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Abstract: As the upgrade of people’s requirements for automotive driving comfort, conventional
passive suspensions for cars have fallen short of existing demands due to their nonadjustable damp‑
ing and stiffness, so semiactive suspensions and active suspensions have gained growing acceptance.
Compared with active suspensions, semiactive suspensions offer the advantages of a low manufac‑
turing cost and reliable structure, and thus have become the preferred choice for most vehicles. To
optimize the control effect of semiactive suspensions under different working conditions, this paper
completed themodeling ofmagnetorheological semiactive suspension systemdynamics and road in‑
puts; then, the design of binocular camera sensing algorithms was performed to obtain the real‑time
distance of the target using the point cloud ranging function, and the parameters required for suspen‑
sion control were also obtained. This was followed by the completion of the control‑mode‑switching
rules and the design of the suspension controller. According to the different control objectives, the
mode could be divided into the obstacle‑road mode, straight‑road mode, and curved‑road mode.
The suspension controller included the BP‑PID (neural network PID controller) controller and the
force distributor. Finally, the effectiveness of the mode‑switching rules and the control method was
verified through system simulation and the hardware‑in‑the‑loop test.

Keywords: semiactive suspension; vehicle control strategy; target recognition; BP neural network

1. Introduction
Asmajor component of the automotive chassis system, the suspension directly affects

the ride comfort of a vehicle [1]. Conventional passive suspensions have not been able
meet the existing demand because they cannot change the damping and stiffness. Active
suspensions have excellent performance but cannot be put into large‑scale application. In
contrast, semiactive suspensions are less costly and have an adjustable damping force. By
applying control algorithms to semiactive suspensions, they can be adaptively adjusted
according to the current and future road conditions, which is a better choice for suspension
systems currently [2–5].

As awidely used senor in vehicles, the vehicle camera has a significant contribution in
vehicle control and assisted driving. As a sensor built on the principle of binocular stereo
vision, the binocular camera has both image‑acquisition and range‑measurement functions.
This camera captures images fromdifferent angles simultaneously using a binocular stereo
vision system consisting of two cameras, which is then processed by a matching algorithm
to obtain a parallax map. Finally, it calculates the distance information of the object to be
measured by combining the camera calibration parameters. A simple binocular system
can be completed using two on‑board monocular cameras, which has great application
prospects [6–9].

For semiactive suspensions, many studies have been conducted at home and abroad.
In terms of the suspension structure, Hu et al. proposed a magnetorheological damper
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with an improved structure. They increased the magnetic field range by connecting the ra‑
dial gap and axial gap, which improved the response speed of the damper and increased
the adjustment range [10]. Brooks in the UK designed a current–variable liquid damper
using the current–variable effect to control the flexible diaphragm, resulting in a smoother
and more homogeneous process of the damping force change [11]. In terms of suspen‑
sion control, there are currently the PID, LQG, MPC, sliding film control methods, and so
on [12–16]. Neural networks for the online tuning of PID parameters have been widely
used because of their flexibility and relatively mature technology [17–20]. For example, Li
Mei et al. proposed a fuzzy neural network parameter optimization algorithm combining
the particle swarm optimization algorithm and the gradient descent method. They pro‑
posed to adjust the parameters of the active suspension PID controller in real time with
body acceleration as the main optimization objective [1]. However, prescanning control,
which can be adjusted in real time according to the road conditions ahead, has gradually
gained popularity among researchers in recent years. Bender first proposed the concept of
prescanning control and applied it to the control of a single‑degree‑of‑freedom suspension
system [21]. R.S. Sharp et al. applied wheelbase prescanning to the design of an active sus‑
pension. This system relied on the prescanning information provided by the front wheels
to apply control to the rear wheels, and the results indicated that wheelbase prescanning
significantly improved the performance of the rear suspension [22]. C. Gohrle proposed
two model‑predictive approaches for the preview of active suspension controllers and
compared them with the well‑known optimal‑preview control approach. The first model‑
predictive controller optimized the actuator displacements on a nonequidistant grid over
the preview horizon. The second controller optimized the trajectories for the heave, pitch,
and roll of the vehicle body over the preview horizon using a quadratic program [23]. Pan‑
shuo Li et al. from the University of Hong Kong proposed amultiobjective control method
for active suspension based on wheelbase prescanning. They compared the active suspen‑
sion performance under different operating conditions and found that the body droop
and angular accelerations were significantly improved as compared to the control method
without wheelbase prescanning [24].

However, most of the current semiactive suspension control methods do not consider
the main factors affecting ride comfort under different working conditions. This results in
the fact that a single control mode cannot be adapted to all applications. Therefore, in this
paper, a binocular camera was adopted to complete target recognition and prescanning
information extraction. That is, the speed bumps and the start points of the lane‑line circle
curve were used as the judgment rule for the suspension mode so as to optimize the body
posture under different scenarios and improve the ride comfort and handling stability.

