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Abstract: The accurate estimation of battery state of charge (SOC) for modern electric vehicles is
crucial for the range and performance of electric vehicles. This paper focuses on the historical driving
data of electric buses and focuses on the extraction of driving condition feature parameters and data
preprocessing. By selecting relevant parameters, a set of characteristic parameters for specific driving
conditions is established, a process of constructing a battery SOC prediction model based on a Long
short-term memory (LSTM) network is proposed, and different hyperparameters of the model are
identified and adjusted to improve the accuracy of the prediction results. The results show that the
prediction results can reach 1.9875% Root Mean Square Error (RMSE) and 1.7573% Mean Absolute
Error (MAE) after choosing appropriate hyperparameters; this approach is expected to improve
the performance of battery management systems and battery utilization efficiency in the field of
electric vehicles.

Keywords: SOC; long short-term memory; data mining; hyperparameter tuning

1. Introduction

The battery management system (BMS) for electric vehicles is one of the key technolo-
gies used to monitor and effectively manage electric vehicle batteries, thus enabling electric
vehicles to improve battery energy efficiency [1]. The main role of a BMS is to manage and
maintain the battery intelligently, monitor the battery condition, and stop the battery from
overcharging and overdischarging to cause an irreversible negative impact on the battery,
thus achieving the effect of extending the cycle life of the battery, ensuring the safety of
battery use and guiding the user to make the right choice. The estimation of battery SOC
is an integral part of the BMS [2]. Accurate estimation of the battery SOC in real time can
quantify the remaining usable battery power and provide a basis for drivers to plan their
trips, prevent shortening of the battery life, and improve the battery energy usage, which is
of great importance.

Electric buses have positive significance in terms of environmental protection, energy
savings, sustainability, intelligence, economy, enhancing the image of public transportation,
and adapting to urban development [3]. Electric buses use electricity as a power source,
and compared to traditional fuel buses, they can significantly reduce exhaust emissions
and noise pollution, which has a positive impact on improving the urban environment and
air quality [4]. In addition, the economic benefits of electric buses are more pronounced as
they also have lower maintenance costs. The energy efficiency of electric buses is higher,
and the use of electric energy is much more efficient than fuel, which can reduce energy
consumption. Electric bus operating conditions and battery operating conditions are closely
related, and it is very important to predict the SOC of power batteries for electric buses,
which not only helps them rationalize charging time and improve operational efficiency
but also detects battery problems in time and avoids potential operational interruptions.

At present, there are three main methods for electric vehicle power battery SOC
prediction: the first is the traditional estimation method, which uses the relationship curve
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between voltage and current and SOC value during charging and discharging to calculate
the battery SOC [5–7]; the second is the adaptive filtering method, which estimates the SOC
by building a battery model to obtain the observation equation [8–10]; and the third is the
intelligent estimation method, which uses machine learning, neural networks, and other
methods for estimation [11]. The above three methods have their own advantages and
disadvantages. Although the traditional estimation method is simple in principle and easy
to implement, the accuracy is low and easy to deviate [12], so it is difficult to be directly
applied to the actual estimation and is generally used in combination with other methods.
The adaptive filtering method is more robust but requires the establishment of an accurate
battery model [13]. The intelligent estimation method does not need to understand the
internal parameter changes of the battery, but it requires a large amount of data as the
basis to establish a training model; the more accurate the data and the larger the training
volume, the better the training effect, but the training process will be more difficult to
implement [14].

Electric buses require complex energy consumption estimation methods, which con-
sider various parameters. Models like the Trip Energy Consumption (TEC) model [15]
incorporate factors such as traction, battery thermal management, air conditioning, ambient
temperature, vehicle weight, distance, and travel time. A physical model considering speed,
acceleration, and passenger count has been developed [16], alongside a modified Kalman
filter method for energy estimation [17]. Corinaldesi et al. proposed a linear optimization
model to guide charging strategies. Additionally, machine learning models have been
employed for estimating the instantaneous and cumulative energy consumption of electric
buses [18].

