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Abstract: With the rapid breakthroughs in artificial intelligence technology and intelligent manufac-
turing technology, automotive intelligence has become a research hotspot, and much progress has
been made. However, a skeptical attitude is still held towards intelligent vehicles, especially when
driving in a complex multi-vehicle interaction environment. The interaction among multi-vehicles
generally involves more uncertainties in vehicle motion and entails higher driving risk, and thus
deserves more research concerns and efforts. Targeting the safety assessment issue of complex
multi-vehicle interaction scenarios, this article summarizes the existing literature on the relevant data
collection methodologies, vehicle interaction mechanisms, and driving risk evaluation methods for
intelligent vehicles. The limitations of the existing assessment methods and the prospects for their
future development are analyzed. The results of this article can provide a reference for intelligent
vehicles in terms of timely and accurate driving risk assessment in real-world multi-vehicle scenarios
and help improve the safe driving technologies of intelligent vehicles.

Keywords: autonomous vehicle; risk assessment; driving risks; multi-vehicle interaction

1. Introduction

With the rapid advancements in artificial intelligence technology and intelligent man-
ufacturing technology, automotive intelligence has captured the attention of the public
and emerged as a prominent area of research in the global automotive industry. Intelligent
vehicles are equipped with advanced sensors (such as LiDAR, cameras, millimeter wave
radar, etc.), controllers, actuators, and other devices to achieve intelligent driving through
computer vision, multi-source data fusion, automatic control, and other technologies. Al-
though intelligent vehicles have made tremendous progress thanks to rapidly developing
technologies, the general public still holds a skeptical attitude, especially when driving in
a complex multi-vehicle interaction environment. The driving risk assessment for such a
complex environment can be challenging because the interaction among multi-vehicles gen-
erally involves more uncertainties and entails higher driving risk. Therefore, effective risk
assessment methods are particularly important for intelligent vehicle driving in complex
multi-vehicle interaction scenarios.

Many critical metrics have been proposed to evaluate the situation criticality for in-
telligent vehicles in the literature over the years. The most commonly used risk metrics
are based on Time-to-X indicators, such as Time to Collision and Time to Steer. Although
these indicators are simple and easy to calculate, they are usually only applicable to specific
longitudinal or lateral scenes, making it difficult to fully capture the vehicle interaction pro-
cess in multi-vehicle scenarios that integrate both longitudinal and lateral driving features.
In order to ensure the driving safety of autonomous vehicles in the actual complex road
environment, timely and accurate assessment of the safety situation in multi-vehicle inter-
action scenarios has become a problem that demands much research attention. However,
while existing survey literature has extensively explored achievements in risk assessment
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for two-vehicle interactions, there is comparatively less focus on intelligent vehicles in
multi-vehicle interaction scenarios [1–5]. Therefore, the academic community still lacks
in-depth analysis and systematic summary of the solutions to the problem.

To overcome the aforementioned challenges, focusing on the driving risk assessment
problem of intelligent vehicles in multi-vehicle interaction scenarios, this article summarizes
the existing literature on interaction data collection, vehicle interaction mechanisms, and
multi-vehicle interaction risk evaluation methods. The shortcomings of existing literature
methods and prospects for future technologies are also analyzed and discussed. The results
of this article can provide a reference for intelligent vehicles in terms of timely and accurate
driving risk assessment in real-world multi-vehicle scenarios and help improve the safe
driving technologies of intelligent vehicles. The contributions of this study are two-fold
as follows:

(1) This study summarizes the advantages and disadvantages of existing methods
for evaluating the safety situation of intelligent vehicles in multi-vehicle interaction sce-
narios, which facilitates a better understanding and application of these methods for
relevant researchers;

(2) This study points out the challenges and future research directions of intelligent
vehicle safety situation assessment in multi-vehicle interaction scenarios, which provides
potential research directions for relevant researchers and helps to promote the development
of this field.

It should be noted that the multi-vehicle interaction scenario addressed in this article
specifically pertains to a highway environment involving a minimum of three driving
vehicles that dynamically interact with each other. Scenarios such as vehicle platooning
and road intersections were excluded from consideration, as these scenarios entail distinct
risk evolution mechanisms and are not the primary focus of this study. Relevant references
in this article were collected using academic search engines (such as Google Academic) and
databases (such as IEEE Xplore and ScienceDirect).

The remaining content of this article is arranged according to the following structure.
The data collection methods for multi-vehicle interaction scenarios are introduced in
Section 2. The mechanism of multi-vehicle interaction is described in Section 3. The
risk assessment methods for two-vehicle interactions and multi-vehicle interactions are
summarized and discussed, respectively, in Section 4. Challenges and future research
directions are presented in Section 5. Section 6 concludes this paper. Figure 1 depicts the
flowchart outlining the structure of this paper.
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2. Data Collection for Multi-Vehicle Interaction Scenarios

In order to realize risk assessment in multi-vehicle interaction scenarios, it is neces-
sary to first collect offline interaction data samples among multiple vehicles, based on
which risk evaluation models are developed and trained; online multi-vehicle interaction
information data are then fed into the obtained model to produce real-time risk assess-
ment results. Therefore, obtaining multi-dimensional data characterizing multi-vehicle
interaction scenarios is the foundation for conducting subsequent risk assessments.

At present, the data collection methods for multi-vehicle interaction can be roughly
divided into three categories, including vehicle-based, roadside-based, and simulation-
based methods, as shown in Table 1 [4].
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Table 1. Data collection methods for multi-vehicle interaction scenarios.

Name Method Description Main Features

Vehicle-based method

Onboard sensors are utilized to obtain vehicle
motion and driver characteristics data in a
multi-vehicle environment (in the real world or
driver-in-the-loop simulation); traffic conflicts are
labeled manually [6].