The rest of this paper is organized as follows. System modeling is described in Sec‑
tion 2, including the seven‑degrees‑of‑freedom (DoF) full‑vehicle model, the road‑surface
inputmodel, and themathematicalmodel ofmagnetorheological dampers. A target‑distance‑
recognition method based on the binocular camera is described in Section 3. In Section 4,
an intelligent‑suspension control system is presented. In Section 5, an HIL experiment is
performed to illustrate the effectiveness and advantages of the proposed scheme. Finally,
the work of the full paper is summarized and the validity of the proposed program is clar‑
ified in Section 6.

2. SystemModeling
2.1. Vehicle Dynamics Modeling

The seven‑degrees‑of‑freedom whole‑vehicle dynamics model is shown in Figure 1.
The model is more consistent with the actual vehicle dynamics, so this paper chooses to
use this model to develop the control algorithm [2]. It includes the body roll, body pitch,
and body droop, as well as the droop movement of all four wheels. Where the subscripts
n represent the left front wheel, right front wheel, left rear wheel, and right rear wheel,
respectively; fn is the controlled damping force; z refers to the vertical displacement of
the body centroid; θ represents the body pitch angle; ϕ is the body roll angle; zsn is the
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vertical displacement of the body at the corresponding position; zun signifies the vertical
displacement of the corresponding wheel; m is the upper spring mass; mun is the lower
spring mass at each position; a, b, c, and d, respectively, denote the distance from the
center of vehicle to the front, rear, left, and right ends; ktn is the stiffness of each tire; k1 and
k2 are the stiffness of the front suspension elastic element; k3 and k4 refer to the stiffness
of the rear suspension elastic element; cn is the passive suspension damping force; Iy is the
pitch inertia, while Ix denotes the lateral tilt inertia; qn signifies the road input.
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2.2. Mathematical Model of the Magnetorheological Dampers
The magnetorheological damper mathematical model is of great importance for the

calculation of the damping force of the semiactive suspension, and a good mathematical
model can significantly improve the effectiveness of the control algorithm. For the consid‑
eration of computational efficiency, as well as the accuracy, a nonparametric model estab‑
lished by the motion parameters of the damper is widely used at present. The polynomial
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model proposed by Choi [25] is used to model the damping force based on the speed of
the motion of the damper, with the damping force being:

Fd =
n
∑

i=0
aivi (8)

where i is the polynomial order i = 1, 2, 3, …, n, which is used to simulate the magnetorhe‑
ological damper hysteresis characteristics and improve the model accuracy, with n > 5 in
general; v is the speed of the damper motion; ai represents the polynomial model coeffi‑
cient, which is obtained by fitting to the experimental data, and its relationship with the
current is:

msai = Bi + Ci I (9)

So, the damper damping force is:

Fd =
n

∑
i=0

(B i + Ci I)vi (10)

This provides the magnitude of the control current:

I =
Fd − ∑n

i=0 Bivi

∑n
i=0 Civi (11)

Characterization tests were conducted on a prototype magnetorheological damper.
The arrangement of the test benchwas referred to as the “TestMethod of CartridgeDamper
Bench QC/T395‑1999”. The test rig included the upper computer, controller, excitation
head, sensors, and other equipment. During the test, the magnetorheological damper was
excited in the vertical direction to produce a simple harmonic motionwith a fixed stroke in
themiddle of the test bench, and the test bench can be found in Figure 2. The supply current
used in the test was varied in the range of 0–2 A at an interval of 0.2 A. After each current
value was stabilized, cyclic loading was performed at different excitation frequencies. The
average value of the recorded data was then taken as the test result to obtain the damper
characteristics data under different currents. The results can be observed in Figure 3. It
could be seen that, when the current was certain, the damping force was proportional to
the speed of the magnetorheological damper. And, as the speed increased, the separation
of the upper and lower branch curves of the magnetorheological damper demonstrated
the characteristics of nonlinearity.
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Themaximumcurrent 2Ahas been specified in the text. From the figure, it can be seen
that the magnitude of the damping force is proportional to the speed of the magnetorheo‑
logical damper when the current is certain. And, with the increase of speed, the separation
of the upper and lower branch curves of the magnetorheological damper is more obvious.
The simulation and experimental comparison diagrams are shown in Figure 4.
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2.3. Road‑Surface Input Model
Thepower spectral density of the road can be expressed according to theDraftMethod

for Representation of Road Unevenness proposed by the International Organization for
Standardization in ISO/TC108/SC2N67 [26]. Then, the spatial frequency power spectral



World Electr. Veh. J. 2023, 14, 340 6 of 24

density was converted to the temporal frequency power spectral density to obtain the fil‑
tered white noise pavement model, and the equation is shown below:

.
q(t) = −2π f0q(t) + 2πn0w(t)

√
Gq(n0)v (12)

where w(t) is the Gaussian white noise and v is the vehicle speed; f 0 refers to the lower
limit as of frequency, which is generally taken as 0.01.