Long short-term memory (LSTM) is an intelligent estimation method that extracts the
information from the data to achieve its purpose. It is a transformation neural network,
and its statistical prediction model is more powerful in terms of nonlinear mapping ability
and self-learning ability [19]. The LSTM model is not only limited to solving single-input
single-output problems. Because of its powerful learning capability, the number of inputs
and outputs can be freely chosen; single-input multiple-output, multiple-input single-
output, and multiple-input multiple-output mappings can also be fitted; and different
model structures can be chosen according to different research requirements. The SOC of
an electric bus is affected by multiple parameters so the overall model is a multiple-input
single-output model; therefore, the LSTM model is well suited for SOC prediction. In this
paper, based on the operation data of electric buses, a data-driven energy consumption
prediction method based on LSTM is proposed. Compared with other methods, the model
structure is not complicated, the prediction accuracy is high, and the training process is
relatively simple and convenient, which is of significance in guiding the overall scheduling
of electric buses.

The remainder of this paper is organized as follows: Section 2 is the historical bus
driving data mining, Section 3 is the driving condition feature parameter extraction based
on the data mining results, Section 4 introduces the LSTM model and makes the battery
SOC prediction model based on the LSTM, the results are analyzed in Section 5, and finally,
conclusions and future research directions are provided in Section 6.

2. Electric Bus Historical Driving Data Mining
2.1. Electric Bus Driving Condition Analysis

The history of the bus travel points, after looking them up on Baidu Maps, revealed
the car travel data for the Beijing 51 road bus history, the charging location for the Beijing
world flower Wonderland Park, the line of the bus throughout a total of 29 stations, and
revealed that the driving road conditions are urban road conditions in Figure 1.



World Electr. Veh. J. 2023, 14, 329 3 of 15World Electr. Veh. J. 2023, 14, x FOR PEER REVIEW 3 of 15 
 

 

Figure 1. Route 51 bus route map. 

The scatter plot of the variation in vehicle speed with time for the battery SOC down 

cycle is shown in Figure 2, which shows that the bus line operation state has a strong 

regularity, and its operation time and operation conditions have certain rules that must 

be followed. Therefore, this paper starts by analyzing the characteristics of bus routes and 

selects the corresponding quantitative indexes and uses them as characteristic parameters 

to lay the foundation for the subsequent prediction research. 

 

Figure 2. Variation in bus speed with time during the bus journey. 

2.2. Data Preprocessing 

Data mining is a method that uses algorithms to extract knowledge and information 

hidden in the original data that people cannot see directly, but are valuable to the subse-

quent research content, from a huge amount of actual real data with no obvious regular 

features [20]. 

During the driving process of the electric bus, the vehicle terminal reads the vehicle 

bus data in real time and collects data through a mobile network according to a certain 

period to transmit the data to a remote management platform. During the collection pro-

cess, it is easily affected by vehicle start/stop, the surrounding environment, abnormal 

Figure 1. Route 51 bus route map.

The scatter plot of the variation in vehicle speed with time for the battery SOC down
cycle is shown in Figure 2, which shows that the bus line operation state has a strong
regularity, and its operation time and operation conditions have certain rules that must be
followed. Therefore, this paper starts by analyzing the characteristics of bus routes and
selects the corresponding quantitative indexes and uses them as characteristic parameters
to lay the foundation for the subsequent prediction research.
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2.2. Data Preprocessing

Data mining is a method that uses algorithms to extract knowledge and information
hidden in the original data that people cannot see directly, but are valuable to the subse-
quent research content, from a huge amount of actual real data with no obvious regular
features [20].

During the driving process of the electric bus, the vehicle terminal reads the vehicle
bus data in real time and collects data through a mobile network according to a certain
period to transmit the data to a remote management platform. During the collection process,
it is easily affected by vehicle start/stop, the surrounding environment, abnormal work
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of vehicle terminal, etc., which generate abnormal data. To ensure the accuracy of SOC
prediction, abnormal data must be rejected.

Eleven thousand rows of data were continuously extracted from the data set and
plotted using Matlab 2018a software to create a scatter plot of the battery SOC values over
time, as shown in Figure 3.
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Figure 3. Scatter plot of SOC without removing abnormal data.

From the graph, it can be found that there are many blank anomalous data points in
the SOC falling segment. And the data of the SOC rising indicate that the data of stopping
the charging process are collected. For this paper, because only the energy consumption
prediction problem is studied, the SOC rising section data and the anomalous data where
the vehicle speed jumps to 0 should be excluded. The new data set after the exclusion is
re-plotted using Matlab 2018a software for the SOC scatter plot as shown in Figure 4.
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3. Driving Condition Feature Parameter Extraction
3.1. Analysis of Vehicle Energy Consumption Characteristics and Driving Conditions

The bus driving data parameters obtained from the collection are numerous and
contain 40 different parameters such as time, speed, charging status, running status, gear,
drive motor speed, etc., and the accuracy is generally low. Because some of the data are not
related to battery power estimation, 11 parameters in Table 1 are first selected to establish
the set of driving condition characteristic parameters for bus line characteristics, and the
specific parameters, units, calculation methods, and other information are shown in Table 1.