Data collection and extraction are generally
costly; the type and quantity of the test
subjects are limited.

Roadside-based method

Roadside detectors/cameras or drones are
employed to obtain vehicle trajectory data [7–9];
traffic conflicts can be labeled manually or by
machine learning algorithms.

The data collection interval is flexible;
object detection algorithms need careful
calibration and validation.

Simulation-based method

Micro-level simulation software is used to build a
multi-vehicle interaction environment [10,11];
conflict data are directly obtained from the
software output.

Various types of multi-vehicle scenarios
can be simulated; accuracy depends on the
basic behavioral model and relevant
assumptions within the simulation
software.

In recent years, thanks to the continuous development of onboard software/hardware
and intelligent algorithms, more autonomous driving datasets have been available for
driving safety research. Such datasets can be utilized without being limited by experimental
environments and technical conditions, making it convenient to conduct multi-vehicle
interaction risk assessment analysis. Wang et al. [12] summarized three types of datasets,
including vehicle-related datasets, driving environment datasets, and datasets containing
complex behavioral interactions, part of which are shown in Table 2. Vehicle-related datasets
mainly record data on vehicle operation status, driver operation, and vehicle internal status;
environmental-related datasets provide information on a bird’s eye view of the physical
states of the traffic participants, high-definition map of the driving environment, and even
classification of individual behaviors; complex interaction behavior related datasets aim at
complicated traffic conditions and support the decision-making development [13].

Table 2. Dataset types and attributes [12].

Dataset Type Dataset Name Vehicle Operation
Status Data Driver Operation Data Vehicle Internal Status

Data

Vehicle-related datasets

EU Long term [14]
√

× ×
Udacity [15]

√ √
×

DDD17 [16]
√ √ √

Bird’s-eye view of
physical state High-definition map Behavior classification

Environmental related
datasets

Apollo Scape [17] × × ×
NuScenes [18] ×

√
×

WAYMO [13]
√ √ √

NGSIM [19]
√

× ×
Behavioral Interaction Description

Complex interaction
behavior-related

datasets

Apollo Scape [17] Interaction complexity is divided into three levels based on the number of
moving objects in the scene.

WAYMO [13] 77.5% of the scenes contain multi-object interactions.

DoTA [20] Dangerous scenes (near accidents) are included.
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3. Analysis of Multi-Vehicle Interaction Characteristics

During the driving process, intelligent vehicles need to monitor the behavior of
surrounding vehicles in real time and make decisions on whether to maintain following
or lane-changing behaviors. The characteristics of such interaction behavior between
vehicles are of great significance to understanding the risk mechanism in complex multi-
vehicle environments and serve as the foundation for constructing subsequent multi-vehicle
interaction risk assessment methods.

The characteristics of multi-vehicle interaction behavior are often closely related to
that of the two-vehicle pairs but have more uncertainty and complexity. Zhang et al. [21]
observed a large amount of vehicle interaction behavior samples and described the typical
interaction behavior process of the vehicle pairs as presented in Table 3. It can be seen
that the typical interaction behavior patterns of vehicles can be roughly divided into four
categories, including longitudinal, front cut-in, rear cut-in, and lateral behaviors. These
behavior patterns exhibit variability in the initial state of the vehicle pair as well as their
lateral and longitudinal speeds throughout the interaction process.

Table 3. Typical vehicle interaction behavior modes.

Category
Interactive
Behavior

Initial State of
Two Vehicles

Typical Characteristics of the
Interaction Process Conflicts during

Interaction
Typical Scenarios

Lateral Speed Longitudinal
Speed

Longitudinal
behavior

Normal following

Front and rear
vehicles in the
same lane with
similar initial
longitudinal

speeds

Maintained
approximately at

zero

Maintained
approximately

the same
× Smooth car

following process

Compressed
following

The same with
the normal

following mode

Maintained
approximately at

zero

Front vehicle
decelerates or
rear vehicle
accelerates

√ Unexpected
incidents in the

front

Front cut-in

Direct cut-in
Fast front and

slow rear vehicles
located on

adjacent lanes

Front vehicle
increases lateral
speed and cuts
into the front of
the rear vehicle

Maintained
approximately

the same
×

Normal
lane-changing

process

Coordinated
cut-in

Slow front and
fast rear vehicles

located on
adjacent lanes

Front vehicle
increases lateral
speed and cuts
into the front of
the rear vehicle

Front vehicle
accelerates while

rear vehicle
decelerates

√ Vehicles leaving
the main road for

exit ramp

Rear Cut-in

Direct cut-in
Fast front and

slow rear vehicles
located on

adjacent lanes

Rear vehicle
increases lateral
speed and cuts
into the rear of

the front vehicle

Maintained
approximately

the same
×

Vehicles changing
lanes due to slow
traffic in the front

Coordinated
cut-in

Slow front and
fast rear vehicles

located on
adjacent lanes

Front vehicle
increases lateral
speed and waits

to cut into the
rear of the rear

vehicle

Maintained
approximately

the same;
coordinated in the
relative position

√ Vehicles leaving
the entrance ramp
for the main road

Lateral behavior
Slow front and

fast rear vehicles
located on

adjacent lanes

Rear vehicle has a
high lateral speed

and quickly
approaches the
adjacent lane

Maintained
approximately

the same

√ Vehicles changing
to faster inner

lanes

The above research only analyzes the interaction behavior within vehicle pairs. How-
ever, vehicles are not only influenced by the behavior of one adjacent vehicle but by the
vehicle group composed of all surrounding vehicles, which can generate more complex
interaction behaviors and needs further in-depth analysis.
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4. Risk Assessment Method for Multi-Vehicle Interaction

This section provides a systematic review of the risk assessment methods for multi-
vehicle interaction. Firstly, the traditional assessment methods for two-vehicle interaction
and their limitations are outlined; then, the existing multi-vehicle interaction risk assess-
ment methods in the literature are summarized and elaborated.