Since this paper is based on the whole‑vehicle model for control‑method develop‑
ment, it is necessary to build a four‑wheel input model with a single‑wheel pavement‑
unevenness input. Assuming that the vehicle travels at a uniform speed, there is a time
delay between the road excitation of the front and rear wheels, which can be calculated by
the following equation:

t =
L
v

(13)

where L is the front and rear wheelbase, and v denotes the vehicle speed.
Considering the actual suspension structure and the connection of various parts of the

vehicle body, there is a mutual interference relationship between the left and right wheel
road‑surface‑unevenness input. Normally, the coherence is stronger in the low‑frequency
region andweaker in the high‑frequency region, so a low‑pass filterwas applied to save the
low‑frequency strong‑coherence region of the left wheel road‑surface‑unevenness input,
and the high‑pass filter was used to save the high‑frequency low‑coherence region of the
random road surface unevenness; the two regions could be synthesized to generate the
right wheel road‑surface‑unevenness input [27].

When the vehicle speed reached 10 m/s and the road surface was B‑grade, the four‑
wheel pavement‑unevenness input obtained from the simulation could be shown, as in
Figure 5:
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The value of the road input oscillates repeatedly around 0 and there is a time differ‑
ence between front and rear axes, but their value is roughly the same.
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3. Design of the Target‑Distance‑Recognition Method Based on the Binocular Camera
3.1. Speed‑Bump‑Detection Model Based on Deep Learning

In recent years, the emergence of convolutional neural networks (CNNs) has made
great contributions to the development of target‑detection technology, in which the one‑
stage target‑detection algorithm YOLO (You Only Look Once) has been widely used be‑
cause of its fast detection speed and strong model‑generalization capability. Also, it is in
the process of continuous updating and iteration [28]. In this paper, we adopted YOLOv4‑
tiny, a lightweight algorithm based on the improvement of the YOLOv4, that could meet
the real‑time accuracy requirements for the target detection of speed bumps during vehicle
driving due to its simplified feature‑extraction process and improved operation rate.

Then, the speed bump images were collected by real vehicles, and the photos of speed
bumps with different shooting perspectives and different exposure degrees were selected
to obtain effective data. To increase the sample size and improve the richness of the data,
the dataset was expanded by the method of data augmentation. The images obtained are
shown in Figure 6, in which a is the brightness enhancement, b signifies the contrast en‑
hancement, c is the horizontal flip, and d is the random direction rotation. Finally, 4810
valid data were obtained, and the obtained image data were then target‑labeled by the
neural network dataset creation toolbox LabelImg to generate the VOC dataset, which pro‑
duces a neural network readable dataset format.
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Figure 6. Data augmentation.

In the dataset, the training set was set to 2886 sheets, and both the test and valida‑
tion sets were 962 sheets. To improve the training efficiency and training effect, migra‑
tion training was performed using the existing pretraining weights. In the freeze training
phase, the network parameters were fine‑tuned without changing the parameters of the
backbone network. By then, the Batch_size = 8 and epoch = 50. In the thaw training phase,
all the network parameters were adjusted, with the Batch_size = 2 and epoch = 2950. After
3000 training cycles, the model converged and the training effect reached the real‑time ac‑
curacy requirements. Themain performance indicators of themodel can be seen in Table 1.

Table 1. Model training performance index.

Precision F1 Score Recall mAP AP

IoU = 0.5 98.57% 0.99 98.57% 98.53% 98.53%

The IOU is the intersection and concurrency ratio of the bounding box predicted by
the model and the true detection box. Precision is the accuracy of model. Recall represents
the proportion of positive classes predicted by the model that are indeed positive classes.
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The F1 score is the reconciled average of precision and recall. ThemAP is themean average
precision, and AP is the average precision.

3.2. Algorithm for Detecting the Start Point of a Circular Curve at the Lane Line
3.2.1. Lane Line Detection

The recognition of the lane‑line circle curve was based on lane line detection, which
was achieved by preprocessing, lane line positioning, and lane line fitting.

The purpose of preprocessing was to remove noise and information that was not re‑
lated to the detection target. After the original image optimization, ROI extraction, inverse
perspective transformation, and binary image edge detection, the processed lane line im‑
age can be obtained, and the results are found in Figure 7.
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Figure 7. Lane line edge extraction.

3.2.2. Lane Line Positioning
The white pixels in the bird’s‑eye view represent the lane outline and the black pix‑

els denote the background information; therefore, it is possible to locate the lane line by
obtaining the position of the white pixels. A sliding window is typically used to calculate
the number of white pixels in each column of the pixel coordinate system, and the result
is shown in Figure 8.
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Figure 8. Sliding window positioning method.