Table 1. Definition and calculation method of working condition characteristic parameters based on
bus route characteristics.

Number Symbol Unit Implied Meaning Formula

1 vm km/h Average speed vm = 1
k

k
∑

i−1
vi

2 am_p m/s2 Average acceleration am_p = 1
k

k
∑

i=1
ai, ai > 0

3 am_n m/s2 Average deceleration am_n = 1
k

k
∑

i=1
ai, ai < 0

4 vstd km/h Standard deviation in vehicle speed vstd =

√
1
k

k
∑

i=1
(vi − vm)

5 fva m2/s3 Velocity times acceleration variance fva = 1
n

n
∑

i=1
(vai − vam)

2

6 vaavg m2/s3 Velocity multiplied by average acceleration vaavg = 1
k

k
∑

i=1
avi

7 amax m/s2 Maximum acceleration amax = {a1, a2 . . . aT}max
a > 0

8 ad_max m/s2 Maximum deceleration ad_max = {a1, a2 . . . aT}max
a < 0

9 astd m/s2 Acceleration standard deviation astd =

√
1
k

k
∑

i=1
(ai − am)

10 ravg r/min Average motor speed ravg = 1
k

k
∑

i−1
ri

11 Tavg N·m Average motor torque Tavg = 1
k

k
∑

i−1
Ti

In the driving condition, the specific energy is often used as a measure of the energy
consumed by the car under different driving conditions [21], and the specific energy can
generally be defined as the ratio of the energy used to drive the wheels of the car to run the
car over a certain distance. According to the definition, the formula for calculating specific
energy is:

Ftrac =
1
xt

∫
t∈Ttrac

F(t)v(t)dt (1)

where F(t) is expressed as the longitudinal driving force on the dynamics of the wheels,
and xt is the total vehicle miles traveled in time t.

Considering that urban roads consist of mostly gentle sections, the following expres-
sions are available:

Ftrac = Fair + Fr + Fa (2)
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where Fair is the specific energy to overcome air resistance, Fr is the specific energy to
overcome rolling resistance, and Fa is the specific energy to overcome acceleration resistance.
The expressions of each specific energy on the right side of the equal sign are as follows:

Fair =
1
xt

∫
t∈Ttrac

1
2

ρaCd A f v3(t)dt (3)

Fr =
1
xt

∫
t∈Ttrac

mg frv(t)dt (4)

Fa =
1
xt

∫
t∈Ttrac

θma(t)v(t)dt (5)

From the equations in Table 1, it can be concluded that there is a relationship between
specific energy and driving condition characteristic parameters. Therefore, an end-element
linear regression model is established for analyzing the relationship between specific energy
and the driving condition characteristic parameters of the bus line. The multivariate linear
regression model between the vehicle specific energy Ftrac and the operating characteristic
parameters x1, x2, x3, . . . x11 is shown in Equation (6):

Ftrac =


Ftrac
Ftrac

...
Ftrac

 =


1
1

x1,1
x2,1

· · ·
· · ·

x1,11
x2,11

...
...

. . .
...

1 x11,1 · · · x11,11

·


β1
β2
...

β11

+


α1
α2
...

α11

 (6)

In order to quantify the relationship between specific energy and characteristic co-
variates, the correlation coefficient between them needs to be calculated. The correlation
coefficient matrix is first established as follows:

P =


ρ11 ρ12
ρ21 ρ22

· · ·
· · ·

ρ1n
ρ2n

...
...

. . .
...