4.1. Risk Assessment of Interaction between Two Vehicles

The risk of two-vehicle interaction can be quantified in terms of vehicle proximity and
collision avoidance intensity [22], based on which many scholars have established a series of
Surrogate Safety Measures (SSM) to evaluate the risk of two-vehicle interactions [23]. SSM
can be mainly divided into four subcategories, namely time-based SSM, distance-based
SSM, deceleration-based SSM, and energy-based SSM, as shown in Figure 2.
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4.1.1. Time-Based SSM

Time-based SSM mainly includes Time to Collision (TTC), TTC-derived indicators,
Post Encroachment Time (PET), and PET-derived indicators [24–41], as summarized in
Table 4. TTC represents the proximity of road users to potential collision points, while PET
reflects the proximity of road users to the actual collision points. Both of them emphasize
the existence of conflicting paths but lack a description of the collision process. Statistics
show that approximately one-third of current studies employed the indicator TTC or the
indicator combinations with TTC and other SSMs.

Table 4. Time-based SSM.

Classification Indicator Definition Limitations Advantages

TTC and its
derivative
indicators

Collision to Time (TTC)
[25–27]

The time for the two cars to
collide at their current speed

and direction

Evasive actions are not
considered; threshold is

required and can be sensitive
to evaluation.

Commonly used; easy
to measure

Time Exposed
Time-to-

Collision (TET) [30,31]

The total time period when
TTC is below the threshold

Threshold sensitivity;
different TTC values

(severity level) cannot be
reflected.

The overall risk of a
time period can be

obtained.

Time Integrated
Time-to-

Collision (TIT) [32,33]

The integration of TTC
during the period when TTC

is below the threshold

Threshold sensitivity;
difficult to explain

Risk estimate varies
according to different

TTC values.

Modified Time-
to-collision (MTTC)

[34–36]

A revised version of TTC
that considers all possible

longitudinal conflicts due to
acceleration /deceleration

Threshold sensitivity;
instantaneous acceleration
data are difficult to obtain

More advanced than
TTC; scenario
differences are

considered.



World Electr. Veh. J. 2023, 14, 348 7 of 20

Table 4. Cont.

Classification Indicator Definition Limitations Advantages

PET and its
derived

indicators

Post- Encroachment
Time (PET) [37–39]

The time interval between
one party leaving and the

other arriving at the conflict
area

Threshold sensitivity; unable
to reflect changes in
interactive dynamics

Suitable for lane
changing; easy to

measure

Headway (H) [40]

The time interval between
two consecutive vehicles

passing a given point on the
road

The lateral movements
caused by overtaking and

lane changing are not
considered.

Easy to measure

Time Advance (TAdv)
[41]

Another version of PET
assumes road users do not

change path and speed

Threshold sensitivity; strong
assumption on constant

speed and direction

Suitable for both
longitudinal and lateral

scenarios

4.1.2. Distance-Based SSM

Distance-based SSM characterizes risk by measuring the distance from the vehicle
to the collision point, mainly including the Stop Distance Index (SDI), Potential Index for
Collision with Urgent Deceleration (PICUD), Difference of Space distance and Stopping
distance (DSS), etc. [42–46], as shown in Table 5.

Table 5. Distance-based SSM.

Indicator Definition Limitations Advantages

Stop Distance Index (SDI) [44]

The minimum distance
required to avoid collision

with the front vehicle when it
decelerates at the maximum
deceleration rate until stops

Only applicable to the car
following scenes Easy to calculate

Potential Index for Collision
with Urgent Deceleration

(PICUD [45])

The distance between the two
vehicles after they complete

emergency braking

Threshold sensitive; lateral
interactions are not

considered

Suitable for collision severity
evaluation

Difference of Space distance
and Stopping distance

(DSS) [46]

Another version of PICUD
that takes the friction

coefficient into account

Rarely used due to the fact
that most friction information

is not available in vehicle
trajectory datasets

Suitable for collision severity
evaluation under extreme

roadway conditions

4.1.3. Deceleration-Based SSM

Deceleration-based SSM is generally determined by the ultimate braking capability of
the vehicle and the required deceleration to avoid collisions [47–52]. It is commonly used to
evaluate the intensity of evasive actions taken by drivers to avoid collisions during traffic
conflicts. The commonly used deceleration-based SSM are shown in Table 6.

Table 6. Deceleration-based SSM.

Indicator Definition Limitations Advantages

Deceleration Rate to Avoid
the Crash (DRAC) [48–51]

The speed difference between
the two vehicles divided by

TTC

Only applicable to the car
following scenes; threshold

sensitivity
Easy to measure

Crash Potential Index
(CPI) [52]

An extended version of DRAC
by considering vehicle’s

maximum deceleration rate

Only applicable to
longitudinal following

situations; different DRAC
values (severity level) cannot

be reflected.

The overall risk of a time
period can be obtained.
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4.1.4. Energy-Based SSM

Energy-based SSM is established based on vehicle collision theory assuming collisions
are inevitable [9,53–56]. Based on the conservation of momentum and kinetic energy, the
energy released during the collision process can be calculated for various types of collisions
and used to evaluate the severity of potential collisions. Typical energy-based SSMs are
shown in Table 7.

Table 7. Energy-based SSM.

Indicator Definition Limitations Advantages

Delta V [55]
Velocity changes in vehicle

trajectory before and after the
collision

Evasive actions are not
considered; inelastic collision

assumption

Easy to measure; consequence
of collision is evaluated.

Conflict index (CFI) [56]

Kinetic energy released
during collisions is estimated
by combining PET with speed,

mass, and relative angle.

Parameter calibration is
required; difficult to explain

Both vehicle proximity and
collision consequences are

considered.