To complete the sliding window lane line positioning, we need to determine the start‑
ing point of the lane line. The bird’s‑eye view from the bottom to the top represents a
gradual distance from the camera. So, the sliding window is used to count the number of
white pixel blocks in the window starting from the bottom, and the starting point of the
lane line is determined based on the peaks of the number. Then, a new sliding window is
drawn centered on the starting point towards the top, and the number of white pixels in
the window is counted. The peak value is used as the new starting point to make a new
sliding window. Then, the process is repeated to determine the direction of the lane line.
The algorithm flow is shown in Figure 9.
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3.2.3. Lane Line Fitting
The fitting algorithms applicable to the curved lane were mainly random sampling,

the consistent RANSAC method, the Bessel curve fitting method, and the polynomial fit‑
ting method based on least squares. Given that the curvature of the lane lines in the curves
within the urban roads would not change quickly, the lane line could be approximated as
parabolic. The least‑squares method was used in this paper to fit the lane lines [29,30].

The results obtained by fitting the lane lines based on this method are shown in
Figure 10:
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3.2.4. Kalman Filtering
Since the least‑squares method fitted the lane lines by traversing all the data only

once, this method was less computationally intensive, but led to poor interference immu‑
nity. This method extracted lane lines based on fixed colors, and could be easily affected
by the environment; as a consequence, errors and fitting jumps would be induced. The
application of the Kalman filtering algorithm reduced this effect and fitted the lane lines
more accurately [31]. Figure 11 is a comparison chart of lane‑line‑detection effect, and it
can be seen that the application of Kalman filtering could improve the robustness of lane‑
line detection.

3.2.5. Lane‑Line Curve Start‑Point Location Detection
The minimum radius of the curvature of a circular curve at the design speed of an

urban road section was found to be 100–200 m by checking the “Highway Route Design
Specification” (JTG D20‑2006). The recommended value was five to eight times the mini‑
mumvalue. Therefore, whether the curvature of the circular curvewas greater than 1000m
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was chosen as the basis for judging whether to enter the curve. According to the radius of
curvature calculation formula, it can be obtained:

R =
1
k

(14)

Then, the curvature needs to satisfy:

k <
1

1000
(15)

where R is the radius of curvature and k is the curvature:

k =
y′′[

1 + (y′)2
] 3

2
(16)

Assuming that the position of the starting point of the circular curve under the image
coordinate system is (xs,ys), the expression of the fitted curve of the lane line obtained
according to the Kalman filtering is:

y = a f x2 + b f x + c f (17)

Equations (15) and (16) are joined to provide:

y’’[
1 + (y’)2

] 3
2
<

1
1000

(18)

The derivation of Equation (17) gives:

y′′ = 2a f (19)

y′ = 2a f x + b f (20)

Bringing x= xs intoEquations (19) and (20), and taking the result intoEquation (18), gives:

2a f[
1 +

(
2a f xs + b f

)2
] 3

2
<

1
1000

(21)
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From the above equation, we could identify the range of xs. The greatest value was
selected and bought into the fitting curve to complete the positioning of (xs,ys). The result
is shown in Figure 12.



World Electr. Veh. J. 2023, 14, 340 11 of 24World Electr. Veh. J. 2023, 14, x FOR PEER REVIEW 11 of 25 
 

 
Figure 12. Lane-line circle-curve starting-point detection. 

3.3. Target-Distance-Recognition Algorithm 
In extracting the speed bump distance, the center position of the target-detection 

frame was selected as the distance-recognition extraction point because the target-detec-
tion frame could contain the speed bump, which was approximately rectangular in shape. 
If the speed bump was detected, the camera could get the upper-left vertex position (ulu,vlu) 
and lower-right vertex position (url,vrl) of the detection frame, and the principle is shown 
in Figure 13. The three coordinate systems from left to right are the camera coordinate 
system, the pixel coordinate system and the world coordinate system. The center position 
of the detection frame (uc,vc) is derived from Equations (22) and (23): 

 
Figure 13. Coordinate relationship of the center point of the detection frame. 

𝑢௖ = (𝑢௥௟ − 𝑢௟௨)2 + 𝑢௟௨ (22) 

𝑣௖ = (𝑣௥௟ − 𝑣௟௨)2 + 𝑣௟௨ (23) 

After determining the position of the center of the detection frame, the distance be-
tween the target and the camera could be calculated according to the coordinate conver-
sion relationship of the camera. Then, the distance d between the speed bump and the 
center of the front wheel could be calculated according to the parameters of the camera. 
The calculation formula is shown in Equation (24). 

Figure 12. Lane‑line circle‑curve starting‑point detection.

