the average power sampled
at uniform time intervals.

6.1. Energy

Energy cost is assessed per kilowatt hour of energy consumed and includes the energy
consumed by uncontrolled loads and bus chargers. Let p be the average external power
used at each timestep, where pi is the average power draw between tj and tj+1. The energy
consumed by external loads from tj to tj+1 is computed as

el
j = pi · ∆t, (39)

where ∆t is the change in time from tj to tj+1 in hours. The energy consumed by bus
chargers for the same interval is computed as

eb
j = ∑

k∈t
gi,k,l , (40)

where k ∈ t represents all values for g that took place between ti and ti+1 for every bus.
The total energy is computed as

ej = el
j + eb

j . (41)
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Equation (41) can be written in standard form as

ej − ∑
k∈t

gi,k,l = pi · ∆t

[
1ej −1g1 . . . − 1gn

]
ej
g1
...

gn

 = pi · ∆t.
(42)

Because power providers charge different rates for the total power consumed during
the respective on- and off-peak hours, Equation (42) is modified to reflect the energy
consumed in arbitrary time periods. Let T be a set of tj, or just j, which will later be used to
denote on- and off-peak periods as Ton and Toff. Equation (42) can be expanded to compute
the total energy consumed in T as

eT − ∑
k∈T

gj,k,l =

(
∑
j∈T

pj

)
· ∆t

[
1eT −1g1 . . . − 1gn

]


eT
g1
...

gn

 = eload
T .

(43)

For multiple time periods, the constraint can be expanded in matrix form, where row i
corresponds to the periods of time in Ti. Furthermore, by including the values for each eTi
in y and zero padding appropriately, the expanded form of Equation (43) can be written as

Ey = eload, (44)

where row i in E reflects Equation (43) for the time intervals in Ti, and eload
i contains the

energy consumed by uncontrolled loads during Ti.

6.2. Power

Power costs are computed for the maximum average power draw, where the average is
computed over a 15 min sliding window. The average power can be computed as the energy
in the window divided by the window length in hours. In this case, a 15 min window
equates to a quarter hour. Let p̄j be the average power from j − 15 to j. Equation (43) can
be adapted to compute the average power as

p̄j −

∑
k∈Tj

1
4

gi,k,l

 =

∑
i∈Tj

pi

 · ∆t

4

[
1p̄j − 1g1

4 . . . − 1gn
4

]
ej
g1
...

gn

 =
pT · ∆t

4
.

(45)

Equation (45) can further be expanded and zero padded to compute the average power at
each time, tj by applying Equation (45) to the corresponding window as

Py = p. (46)
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The maximum average power, denoted as p̂, is greater than or equal to each average power
computed in Equation (46). This yields an additional set of inequality constraints−1p̂ 1p̄0 0 . . . 0

−1p̂ 0 1p̄1 . . . 0
−1p̂ 0 0 . . . 1p̄j

y ≤ 0

Pmaxy ≤ 0.

(47)

Because the max average power is minimized in the objective function, the value for p̂max
will be forced down to the value of the greatest average power computed in Equation (46),
and accurately reflect the maximum average power.

6.3. On/Off-Peak Rates

Power providers divide each day into on- and off-peak periods during which different
rates are applied for both energy and power costs. Let H and L be the respective sets of all
time indices in on- and off-peak periods, respectively. The cost of energy during on-peak
hours can be expressed as

cenergyH
=

(
∑
j∈H

ej

)
reon

=
[
re1 0 . . . 0 re4 . . . 0

]
y

= rT
eon y,

(48)

where ron
e contains the value of ron

e at the index corresponding to ej in y ∀j ∈ H. A similar
formulation can be used to describe the cost of energy consumed during off-peak hours.

An on-peak rate also applies to charges for power. Equation (47) can be adapted to
only include rows that correspond to average power values during on-peak hours such that−1p̂on 1p̄0 0 . . . 0

−1p̂on 0 1p̄1 . . . 0
−1p̂on 0 0 . . . 1p̄j

y ≤ 0

Pony ≤ 0.

(49)

Similarly, the off-peak max average power can be computed as−1p̂off 1p̄0 0 . . . 0
−1p̂off 0 1p̄1 . . . 0
−1p̂off 0 0 . . . 1p̄j

y ≤ 0

Poffy ≤ 0,

(50)

where each row corresponds to p̄j ∀j ∈ L.
Many power providers include a facilities charge. The facilities charge is assessed per

kW of the maximum average power and ignores on- and off-peak times. The total max
average power is calculated using Equation (47).