Based on the above summaries, it can be seen that the SSM-based risk evaluation
methods mainly take kinematics measures into account (e.g., relative speed and distance,
deceleration, mass, etc.). The advantages include simplicity in structure and high compu-
tational efficiency, making it suitable for quick assessment of real-time safety situations;
the disadvantage is that the uncertainties in vehicle motion and interaction scenarios are
often ignored, which limits the application scenarios of such evaluation methods, espe-
cially for complex multi-vehicle scenarios that feature more uncertain factors in vehicle
interaction [57,58].

4.2. Risk Assessment of Multi-Vehicle Interaction

Depending on whether an accurate prediction of future vehicle trajectories is needed,
this article divides the existing methods of multi-vehicle interaction risk assessment into two
categories, including state inference-based assessment methods and trajectory prediction-
based assessment methods, as shown in Figure 3. In particular, the evaluation method based
on state inference generally employs Bayesian models, game theory models, or complex
network models to directly depict (predict) the current (future) risk state among vehicles
without making specific predictions on their future trajectories; trajectory prediction-based
evaluation method, on the contrary, usually relies on the trajectory prediction results of
the target vehicles for a period of time in the future, based on which the possibility and
severity of collisions are calculated and determined.

4.2.1. Evaluation Method Based on State Inference

As mentioned in Section 2, high-resolution vehicle trajectory data can be widely
applied to risk assessment of multi-vehicle interaction [59,60]. State inference-based evalu-
ation methods usually directly depict and deduce current and future risk states using
the historical trajectories of vehicles instead of their predicted future trajectories. In
particular, these methods can be further categorized based on specific inference theo-
ries/methodologies, including the theory of causation, the theory of interactive decision
making, distribution relationship characterization, and other state inference methodologies.
Table 8 summarizes the evaluation method based on state inference.



World Electr. Veh. J. 2023, 14, 348 9 of 20World Electr. Veh. J. 2023, 14, x FOR PEER REVIEW 9 of 21 
 

Risk assessment 
of multi vehicle 

interaction

State inference- 
based method

Trajectory 
prediction-based 

method

Causal relationship 
analysis

Others

Field theory

Spatiatl-temporal 
proximity measures

Interaction uncertainty 
analysis

Uncertainty in 
interaction behavior

Uncertainty in 
predicted trajectory 

Risk Field

SSM

Uncertainty in model 
parameter 

Interactive decision-
making theory

Distribution relationship 
characterization

Bayesian network

Game Theory

Complex network

Traffic flow theory

 
Figure 3. Classification of risk assessment methods for multi-vehicle interaction. 

4.2.1. Evaluation Method Based on State Inference 
As mentioned in Section 2, high-resolution vehicle trajectory data can be widely ap-

plied to risk assessment of multi-vehicle interaction [59,60]. State inference-based evalua-
tion methods usually directly depict and deduce current and future risk states using the 
historical trajectories of vehicles instead of their predicted future trajectories. In particular, 
these methods can be further categorized based on specific inference theories/methodolo-
gies, including the theory of causation, the theory of interactive decision making, distri-
bution relationship characterization, and other state inference methodologies. Table 8 
summarizes the evaluation method based on state inference. 

Table 8. Evaluation method based on state inference. 

Classification Description Advantages Limitations 

Based on causal 
relationship [61–

64] 

Evaluating driving risk by quantitatively 
analyzing the relationship between risk-
related variables (such as drivers, vehicle 

characteristics, and weather) and risk 
levels. 

Normalized results across 
different scenarios (i.e., 
with good scenario ap-
plicability) can be ob-

tained. 

Difficult to solve and poor in 
real-time computing perfor-

mance due to the large number 
of model parameters.  

Based on interac-
tive decision-

making [65–70] 

Viewing multi-vehicle interaction as a 
game process (with vehicles as partici-
pants in the game) and using game the-
ory theories to analyze the risk relation-

ships between vehicles. 

Behavioral strategy can be 
defined for each vehicle 
(game player) to better 

mimic real-world scenar-
ios. 

Difficult to jointly model the 
overall gaming behavior of the 

multi-vehicle group. 

Based on the dis-
tribution rela-

tionship [71,72] 

Using network-based theory to describe 
the dynamic spatial distribution relation-
ship among vehicles during multi-vehi-

cle interaction for risk assessment. 

The risk relationship 
among multi-vehicles can 

be fully captured.  

Lacking empirical experience 
and experimental data. 

Figure 3. Classification of risk assessment methods for multi-vehicle interaction.

Table 8. Evaluation method based on state inference.

Classification Description Advantages Limitations

Based on causal relationship
[61–64]

Evaluating driving risk by
quantitatively analyzing the

relationship between
risk-related variables (such as
drivers, vehicle characteristics,
and weather) and risk levels.

Normalized results across
different scenarios (i.e., with
good scenario applicability)

can be obtained.

Difficult to solve and poor in
real-time computing

performance due to the large
number of model parameters.

Based on interactive
decision-making [65–70]

Viewing multi-vehicle
interaction as a game process
(with vehicles as participants
in the game) and using game
theory theories to analyze the

risk relationships between
vehicles.

Behavioral strategy can be
defined for each vehicle (game

player) to better mimic
real-world scenarios.

Difficult to jointly model the
overall gaming behavior of

the multi-vehicle group.

Based on the distribution
relationship [71,72]

Using network-based theory
to describe the dynamic

spatial distribution
relationship among vehicles

during multi-vehicle
interaction for risk

assessment.

The risk relationship among
multi-vehicles can be fully

captured.

Lacking empirical experience
and experimental data.

Other state inference risk
assessment methods [73,74]

Studying the evolution
pattern of multi-vehicle

driving risk of road sections
from the perspective of macro

traffic flow.