3.3. Target‑Distance‑Recognition Algorithm
In extracting the speed bump distance, the center position of the target‑detection

framewas selected as the distance‑recognition extractionpoint because the target‑detection
frame could contain the speed bump, which was approximately rectangular in shape. If
the speed bump was detected, the camera could get the upper‑left vertex position (ulu,vlu)
and lower‑right vertex position (url,vrl) of the detection frame, and the principle is shown
in Figure 13. The three coordinate systems from left to right are the camera coordinate
system, the pixel coordinate system and the world coordinate system. The center position
of the detection frame (uc,vc) is derived from Equations (22) and (23):

uc =
(url − ulu)

2
+ ulu (22)

vc =
(vrl − vlu)

2
+ vlu (23)
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After determining the position of the center of the detection frame, the distance be‑
tween the target and the camera could be calculated according to the coordinate conver‑
sion relationship of the camera. Then, the distance d between the speed bump and the
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center of the front wheel could be calculated according to the parameters of the camera.
The calculation formula is shown in Equation (24).

d =

√
dt

2 − h2 − lcw (24)

where h refers to the height of the camera from the horizontal road surface and lcw denotes
the horizontal distance from the camera to the center of the front axis.

The camera used in this paperwas a binocular camerawith depth‑perception function,
which could provide 3D point cloud information of the subject. In extracting the distance
of the starting point of the circle curve, since the pixel‑coordinate‑location identification
method of the starting point of the road circle curve has been given in the previous paper,
the distance of the starting point of the circle curve could be extracted from the 3D point
cloud data of the camera under the condition of the known pixel coordinates. The work‑
flow of this extraction method is shown in Figure 14. If the lane‑line circular curve start
point is detected, the pixel coordinates are obtained and the point cloud information is cal‑
culated. Then, the distance from the target is calculated based on the distance conversion.
If the start point is not detected, the lane line is continued to be detected.
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4. Design of the Intelligent Suspension Control System
The whole control system consisted of the road input, perception algorithm, control‑

mode‑switching strategy, BP‑PID controller, and force distributor. Firstly, the target was
detected by the visual‑perception system, and the time to reach the target was calculated
according to the distance and driving speed. This was used to determine which control
strategy the system switched to. Then, the difference between the desired output and the
actual output of the control target was adopted as the input of the BP‑PID controller in
different control modes. The output of the control force was then obtained by self‑tuning
the PID parameters through the BP neural network. Subsequently, the output of control
forcewas input to the force distributor to obtain the damping force on the four suspensions.
Finally, the control current was calculated by the magnetorheological inverse model iden‑
tification result, and the result could be input to themagnetorheological dampers to obtain
the actual control force. The framework of the whole control system is shown in Figure 15:
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4.1. Mode Switching
The suspension control mode could be divided into the obstacle‑road mode, straight‑

roadmode, and curved‑roadmode according to differentworking conditions. The straight‑
road mode mainly controls the body dip acceleration to reduce the bumps caused by the
road undulation, the obstacle‑road mode mainly controls the body pitch acceleration to
reduce the vehicle pitch‑angle change due to the speed bump, and the curved‑road mode
mainly controls the body roll acceleration to reduce the rapid body tilt caused by the inertia
of the spring mass when the vehicle enters the curve. At the same time, the priority of the
curved‑road mode was set to the highest to prevent the vehicle from being in a dangerous
situation and causing injury to the passengers. The default control mode was the straight‑
road mode.

Theworking‑condition identificationmethod is shown in Figure 16. The vehicle started
with m = 0 and entered the straight‑road mode. Then, the vehicle determined whether to
enter the curved‑road mode. When c = 1, the first recognized time t and the first distance
Lt_s will be recorded. When t ≥ Lt_s

v , the vehicle enters the curved‑road mode, otherwise
continues to stay in the straight‑road mode. Here, c equals 1 when traveling in a curve.
When the vehicle is about to exit the curve, it will recognize the lane‑line round curve start
point for the last time. At this time, te as well as Lt_e will be recorded. If te ≥ Lt_s

v , it
means that the vehicle enters into the straight road and returns to the straight‑road mode,
otherwise it continues to stay in the curved‑road mode.
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When the vehicle does not satisfy the judgement condition of the curvemode, a judge‑
ment will bemade to determinewhether the vehicle satisfies the switching condition of the
obstacle‑road mode. If s = 1, the first recognized time t and the target distance Lt will be
recorded. If t ≥ Lt

v , it means that the vehicle is passing the speed bump and goes into the
obstacle‑road mode. At this time, m = 1. The time required for vehicles to completely pass
the speed bump is used as the judgment basis for the duration of the obstacle‑road mode.
If t ≥ Lt+L

v , it means that the vehicle completely passes the speed bump and it returns to
the straight‑road mode. At this time, m = 0.