ρn1 ρn2 · · · ρnn

 (7)

where the denoted meaning of ρij (i, j = 1, 2, 3 . . . n) is the correlation coefficient between
the dependent variable y and the independent variable x, and ρij = ρji (i, j = 1, 2, 3 . . . n),
which is calculated by the expression shown in Equation (8):

ρy,x =
Cov(y, x)

σyσx
(8)

where Cov(y, x) expresses the meaning of the covariance between the dependent variable y
and the independent variable x. σy is the variance of the dependent variable y and σx is the
variance of the independent variable x. ρy,x is calculated between −1 and 1 and ρy,x > 0
means that x is positively correlated with y; ρy,x < 0 means that x is negatively correlated
with y. When ρy,x = −1, it means that x and y are completely negatively correlated; when
ρy,x = 0, it means that x and y are not correlated; when ρy,x = 1, it means that x and y are
completely positively correlated; the absolute value of ρy,x is proportional to the closeness
of 1 and the correlation between x and y.

3.2. Feature Parameter Extraction

The model of the Route 51 pure electric bus is Yutong ZK6809BEVG. According to the
calculation parameters mentioned in Equations (1)–(5), the relevant calculation parameters
of this model bus are found on the official website and in the values of Table 2.
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Table 2. The relevant parameters and values in the specific energy calculation formula.

Parameters Implied Meaning Unit Value

A f Windward side (of an area) m2 9
ρ Air density N·s2·m−4 1.2258

Cd Atmospheric drag coefficient − 0.6
m Overall mass (of a vehicle) kg 9000
g Gravitational acceleration m/s2 9.8
δ Rotating mass conversion factor − 1.2
f Rolling resistance coefficient − 0.02

Twenty SOC decline cycles of the bus driving process were randomly selected and
divided into groups of 20 rows of data for calculation using the formulae for the specific
energy and driving condition characteristic parameters introduced in Section 3.1 The scatter
diagram between the bus specific energy and driving condition characteristic parameters
was drawn.

Using the correlation analysis model, the correlation between the specific energy and
the characteristic covariates was further quantified, the correlation coefficients between
each characteristic covariate and the specific energy were calculated, and the correlation
coefficients between each covariate and the specific energy were plotted as shown in
Figure 5.
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From Figure 6, it can be seen that the correlation coefficients of the following pa-
rameters with absolute values outweighing 0.5 are highly correlated with specific energy:
2—average acceleration, 5—velocity times acceleration variance, 6—velocity times acceler-
ation mean, 9—acceleration standard deviation is more positively correlated with specific
energy; and 8—maximum deceleration is more negatively correlated with specific energy.
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4. LSTM-Based Battery SOC Prediction
4.1. LSTM Model Structure

LSTM is a special recurrent neural network RNN model that can achieve controllable
adjustment of the weight coefficients [22], and its cell structure is shown in Figure 7.
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In Figure 7, the letters represent the following meanings:
Ct−1—Cell unit state at moment t − 1;
Ct—Cell unit state at moment t;
∼
Ct—The state of the cell unit at the current moment;
ht−1—The hidden state of the cell unit at the moment t − 1;
ht—The hidden state of the cell unit at the moment t;
xt—The input at time t.

ft is the forgetting gate of the cell; it and
∼
Ct together form the input gate of the cell;

and ot and tanh together form the output gate of the cell. σ and tanh are the excitation
functions.

From Figure 7, it can be seen that the LSTM structure is not a single neural network
layer, but it is improved into four neural network layers with a tight connection and rich
structure, which is conducive to improving the processing ability of information, controlling
and protecting the cell state by introducing three gate structures: input gate, output gate,
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and forgetting gate, making it possible to avoid the problem of long-term information
dependence and remember useful information from very early moments without paying
too much. Compared to the RNN model, this newly proposed model not only strengthens
the processing ability of the network for information but also solves the problems such as
abnormal gradient changes [23].

4.2. Battery SOC Prediction Process

The general flow of this project for battery SOC prediction using the LSTM network is
shown in Figure 8.
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In the original data, different types of feature parametric data have different value
ranges, resulting in large differences in the weights assigned during the training process,
resulting in the neural network model not converging [24]. To solve this problem, the
individual variables must be standardized to eliminate the effect of inconsistency in order
to enable the neural network to achieve better convergence and improve the training
speed [25].

x* =
xi − xmin

xmax − xmin
(9)

where xmax is the maximum original data value; xmin is the minimum original data value.
Battery SOC prediction is a nonlinear regression process where the goal is to make the

predicted value approximately the same as the actual value. The purpose of model training
is to minimize the loss function. The mean squared error loss function is set as the loss
function of the model in the prediction model established in this topic, and its calculation
formula is shown in Equation (10):

loss =
1
2k

k

∑
i=1

(
SOCi − ˆSOCi

)2 (10)

where k is the amount of sample data; SOCi is the true value of SOC; and ˆSOCi is the
estimated value of SOC obtained after model training.