Influencing factors on risk
outcome can be identified for
accident prevention strategy

development.

Ignoring the occurrence and
development process of

vehicle interaction risks and
cannot directly quantify the

risk of micro-level interaction
behaviors.
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(1) State inference based on causal relationship.

The method based on causality mainly evaluates driving risk by quantitatively analyz-
ing the relationship between risk-related variables (such as drivers, vehicle characteristics,
and weather) and risk levels [61–64]. Zhu et al. [61] proposed a Bayesian hierarchical model
for real-time prediction of the probability of vehicle risk at highway entrances and exits
under different risk levels. Three layers were established, including the vehicle physical
state layer, multi-vehicle interaction layer, and risk probability layer. In particular, the
physical state layer dynamically inputs kinematic parameters such as vehicle position,
speed, acceleration, and steering angle; the multi-vehicle interaction layer includes motion
variation parameters such as the changes in distance, speed, acceleration, and steering
angle between the interacting vehicles; the risk probability layer outputs the collision
probability index (CPI) that quantifies the interaction risk. Katrakazas et al. [62] proposed a
risk assessment method based on an interactive motion perception model and dynamic
Bayesian networks (DBNs). In order to predict the real-time collision risk of all vehicles
on a road segment (300–500 m in length) in real time, two interrelated risk domains, in-
cluding the network level risk domain and the vehicle level risk domain, were introduced.
In particular, the network-level risk domain was established based on DBN using road
traffic condition data (such as average speed, average flow rate, average occupancy rate,
etc.). Wang [64] proposed a risk distance coefficient Kd that integrates the attention, speed,
and interaction perception capabilities of traffic participants, based on which a DBN risk
assessment model was constructed and applied to vehicle motion planning to improve the
safety of vehicle operation.

The risk assessment method based on causality can output normalized results across
different scenarios (i.e., with good scenario applicability). However, this method usually
features a large number of model parameters, resulting in high difficulty in solving and
poor real-time computing performance.

(2) State inference based on interactive decision making

Game theory is a theory that studies the interaction between decision makers’ strategic
behaviors, which fits into the realm of interaction behaviors between road users, and
has been widely used in the field of multi-vehicle interaction risk assessment [65–67].
Cheng [68] established a joint model of mandatory lane change gaming and trajectory
planning. Based on the game characteristics between the subject vehicle and its front
and rear vehicles on both the target lane and the initial lane, a risk assessment module
was developed using the minimum safety distance index to predict the magnitude of the
mandatory lane change risk. Sheikh et al. [69] analyzed the game behavior between the
subject vehicle and its surrounding vehicles (the front vehicles on both the initial lane
and the target lane), based on which the possibility of collisions caused by abnormal
speeding during lane changing was predicted, and the possible location of collisions was
determined by the shock wave theory. Yu et al. [70] proposed a lane-changing model based
on game theory, which judged the lane-changing intention of surrounding vehicles using
turn signals and lateral displacement, and selected the optimal strategy considering the
future response of surrounding vehicles, where a combination function of safety benefits
and spatial benefits were designed to comprehensively evaluate the safety of the lane
changing behavior.

In the risk assessment method based on interactive decision making, game charac-
teristics are usually analyzed for each subject–other vehicle pair (i.e., the subject vehicle
and one of its adjacent vehicles) rather than the multi-vehicle group, which may ignore the
gaming behaviors among the surrounding vehicles that can also affect the overall risk state
of the subject vehicle.

(3) State inference based on distribution relationship

Based on the dynamic spatial distribution relationship among the vehicles during the
driving process, some scholars have applied complex network theory to risk assessment
of multi-vehicle interaction. Cai et al. [71] proposed a multi-vehicle interaction complex
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network generation algorithm where each moving vehicle was treated as a node. A variable
Gaussian safety field model was established for each node to reflect their dynamic field char-
acteristics. The overlap area between different safety fields was measured as the interaction
risk level between vehicles and was modeled as the weights for the node links. Taking the
road boundary as the node constraint, the complex network-based risk assessment model
was finally obtained. Some other studies based on complex network theory have explored
the relationship between traffic accidents and risk factors and provided suggestions for
selecting risk variables for multi-vehicle interaction assessment. Chen et al. [72] established
a complex network for traffic accidents using a variety of factors, including driver, vehicle,
and weather characteristics. Key risk factors and risk propagation relationships were
analyzed and identified based on typical network indicators such as node degree and
median centrality.

The risk assessment method based on distribution relationships intrinsically simulates
the dynamic interaction behavior among multiple vehicles using complex network theory,
which fits well into the scope of multi-vehicle interaction risk assessment. However, so far,
only a few researchers have employed this kind of method and generally lack empirical
experience and experimental data [71].

(4) Other state inference risk assessment methods

Some scholars have studied the evolution pattern of multi-vehicle driving risk on
road sections from the perspective of macro traffic flow. Mohammadian et al. [73] studied
the interaction behavior of all following vehicles in a six-lane traffic flow of highway and
proposed a hybrid framework that combines traditional probability models and machine
learning models to evaluate the safety state of the traffic flow. Liu et al. [74] divided highway
traffic flow into three stages, including free flow, synchronous flow, and wide-moving jam,
based on traffic flow variables. The collision risk of different traffic stages was evaluated,
respectively, using Time Exposed Time-to-Collision (TET) and Time Integrated Time-to-
Collision (TIT). These studies mostly focused on the results of risky vehicle interactions
and examined the correlation between risk outcomes and influencing factors. However,
they usually ignore the occurrence and development process of vehicle interaction risks
and cannot directly quantify the risk of micro-level interaction behaviors.