4.2. BP‑PID Controller Design
The controller consists of the BP neural network and the PID controller. In 1986,

Rumelhart et al. first introduced the concept of the BP neural network, which is a mul‑
tilayer feedforward network based on the error back‑propagation algorithm for network
training. It continuously adjusted the network weights through sample data training, so
that the error value decreased and the actual output results were close to the desired value.
The error back‑propagation algorithm ensures that the BP neural network has good gen‑
eralization and self‑learning ability, so it is widely used in the design of nonlinear system
controllers. The input of the BP neural network includes the desired input, actual output,
and the error of the system. The output consists of the adjustment parameters Kp, Ki, and
Kd to realize the online adjustment of the PID parameters. As such, it can realize a fast re‑
sponse under the uncertain input conditions of the time‑varying system. The framework
of the controller is shown in Figure 17.
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The number of neurons m in the neural network was three. We selected the single‑
hidden‑layer network, and the number of output neurons lwas three. The sampling period
Tbp = 0.001 was designed as per the Simulink simulation step. The weights of each layer
were initialized using random numbers from 0 to 1, and the Softmax function was used as
the activation function.

In the case of the controller for the straight‑ahead mode, the control objective of this
modewas to keep the body smooth and reduce the body droop acceleration. Therefore, the
body droop acceleration was adopted as the actual input of the controller, and the desired
output was set as 0. The suspension control force was calculated by the neural network.

4.3. Parameter Optimization
Since the control forces obtained by the BP‑PID controller were distributed to the four

suspensions in the same direction and in equal amounts, the road inputs of the left and
right wheels were not equal, and the effect of suppressing the body roll and pitch was
not significantly improved. The next step was to design a force distributor to achieve a
coordinated distribution of the damping forces.

4.3.1. Improvement of the Salp Swarm Algorithm
The salp swarm algorithm, proposed by Mirjalili et al. in 2017, was inspired by the

idea of a “leader‑follower chain” moving together to forage for food. The leader searches
globally over a large area, while the followers follow the previous leader to explore locally



World Electr. Veh. J. 2023, 14, 340 15 of 24

and eventually lead the group to food. The method improves global exploration and local
exploitation, and reduces the number of local optima [32].

The flow of salp swarm algorithm is shown in Figure 18:
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The leader position is updated according to Equation (26) and the follower position
is updated according to Equation (27):

X1
d =

{
Fd + c1(ub − lb)c2 + lb, c3 ≥ 0.5
Fd − c1(ub − lb)c2 + lb, c3 < 0.5

(25)

Xi′
d =

Xi
d+Xi−1

d
2

(26)

c1 = 2e−( 4l
L )

2
(27)

whereXd and Fd represent the dth dimensional leader position and food position; ub and lb
denote the upper and lower bounds; c refers to the convergence factor, which is updated
by Equation (28); l is the number of current iterations and L is the maximum number of
iterations; c2 and c3 are random parameters in the range [0, 1].

The initialization of the bottle sheath group affects the computational speed as well as
the accuracy of the algorithm. The use of the Tent Map to randomly generate a uniformly
distributed initialization of the bottle sheath groups in the search space can be beneficial in
improving the algorithm to find the optimal bottle sheath group, which can be expressed
by Equation (29):

zi
j+1 =


zi

j
u , 0 ≤ zi

j ≤ u
1−zi

j
1−u , 0 ≤ zi

j ≤ 1
(28)

where i = 1, 2, 3, … N is the number of populations, j signifies the number of current itera‑
tions, and u is the chaos control parameter. Thus, the Tent is applied to initialize the salp
swarm as:

XD*N = zi
j(ubD×N − lbD×N) + lbD×N (29)

In addition, the position of the food source moves all the time when the salp swarm
is actually searching for food. So, the “crazy concept” is introduced to model this phe‑
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nomenon, and by introducing a madness operator in the leader position update equation
to avoid the population from falling into local optimal solutions. The leader update equa‑
tion is shown in Equation (31):

X1
d =

{
Fd + P(c4)sign(c4)xcr + c1(ub − lb)c2 + lb, c3 ≥ 0.5
Fd + P(c4)sign(c4)xcr − c1(ub − lb)c2 + lb, c3 < 0.5

(30)

P(c4) =

{
1, c4≤ Pcr
0, c4> Pcr

(31)

sign(c4) =

{
−1, c4 ≥ 0.5
1, c4 < 0.5

(32)

where c4 denotes a random number of [0, 1] conforming to a uniform distribution and xcr
refers to a smaller constant; P(c4) is taken according to Equation (32), where Pcr is the crazy
probability; sign(c4) is taken according to Equation (33).

The dependence of followers on the leader depends on the inertia weight. A larger
weight enhances the global search ability of the salp swarm and a smaller weight helps
to achieve local exploitation. To balance the global search and local exploitation ability,
linearly decreasing weights w(t) were introduced, and the new follower update formula
can be seen as follows:

Xi′
d =

Xi
d + w(t)Xi−1

d
2

(33)

w(t) = ws(ws−we)(L−l)
L (34)

where ws is the initial weight, we represents the maximum number of iterations weight, L
is the maximum number of iterations, and l refers to the current number of iterations.

4.3.2. Force Distributor Design
The objective functions to be optimized in the three modes can be constructed by the

improved salp swarm algorithm, and the coordination weights of the damping forces in
the different modes can be obtained. Taking the straight‑road mode as an example, the
forces assigned to the four dampers are:

fi = di..z
fbppid

(35)

where di..z
is the damping force coordination weight.