The total power cost can be computed as the sum of the on-peak, off-peak, and facilities
charges as

cpower =
[
r p̂on 0 . . . 0 r p̂off 0 . . . 0 r p̂facilities

]
y

= rT
p̂ y.

(51)
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6.4. Objective Function

The objective function combines the cost of energy and power, where the on-peak and
off-peak energies are combined as

cenergy = rT
eon y + rT

eoff
y

=
(
reon + reoff

)Ty

= rT
e y.

(52)

The combined expression is given as

ctotal = cpower + cenergy

= rT
e y + rT

p̂ y

=
(
re + r p̂

)Ty

= rTy.

(53)

Equation (53) is used as the objective function in a mixed-integer linear program of
the form

min
y

rTy subject to

Ceqy = ceq, Cineqy ≤ cineq,
(54)

where Ceq, ceq, Cineq, and cineq are formed by stacking the equality and inequality con-
straints from Equations (6), (11), (35), (46), (47), (49), and (50),

min
y

rTy subject to

Ã
Deq
P

y =

c f
deq
p

,


B̃
Dineq
Pmax
Pon
Poff

y ≤


1

dineq
0
0
0


. (55)

7. Results

This section discusses the results for applying the proposed method at the Utah Transit
Authority station in Salt Lake City, Utah, (UTA). The UTA currently maintains a day-
charging station located at a central bus depot, which serves as the singular charge point
for BEBs and contains a limited number of “Fast-Chargers”. At night, each BEB is taken to
a stall, where the BEB is connected to a “slow-charger”. We collected historical data that
provide insight into the external loads which are present on the grid during a 24 h period,
and introduced these data as a model for the “Uncontrolled Loads”. We are particularly
interested in observing performance as the number of day chargers become scarce because
their installation requires a significant financial investment. Furthermore, UTA also plans to
increase their fleet size, and so we also look to see how the monthly cost of energy scales as
the fleet size increases. We also compare the proposed method against two other charging
paradigms. The first models how a traditional bus driver might behave in the absence
of a centralized coordinator, and the second is an optimization solution from the current
literature, which focuses on minimizing the instantaneous load on the grid. This section
contains the results of the planning framework and is subdivided into three subsections:
uncontested results, contested results, and multi-rate comparisons.
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7.1. Baseline and Setup

The experiments in this section compare the results of the framework given in
Equation (55) with a baseline that models the general behavior of bus drivers at the Utah
Transit Authority (UTA) in SLC, Utah and the planning framework from [29]. All methods
use a MILP to find an optimal solution and are solved up to a 2% gap using Gurobi [38].
Model parameters such as δ, arrival, and departure times were computed from historical
data provided by UTA.

According to UTA, bus drivers generally charge whenever possible. Our baseline
scenario reflects this default bus driver behavior using an objective function that maximizes
the number of charging instances, which is computed as the sum of group flow values,
resulting in the objective function

max
y

1T By, (56)

All other constraints are the same, which results in the baseline formulation

max
y

1T By subject to

Ã
Deq
P

y =

c f
deq
p

,


B̃
Dineq
Pmax
Pon
Poff

y ≤


1

dineq
0
0
0


. (57)

Each experiment is run using a five minute timestep such that the time difference
between tk and tk+1 is five minutes. Four charge rates are used during the following
experiments: ā1 = 0.9851, ā2 = 0.9418, ā3 = 0.9003, and ā4 = 0.8607. Each value for ā
represents a different charge rate and is referenced by how much time it would take a bus
to charge from 0% to 99%. For the rates used in the following set of experiments, a bus
would need 25.58 h to charge from 0% to 99% with ā1, 6.4 h with ā2, 3.65 with ā3, and 2.56
with ā4.

Night charging uses a single charge rate of ā1 for all experiments. Experiments with
single-rate day charging use ā4, and multi-rate experiments incorporate four charge options:
ā1, ā2, ā3, and ā4.

Uncontrolled loads are modeled with data from the TRAX Power Substation (TPSS) at
the UTA Intermodel Hub site in Salt Lake City. It is also assumed that each bus starts and
ends each day with an SOC of 80% and has a maximum charge capacity of 100 kWh.

7.2. Uncontested Results

This section explores performance in a scenario where there is one charger per bus
during the day, making charge resources uncontested. The optimal charge schedule asso-
ciated with Equation (55) is compared with the schedule developed by the baseline in
Equation (57). The total monthly cost is computed using the rates given in Rocky Mountain
Power Schedule 8 and is computed in Equation (58):

cost = facilitiesPower · 4.81 + onPeakPower · 15.73+

onPeakEnergy · 0.058282 + offPeakEnergy · 0.029624
(58)

There is also a customer service charge of 71.00 in the rate schedule, but because the
service charge does not depend on a customer’s behavior, it is ignored.