4.2.2. Evaluation method based on trajectory prediction

Trajectory prediction refers to outputting the predicted trajectories of the target vehicles
over a period of time (usually 1 s for short-term and 3–5 s for medium-term) based on
given information (such as vehicle dynamics, historical trajectories, traffic rules, etc.), which
can be of great significance for functional modules such as path planning and driving
risk assessment. The trajectory prediction-based risk evaluation method analyzes the
future spatiotemporal distribution of different vehicle trajectories based on the trajectory
prediction results, based on which risk assessment for multi-vehicle interaction is ultimately
achieved. Table 9 summarizes the evaluation method based on trajectory prediction.

Table 9. Evaluation method based on trajectory prediction.

Classification Description Advantages Limitations

Based on field theory [75–78]

Calculating the interaction
forces and field strength

distribution between vehicles
given the predicted

trajectories, based on which
the risk level of each vehicle is

determined.

Driving risk can be
comprehensively

characterized and is
applicable to complex

multi-vehicle interaction
scenarios.

Having a large number of
coefficients that are difficult to

calibrate may affect the
accuracy of the evaluation

results.
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Table 9. Cont.

Classification Description Advantages Limitations

Based on spatiotemporal
proximity [58,79–89]

Quantifying the multiple
vehicle interaction risks by

measuring the spatiotemporal
proximity between the

predicted trajectories of the
subject vehicle and its
surrounding vehicles.

The method can quickly
assess the risk state and has

high computational efficiency.

The uncertainties of
surrounding vehicles are

hardly fully considered due to
the relatively strong

assumptions made for
spatiotemporal proximity

index.

Based on uncertainty of
multi-vehicle interaction

[90–97]

Quantifying the multiple
vehicle interaction risks by

considering the uncertainty of
the driving intentions of

surrounding vehicles.

The interaction behavior
between multiple vehicles can

be analyzed to mimic the
actual traffic scene.

The computational complexity
is often high and relies on
accurate modeling of the

vehicle interaction behavior.

Quantifying the multiple
vehicle interaction risks by

considering the uncertainty in
the relevant control

parameters of the vehicle
motion model.

The consideration of the
uncertainty of model

parameters can improve the
accuracy of evaluation results.

Requiring accurate parameter
estimation methods may lead

to significant deviations in
evaluation results if estimated
parameters are not accurate.

Quantifying the multiple
vehicle interaction risks by

considering the overall
uncertainty of trajectory

prediction in the time domain.

More reliable results can be
achieved considering the

uncertainty in mean
distribution of the predicted

trajectories.

Unconventional situations
such as emergencies cannot be

accounted for, and the
evaluation results for

abnormal situations may be
inaccurate.

(1) Risk evaluation based on field theory

The trajectory prediction results of the surrounding vehicles are usually combined
with field theory for the risk assessment of multi-vehicle interaction. Scholars studying
risk assessment methods based on field theory believe that the interaction risk value is
directly related to the motion state and spatial distribution of the interacting vehicles and
can be quantified by analyzing the range and distribution of field strength generated by the
vehicles. Since Khatib [75] first proposed the method of artificial potential field (APF), field
theory has been widely used in the field of driving safety, and many research studies have
emerged using field strength to describe vehicle interaction risk. Wang et al. [76] proposed
a driving risk field model to describe the interaction among road users, which constitutes
of kinetic energy field, potential energy field, and behavioral field, providing new ideas
for risk analysis of multi-vehicle interaction in the two-dimensional space of highways.
Freddy et al. [77] proposed a probabilistic driving risk field (PDRF), which predicts the
possible positions of the interacting vehicles in discrete future time steps by assuming a
normal distribution of the vehicle acceleration. The probability of vehicle collision was then
represented by the possibility of vehicle position overlapping, and the product of collision
probability and expected collision energy was finally calculated as the risk field strength.
Based on driving behavior identification, Wang [78] built a vehicle trajectory prediction
model using encoding-decoding Long Short-Term Memory (LSTM) and employed Mixed
Density Networks (MDN) to transform the predicted trajectories into the possible future
trajectory domains, based on which the concept of trajectory field was further proposed
using field theory. The collision risk was finally assessed by calculating the total field
strength of the evaluated vehicle generated by its surrounding vehicles.

The evaluation method based on field strength theory can characterize driving risk
more comprehensively thanks to its wide variety of factors taken into consideration and
is applicable to complex multi-vehicle interaction scenarios (i.e., not limited to specific
scenarios such as car following or lane changing). However, this evaluation method has a
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large number of coefficients that are difficult to calibrate, which may affect the accuracy of
the evaluation results.

(2) Risk evaluation based on spatiotemporal proximity

On the basis of the predicted vehicle trajectories, multiple vehicle interaction risks
can be quantitatively evaluated by measuring the spatiotemporal proximity between the
subject vehicle and its surrounding vehicles, using indicators such as time to collision (TTC),
stopping distance index (SDI), Deceleration Rate to Avoid the Crash (DRAC), and rear
end collision index (RCRI) [79–85]. Ma et al. [86] used the Kalman Filter (KF) algorithm to
predict vehicle trajectories and speeds, based on which the traffic conflict area between the
left-turning vehicles and straight-going vehicles in the opposite direction was determined.
By recording the time each vehicle passed through the conflict area, the Post Encroachment
Time (PET) was calculated and combined with vehicle motion information to identify
the collision probability. Zhang [87] proposed a driving intention-based vehicle trajectory
prediction model using a combined framework of LSTM and MDN. Based on the fifth-order
Bessel curve and constant speed/acceleration methods, candidate trajectory clusters for lane
changing and lane keeping of the vehicle were generated, and a conversion model using
improved TTC and TH indices was developed to quantify the collision risk for different
vehicle interaction modes. Ammoun et al. [88] built a Kalman linear filter for trajectory
prediction based on vehicle position, velocity, and acceleration and used a combination of
circles to represent the spatial position occupied by the vehicle trajectories. The collision
risk was finally evaluated according to the number of circles involved in the possible
collision, the predicted collision duration, and the possible collision position.