Due to the different units and orders of magnitude of the vehicle acceleration and
dynamic tire load, it is necessary to perform normalization. Taking the root mean square
value of the corresponding performance index of the passive suspension as a reference, the
subperformance function could be defined as follows:

pδ =
RMS(δsa)

RMS
(
δpas

) (36)

where RMS(δsa) is the root mean square value of the semiactive suspension performance
index; RMS(δpas) is the root mean square value of passive suspension; δ represents the
body droop acceleration, body pitch‑angle speed, body roll‑angle acceleration, and tire
dynamic load, respectively, while its subscript pas represents the passive suspension and
sa represents the semiactive suspension.

The integrated optimization objective function is the sum of the subobjective func‑
tions, and the integrated optimization objective functions for the straight‑road, obstacle‑
road, and curved‑road mode are as follows:

Pstraight = p..
z + pFd1sa

+pFd2sa
+pFd3sa

+pFd4sa
(37)
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Pobstacle = p ..
θ
+ pFd1sa

+pFd2sa
+pFd3sa

+pFd4sa
(38)

Pcurved = p ..
ϕ
+ pFd1sa

+pFd2sa
+pFd3sa

+pFd4sa
(39)

In addition, the suspension motion restraint and tire dynamic load restraint should
be included to prevent the effects of prolonged abnormal operation on the suspension per‑
formance, as well as the vehicle. Suspensionmotion constraints and the dynamic tire loads
can be expressed by Equations (40) and (41):

RMS(zusn)

[zusn ]
≤ 1

3
(40)

RMS(Fdn)(
m + ∑4

n=1 mun

)
g
≤ 1

3
(41)

where zusn represents the suspensiondynamic deflection and [zusn ] signifies the suspension
dynamic travel.

Due to the addition of the constrained set of equations, it is necessary to remove the
solutions outside the constraints by adding penalty terms to the integrated optimization
objective function. The following equations can be used as the penalty terms:

pmotion = RMS(zusn)−
1
3
[zusn ] ≤ 0 (42)

p f orce = RMS(Fdn)− 1
3

(
m+ ∑4

n=1 mun

)
g ≤ 0 (43)

Therefore, the integrated optimization objective function for the straight‑road model
is changed as follows:

Pdaily = p..
z + pFd1sa

+pFd2sa
+pFd3sa

+pFd4sa
+ wp p (44)

where wp is the penalty weight and the value is 0 when the penalty term holds, otherwise
it is 1; p refers to the penalty factor and usually takes a larger value to exclude the uncon‑
ditional solution.

The length of a salp was 1–10 cm and the median length was 5 cm, so the population
number chain of the salp swarm did not exceed 300, and the number of populations was
set to (50,4) considering the operation speed. The maximum number of iterations was 200,
the inertia weight ws = 0.9, wc = 0.4, the madness probability Ccr = 0.3, and xcr = 0.0001.
When the value was less than three, or the maximum number of iterations was reached,
the calculation was ended and the results were output.

The search range of the weight coefficients of the force distributor was set at [−1, 1],
and the obtained weight coefficients can be seen in Table 2. In the straight‑road mode, the
four forces are in the same direction. Under the obstacle‑road mode, the rear axle forces
are in the opposite direction to the front axle. In the curved‑road mode, the left and right
suspension forces are in opposite directions.

Table 2. Force controller weighting factor.

Control Mode Left Front Right Front Left Rear Right Rear

Straight Road Mode 0.951 0.986 0.933 0.915

Obstacle Road Mode 0.986 0.978 −0.948 −0.954
Curved Road Mode −0.972 0.961 −0.981 0.986
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4.4. Simulation Results and Analysis
In this paper, the joint simulation was realized by Python and MATLAB/Simulink.

The perception algorithm was implemented based on Python3.8, which was the control
algorithm. The whole vehicle and road‑input model was implemented by Simulink2021a.
Python passed to MATLAB2021a the lane‑line circle‑curve start‑point result c, the speed‑
bump target‑recognition result s, the time t, the target‑object distance Lt, and other parame‑
ters. MATLAB obtained the control‑mode‑switching parametersm through Simulinkwith
Python’s parameters. The flow is shown in Figure 19.
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The vehicle driving speed was stabilized at 10 m/s, and the total length of the test
sectionwas 250m. After themeasurement, the test section entered the curve at the position
of 50m, drove out of the curve after 110m in the curve, and then had a speed bump at 70m
in the straight road. Figure 20 shows the satellite map of the collected road section and the
result of the target‑feature labeling.
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The results of the joint simulation controlmode switching are shown in Figure 21. The
simulation switching curve was 0.009 s earlier than the theoretical switching curve into the
straight‑road mode, when the vehicle got out of the curve. The simulation test under the
semiactive suspension control mode switched to the obstacle‑road mode and was 0.008 s
earlier than the theoretical switching curve when the vehicle was about to pass the speed
bump target. After the vehicle passed the target of the speed bump, the simulated switch‑
ing curve of the controlmethod back to the straight‑roadmodewas ahead of the theoretical
switching curve by 0.007 s. The reason may be that the vehicle driving speed was slightly
higher than 10 m/s, and the theoretical switching curve was calculated as 10 m/s. How‑