Because Equation (58) is driven by facilities power, on-peak power, on-peak energy,
and off-peak energy, these four criteria are used to evaluate the optimal and baseline charge
plans. Furthermore, because the on- and off-peak energy charges contribute little to the
cost differences, they are grouped together for comparison.

Figure 17 compares the cost of energy, on-peak power, and facilities power for the
baseline [29], and this work’s scheduling strategies. Note how the schedule given by
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He et al. [29] is similar in both energy costs and on-peak power charges but is more
expensive in the facilities charge. These differences are expected, as He et al. [29]. minimize
the cost of energy by charging during off-peak periods. Because there is minimal charging
during on-peak times, the on-peak power charges reflect the uncontrolled loads and are
therefore the same. The differences in facilities is present because He et al. do not include
the overall maximum average power in their framework.
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Facilities Power 764.95 0.00 37.07 0.00
On-Peak Power 222.67 289.54 32.63 38.48

Total 1100.70 335.18 26.79 10.02

Figure 17. Cost comparison between optimized and baseline algorithms [30].
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Figure 18. The average 15 min power for one day.

7.3. Contested Results

This section observes the performance of the optimal schedule as charge resources
become scarce, creating a contested environment. Resource contention is most prevalent
when chargers are scarce and pushes buses to charge in non-ideal circumstances. For ex-
ample, if charging resources are saturated during off-peak hours, other buses might be
forced to charge in the on-peak window. The impact of contention is measured as the
change in monthly cost when the number of chargers is held constant and the number of
buses increases.

Figure 17. Cost comparison between optimized and baseline algorithms [29].

Additionally, the facilities and on-peak power costs for the baseline schedule are
significantly larger than the optimized schedule. To better understand the cost disparity, we
observe the load profiles to identify how the optimized schedule avoids the costs incurred
by the baseline.

Figure 18 shows the 15 min average power for both the baseline and optimal schedules.
Note how the optimal schedule incurs a lower average power for both on- and off-peak
time intervals. The reduction in average power is what leads to the cost disparity between
the on-peak and facilities power costs in Figure 17.



World Electr. Veh. J. 2023, 14, 351 21 of 27

00:00 02:24 04:48 07:12 09:36 12:00 14:24 16:48 19:12 21:36 00:00
0

50

100

150

Time (hr:min)

15
-M

in
ut

e
A

ve
ra

ge
Po

w
er

(k
W

)

Baseline
Optimized

Maximum Overall Average Power
Maximum On-Peak Average Power

On-Peak Time

Figure 18. The average 15 min power for one day.

The underlying behavior can be observed in Figure 19, which separates the loads
into their controlled and uncontrolled constituents. Because the uncontrolled loads are
shared between both scenarios, Figure 19 shows the 15 min average power for uncontrolled,
optimal charging, and baseline charging loads.
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Figure 19. Comparison between uncontrolled and bus loads.

Observe how the optimized schedule avoids charging during on-peak hours and regu-
lates each charge event to spread the power draw over larger periods of time. Furthermore,
bus charging is avoided when uncontrolled loads are high, resulting in a reduced 15 min
average power. Reducing the average power and not charging during on-peak periods
results in the dramatic cost reduction shown in Figure 17.

7.3. Contested Results

This section observes the performance of the optimal schedule as charge resources
become scarce, creating a contested environment. Resource contention is most prevalent
when chargers are scarce and pushes buses to charge in non-ideal circumstances. For ex-
ample, if charging resources are saturated during off-peak hours, other buses might be
forced to charge in the on-peak window. The impact of contention is measured as the
change in monthly cost when the number of chargers is held constant and the number of
buses increases.

In this analysis, one charger is used, and the number of buses is varied from five to
eleven. Figure 20 shows the monthly cost as a function of the number of buses. Note the
minimal cost increase per bus, where each successive bus costs around USD 75.00, which
approaches the cost of energy that is required to provide transit services. Because the
additional cost per bus is roughly the cost of energy, there are no additional facilities
and on-peak power charges, showing that optimal charge plans also minimize cost in the
presence of contention.
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Figure 20. Results for several single-charger scenarios.