The advantage of a risk assessment method based on spatiotemporal proximity is
that it can quickly assess the risk state and improve computational efficiency. However,
due to the relatively strong assumptions made for the spatiotemporal proximity index
(as discussed in Section 4.1), the uncertainties of surrounding vehicles are hardly fully
considered, which limits the application scenarios of this type of evaluation method [58,89].

(3) Risk evaluation based on uncertainty of multi-vehicle interaction

Considering different sources of uncertainty in characterizing the multi-vehicle inter-
action, including uncertainty in interaction behaviors, uncertainty in model parameters,
and uncertainty in predicted trajectories, trajectory prediction-based risk assessment meth-
ods can be further divided into three categories accordingly. Among them, multi-vehicle
interaction uncertainty refers to the uncertainty in determining the driving intention of
surrounding vehicles, model parameter uncertainty refers to the inability to directly deter-
mine the relevant control parameters of the vehicle motion model, and predicted trajectory
uncertainty refers to the overall uncertainty of trajectory prediction results in the predicted
time domain.

a. Uncertainty in multi-vehicle interaction behaviors

When considering the uncertainty in driving behavior for risk assessment, it is neces-
sary to first predict the driving intention of the surrounding vehicles to determine whether
they will keep or change lanes. Joo et al. [90] constructed virtual lane-changing scenarios
based on the historical maneuvers of the front and rear vehicles on both the original and
target lanes and developed a multivariate Bayesian time series model to predict the fu-
ture driving behavior of adjacent vehicles. The potential lane-changing risk was finally
evaluated based on the safety evaluation results of the virtual scenarios. Huang et al. [91]
established an Intention Identification Model (IIM) using an LSTM network to predict the
driving intentions of the six vehicles around the subject vehicle and developed a Safety
Field-Based Risk Assessment Model (RAM) to evaluate their potential risks. A comprehen-
sive risk assessment model combining IIM and RAM was finally established to obtain a
dynamic potential risk map considering multi-vehicle interaction. Liu et al. [92] proposed a
leading-following vehicle game controller (LFGC), which modeled the interaction between
the subject vehicle and surrounding vehicles as a partially observable vehicle gaming
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process, based on which the driving intentions and future trajectories of the surrounding
vehicles were estimated in real time. These estimated trajectories were finally compared
with the Model Predictive Control (MPC) based planned trajectory of the subject vehicle to
determine the collision risk probability.

This kind of method is capable of considering the interaction behavior among multiple
vehicles, offering a closer representation of real-world traffic scenarios and yielding more
precise evaluation results. Nevertheless, in scenarios with numerous research vehicles,
the computational complexity escalates, necessitating substantial computational resources.
Additionally, this method is contingent upon the accurate modeling of vehicle interaction
behavior, thus imposing a high demand on the behavioral data and model accuracy.

b. Uncertainty in model parameters

In order to obtain accurate future driving trajectories of vehicles, it is usually necessary
to assume the probability distribution of motion parameters such as acceleration and
steering angle in the vehicle motion model, and the simplest way is to assume a uniform
distribution. Joerer et al. [93] assumed that the acceleration of a vehicle follows a uniform
probability distribution. Based on the maximum deceleration and acceleration of the vehicle,
the vehicle trajectory boundary was obtained, and the collision probability of each trajectory
within the trajectory boundary was calculated. The overall collision risk of the driving
scenario was finally estimated by integrating the collision probabilities of all trajectories. To
improve the accuracy of risk assessment, some researchers have chosen Gaussian mixture
method to establish the distribution models of the motion control parameters. Jasour
et al. [94] used deep neural networks (DNNs) to predict the mean and covariance matrices
of the motion control parameters under a Gaussian mixture distribution, based on which the
nonlinear Chebyshev inequality and sum of squares (SOS) programming were employed
to evaluate the overall driving risk.

This kind of method incorporates consideration for the uncertainty of model pa-
rameters and enhances the precision of evaluation results. However, achieving accurate
model parameter estimation relies on meticulous parameter estimation methods. Inac-
curacies in the estimation of model parameters can lead to substantial deviations in the
evaluation results.

c. Uncertainty in predicted trajectories

Due to the complexity and uncertainty of the multi-vehicle interaction behaviors,
analyzing the uncertainty of the predicted trajectories can be critical to improving the
accuracy of the risk assessment results. Wang et al. [95] modeled the interaction behaviors
among the vehicles within 30 m of the subject vehicle as a graph structure, based on
which a trajectory prediction model was constructed using graph neural networks. Deep
integration technology was further employed to train multiple prediction models and
finally output a Gaussian distribution of the future trajectories (including their means
and standard deviations) to quantify the future uncertain risks. Wang et al. [96] proposed
a two-stage multimodal trajectory prediction model (P-PDRF), in which the first stage
output is the predicted driving intention of the vehicle (lane changing or keeping), and the
second stage output is the binary normal distribution of the predicted positions of the target
vehicle (including the mean, variance, and correlation coefficients). Finally, the collision
probability and expected collision severity given different driving intentions were obtained.
Li et al. [97] constructed a vehicle trajectory prediction model using LSTM, whose output
included the future trajectories of the six vehicles surrounding the subject vehicle as well as
their error distributions, based on which Monte Carlo simulation was finally employed to
evaluate the overall collision probability.

This kind of method enhances the reliability of evaluation results by accounting for
the uncertainty in the mean distribution of the predicted trajectories. Nevertheless, the
prediction model might not encompass unconventional situations, such as emergencies,
potentially leading to inaccuracies in the evaluation results for abnormal scenarios.
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In sum, compared with evaluation methods based on state inference, evaluation
methods based on trajectory prediction results generally have higher computational costs;
however, thanks to the comprehensive consideration of the spatial distribution relationship
among all interacted vehicles in the future, their risk assessment results tend to be more
accurate for multi-vehicle interaction scenarios. In addition, as a larger scope of interaction
uncertainties is taken into account, trajectory prediction-based methods generally have a
longer prediction horizon and can detect collision risks earlier.