World Electr. Veh. J. 2023, 14, 340 19 of 24

ever, the difference between the simulation and theoretical model was only on the order
of milliseconds, which would not affect the switching strategy efficiency.
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The joint simulation of the suspension control effect is shown in Figure 22, and the
results obtained are shown in Table 3:

Table 3. Decreased values of the semiactive suspension performance indicators.

Droop
Acceleration

Roll‑Angle
Acceleration

Pitch‑Angle
Acceleration

Dynamic
Deflection of
Left Front

Dynamic
Deflection of
Right Rear

Dynamic
Tire Load of
Left Front

Dynamic
Tire Load of
Right Rear

Decrease
percentage 20.18% 10.34% 14.36% 2.3% 1.2% 0.13% 1.2%

As can be seen, compared with the passive suspension, the semiactive suspension
significantly improved the droop acceleration, and there was an over 10 percent improve‑
ment in the pitch and roll acceleration compared to the passive suspension. Meanwhile,
the suspension dynamic deflection and the wheel dynamic load performance achieved a
small improvement.
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Figure 22. Simulation effect: (a) Comparison of the droop acceleration; (b) Comparison of the body
pitch‑angle acceleration; (c) Comparison of the body roll‑angle acceleration; (d) Dynamic deflection
of the right rear suspension; (e) Dynamic tire load of the right rear suspension; (f) Dynamic deflection
of the left front suspension; (g) Dynamic tire load of the left front suspension.

5. HIL Experiment
The hardware‑in‑the‑loop experimental test environment constructed in this paper

consisted of the D2P (development to prototype), the host computer software (LABCAR‑
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OPERATOR V5.0) and the LABCAR test cabinet(from Vehinfo, Shanghai, China) [33]. The
D2P connects and interacts with the host computer through the CAN bus and provides
abundant I/O interfaces. The host computer was equippedwithMATLAB, LCO, and other
software, and the test interface for the host computer could be constructed to detect vari‑
ables. LABCAR provided the I/O boards and CAN communication boards, which could
test the operation effect, transmit the required signals to the host computer, and transmit
the simulated signals during the simulation operation. The flow of the test is shown in
Figure 23.
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The hardware‑in‑the‑loop test results are shown in Figure 24, the results obtained are
shown in Table 4. And the analysis indicated that the root mean square value of body roll
acceleration aremore significantly improved compared to the pitch and droop acceleration.
And the multi‑mode control method improves the performance of suspension and tire
compared to the passive suspension and PID control methods.

Table 4. Decreased values of the semiactive suspension performance indicators in the HIL.

Decrease
Percentage

Droop
Acceleration

Roll‑Angle
Acceleration

Pitch‑Angle
Acceleration

Dynamic
Deflection of
Left Front

Dynamic
Deflection of
Right Rear

Dynamic
Tire Load of
Left Front

Dynamic
Tire Load of
Right Rear

Compared
with PID 1.2% 2.4% 10.12% 3.22% 2.75% 0.56% 0.92%

Compared
with Passive 3.79% 4.45% 22.27% 5.62% 6.62% 1.85% 2.86%
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Figure 24. HIL test results: (a) Comparison of the droop acceleration; (b) Comparison of the body
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of the right rear suspension; (e) Dynamic tire load of the right rear suspension; (f) Dynamic deflection
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6. Conclusions
In this paper, a multimode control strategy for a semiactive suspension with a magne‑

torheological damper based on binocular camera target‑distance recognitionwas designed.
The aim was to realize the adaptive switching of semiactive suspension control methods
under different road conditions so as to improve the smoothness, comfort, and handling
stability of the vehicles. Although we made a little progress, there are still many of prob‑
lems that need to be solved in the future due to the limitations of the experimental equip‑
ment, experimental conditions, and time:
(1) The effectiveness of the control method needs to be further verified from the perspec‑

tive of a real vehicle. Due to the lack of a real vehicle equipped with a magnetorheo‑
logical semiactive suspension, and the time relationship, this paper only carries out
MIL andHIL experiments through Simulink and Carsim, and does not carry out real‑
vehicle tests.

(2) This paper makes less use of the function of the binocular camera. As a sensor, it can
measure the 3D point cloud so that it has a powerful function that is not inferior to
Laser Radar. By using the binocular camera to realize the real‑time scanning of the
front terrain, it can provide richer road‑surface information for the suspension control
algorithm, and realize the suspension control algorithm with a more excellent effect.
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