We desire to know how this is achieved. Figure 21 shows the 15 min average power
for controlled and uncontrolled loads for a five-bus and eleven-bus scenario. In the 5-bus
scenario, loads are easily distributed amongst off-peak hours, resulting in an optimized
cost. The 11-bus scenario requires significantly more power and is forced to charge during
on-peak hours. Note, however, that the average power is kept relatively low, and the
additional charge sessions never cause the average power to supersede the maximum
average power of the uncontrolled loads. Both scenarios also make ample use of night
charging, where the number of chargers is the same as the number of buses.
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Figure 21. Comparison of the loads for a 5- and 11-bus scenario with one overhead charger.
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7.4. Multi-Rate Comparison

This subsection compares a multi-rate and single-rate charge schedule. The multi-rate
schedule includes a1, a2, a3, and a4 as defined in Section 7.1. The single-rate schedule
assumes the static charge rate associated with a1. Two scenarios are considered. The first
compares the cost of multi- and single-rate plans for a 5-bus 1-charger scenario. The second
compares performance for a 35-bus 6-charger scenario.

The potential savings for using a variable charge rate in a 5-bus 1-charger scenario are
found to be negligible. The cost of the multi-rate scenario is USD 3006.94, and the cost of
the single-rate scenario is USD 3007.77, which gives a total savings of USD 0.83. A 36-bus
6-charger comparison also yields minimal cost savings.

While examining the most commonly used edges, we observe that edges correspond-
ing to a maximum charge rate are used most frequently as shown in Figure 22, which
explains the similarities in cost. If the highest rate is almost always selected, the resulting
plan would resemble a single-rate schedule, resulting in a singe-rate cost.
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Figure 22. Histogram of charge rates, where each rate is described by how must time it would take to
charge a bus from 0% to 99%.

Another explanation for the cost similarity is found in how monthly cost is computed.
Because the monthly cost is based on the average instantaneous power, both high and
low charge rates can give the same results over a fixed time period. The charge schedules
shown in both single and multi-rate plans charge buses in relatively small time periods.
Fast charging over small periods of time is equivalent to slow charging over longer periods.
In this way, the average power can be kept low even when using high charge rates (see
Figures 20 and 21).

8. Conclusions and Future Work

In conclusion, the charge schedules developed in Equation (55) yield significant cost
savings over both the baseline and the work by [29]. These savings come from minimizing
the average power consumption and charging during off-peak hours. Cost savings are
maintained in both uncontested and resource-constrained scenarios. There is also little to
be gained by offering multiple charge rates because the average power can be managed
with high charge rates by reducing the charge duration. Furthermore, it was shown that
when given the choice, the optimizer primarily selected high charge rates, which reduces
the problem complexity to the single-rate formulation.

In practice, this work demonstrates the feasibility of large-scale BEB conversion with a
small number of charging resources. Furthermore, the monthly cost can be made linear
with the number of buses so that BEB conversion is scalable even when the number of
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fast-charging resources is relatively small and the grid is shared with other significant
power users. In practice, accommodating other power users allows the transit authority to
aggregate their meters, which decreases the cost of the charging infrastructure for power
providers and the monthly cost for transit authorities.

Although multi-rate charging does not significantly reduce the monthly cost, it could
be useful in prolonging battery life. The high power rates observed in this work can reduce
the lifespan of the battery, whereas lower charge rates can prolong battery life. Therefore,
future work incorporating battery health will be explored. We believe that multi-rate
charging may offer some flexibility in this scenario. Future work will extend the discrete
charge levels in this work to a continuous rate selection.

Because this work presents only a planning framework for a global solution over large
stretches of time, it is computationally infeasible to recompute when unplanned events
occur. Future work could move this framework toward real-time deployment using a
hierarchical approach to control the charging. A precomputed global plan supports the
real-time planner by providing top-level guidance. The lower-level real-time planner will
adapt to unplanned events by controlling for a return from the current state to the global
plan over a finite sliding horizon.

Finally, the computational complexity of our approach decreases as the number of
chargers increase but suffers when planning for large bus fleets, as the number of constraints
and solution variables scales linearly with the number of buses as shown in Figure 23.
Future improvements might use a solution from a heuristic approach as a “warm start”
for the optimizer, which would reduce the computational complexity of finding a globally
optimal solution.
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Figure 23. Scalability analysis.
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In summary, the proposed work could be extended in the following areas: (1) De-
crease the compute time by computing a “warm start” for the optimizer using a heuristic
approach. (2) Incorporate renewable energy into the optimization scheme in the same way
the uncontrolled loads were used. (3) Account for variability in the uncontrolled loads
by modifying the inputs to reflect worst-case scenarios. (4) Include the projected costs of
battery replacement as a function of high charge rates.
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