5. Discussion

As summarized in Sections 2–4, although there have been many studies on risk
assessment methods, there still exist shortcomings and challenges, especially for complex
multi-vehicle interaction scenarios. The main challenges and future research trends can be
summarized into the following aspects:

(1) Challenge 1: Assessing the risk of multi-vehicle interaction scenarios given incomplete
environment information.

Compared with the ideal two-vehicle scenarios, risk assessment of multi-vehicle
interaction scenarios often requires collecting a larger amount of environmental information
data (describing the interaction behaviors of the subject vehicle and all of its surrounding
vehicles). Most existing risk assessment methods assume that the required data are readily
available in the Internet of Things environment. However, in real multi-vehicle scenarios,
these data can be difficult to obtain for all interacting vehicles due to the limitations of
sensor performance or blind spots, making it impossible to accurately assess the vehicle
interaction risks [98]. In the future, more advanced networking technologies and fusion
technologies are needed to retrieve comprehensive information data in real time for multi-
vehicle interaction scenario risk assessment.

(2) Challenge 2: Improving the robustness of multi-vehicle interaction risk assessment
methods.

Robustness can be used to evaluate the performance stability of risk assessment meth-
ods in scenarios that deviate from the original assumptions. Most existing risk assessment
methods are implemented based on certain assumptions, such as the constant speed (ac-
celeration) assumption, Gaussian distribution assumption of the vehicle motion/control
parameters, etc. However, the actual multi-vehicle interaction scenarios can be complex
and diversified, many of which may not conform to the predefined assumptions [99,100].
Once such scenarios occur, the accuracy of the risk assessment results can be questionable
and needs further validation. In the future, it is necessary to further weaken the assump-
tions used in risk assessment or propose specific risk assessment methods for the targeted
situations that do not meet the assumptions.

(3) Challenge 3: Verification of the effectiveness of multi-vehicle interaction risk assess-
ment results.

The existing validation experiments often overlook the uncertainties of vehicle motion
and interaction scenarios, making it difficult to accurately verify the effectiveness of the
assessment methods/models for real-world practice. Also, as the true value of risk is
impossible to obtain, the accuracy of the calculated risk values is difficult to testify. Expert
scoring can be utilized to substitute the true value of risk and test the accuracy of risk
assessment results by analyzing the consistency between the expert scores and the estimated
risk values. However, this may be influenced by the subjective factors of the experts. In
order to better evaluate the effectiveness of risk assessment methods, further research is
needed to improve experiment design as well as to determine the “true value” of risks for
multi-vehicle interaction.
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(4) Challenge 4: Determination of the scope of interacting vehicles for multi-vehicle
risk assessment.

The scope of interacting vehicles is rarely defined in the existing literature for multi-
vehicle scenarios, that is, there is no clear spatial or temporal indicator to determine the
number of surrounding vehicles that should be taken into account when assessing multi-
vehicle interaction risk. If the scope is too large, too much manpower and material resources
will be wasted, and the research question can be too complex to solve; on the contrary, there
may be errors in the research results. Some studies select the surrounding vehicles into the
research scope based on spatial indicators such as the distance from the subject vehicle,
but these indicators are relatively simple and not necessarily suitable for multi-vehicle
scenarios. A universally applicable method to determine the scope of interacting vehicles
is urgently needed for multi-vehicle interaction risk assessment.

(5) Challenge 5: Identifying and including more factors affecting the risk of multi-vehicle
interaction.

At present, most risk assessment methods for multi-vehicle interaction assume an
ideal driving environment. Future research methods need to incorporate more driving
risk influencing factors (such as drivers’ personality and driving style, different weather
conditions, lane geometry, more complex dynamic traffic participants, and specific traffic
rules) into the feature set to improve the accuracy and effectiveness of the prediction models
for multi-vehicle interaction risk.

6. Conclusions

In response to the key and difficult problem of safety situation assessment in multi-
vehicle interaction scenarios, this article summarized the existing literature on the relevant
data collection methodologies and vehicle interaction mechanism, based on which the exist-
ing multi-vehicle interaction risk assessment methods were systematically sorted out and
classified, mainly including state inference-based methods and trajectory prediction-based
methods. The application advantages and limitations of these methods in multi-vehicle
interaction scenarios were analyzed, and the challenges and future trends of the field were
discussed and summarized. In the future, more literature collection and analysis methods
(such as clustering knowledge graphs) can be explored to provide a more comprehensive
understanding of the research hotspots and development trends of risk assessment in
multi-vehicle interaction scenarios.
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Nomenclature

TTC Time to Collision
PET Post Encroachment Time
SSM Surrogate Safety Measures
TET Time Exposed Time-to-Collision
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TIT Time Integrated Time-to-Collision
MTTC Modified Time-to-Collision
H Headway
TAdv Time Advance
SDI Stop Distance Index
PICUD Potential Index for Collision with Urgent Deceleration
DSS Difference of Space distance and Stopping distance
DRAC Deceleration Rate to Avoid the Crash
CPI Crash Potential Index
CFI Conflict index
DBNs Dynamic Bayesian networks
APF Artificial potential field
PDRF Probabilistic driving risk field
LSTM Long Short-Term Memory
MDN Mixed Density Networks
KF Kalman Filter
IIM Intention Identification Model
RAM Risk Assessment Model
LFGC Lading-following vehicle game controller
MPC Model Predictive Control
DNNs Deep neural networks
SOS Sum of squares
P-PDRF Predicted probabilistic driving risk field
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