In this paper, the Adam optimization algorithm is used, and this optimization method
not only saves training time but also avoids the occurrence of the loss function falling into
local optimum.

The steps of Adam’s optimization algorithm are as follows.
Step 1: Calculating gradients:

gt = ∇θ ft(θt−1) (11)

Step 2: Updating the first-order moment estimates:

mt = β1mt−1 + (1− β1)gt (12)

In Equation (12), β1 is the exponential decay rate, and it generally takes β1 = 0.9.
Step 3: Updating second-order moment estimation:

vt = β2vt−1 + (1− β2)gt
2 (13)

In Equation (13), β2 is the exponential decay rate, which is generally taken as β2 = 0.999.
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Step 4: Correction of bias in first-order moment estimates:

m̂t = mt/
(
1− β1

t) (14)

Step 5: Correction of bias in second-order moment estimation:

v̂t = mt/
(
1− β2

t) (15)

Step 6: Updated parameters:

θt = θt−1 − α·m̂t/
(√

v̂t − ε
)

(16)

In Equation (16), α is the learning rate and ε = 10−8. It is seen that the first-order mo-
ments and second-order moments participate collaboratively in adjusting the parameter θ.

4.3. Hyperparameter Selection

In the process of network model construction, parameters such as the number of
hidden layers and the number of neurons in hidden layers are related to the network
structure; parameters such as the dimensionality of input and output quantities and
the time step are related to the data; and parameters such as the learning rate, training
data batch size, and loss function are related to training learning. Changing the size of
these parameters affects the accuracy of training and thus the final prediction results, so
reasonable hyperparameters need to be selected.

(1) Number of hidden neurons

The number of neurons in the hidden layer is usually linearly related to the predictive
ability of the network model and the complexity of the network training; the more hidden
neurons, the better the learning ability of the model, but at the same time, it leads to a more
complex model and a longer training time. The input layer of the LSTM model to be built
in this topic is related to the dimensionality of the input data, while the output layer has
only battery SOC values, hence the number of nodes in the output layer is one.

(2) Batch size

The batch size of training determines how much data are input to the network model
for training each time. The larger the batch size, the slower the adjustment of the data
weighting coefficients; and although the training time can be reduced, the training results
will be relatively poor. Therefore, an appropriate batch size is needed to improve efficiency
during training.

(3) Training cycle

The training period is the number of iterations of the data, and choosing a suitable
training period is beneficial to obtain prediction results with high accuracy. If the training
period is too long, it will lead to a prolonged training time of the model, the over-learning
phenomenon, and the over-fitting phenomenon; this must be avoided in order to excessively
reduce the error of the training set, not affect the generality of the test set, and avoid the
deterioration of the results. According to the multiple training runs, it was found that the
loss function changes very little after 6000 iterations; in order to improve efficiency, this
paper uses 6000 as the model training period and increases the number of hidden layers to
8000 instead.

(4) Learning Rate

By controlling the size of the learning rate, we can control how fast or slow the gradient
update is. Too large a learning rate will cause large fluctuations in the gradient update, thus
making it impossible to find the global optimal solution and making the final prediction
results produce large errors. The model built in this paper uses the Adam optimization
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algorithm, which can adjust the learning rate size by itself, so it only needs to choose an
initial learning rate, and the learning rate lr = 0.01 is chosen in this paper.

4.4. Model Building

From the original data analysis, it can be concluded that vehicle speed is highly
correlated with SOC and is easy to measure; battery voltage and current are correlated with
battery status; drive motor speed is correlated with vehicle operation and battery power
consumption; and SOC at the previous moment must have an impact on current SOC.
Therefore, the vehicle speed, total voltage, total current, drive motor speed, and SOC value
of the previous moment are selected as the input of the model, and the number of nodes in
the input layer is five. The battery SOC value is taken as the output, and the number of
nodes in the output layer is one.

Using PyCharm2021, we build a multiple-input single-output battery SOC prediction
model under the Python 3.8 platform. The specific steps are as follows:

Step 1: The call model mainly uses library functions such as Pytorch and pandas.
Step 2: A long- and short-term memory network class is defined based on the input

parameters, an LSTM network is constructed, and the hyperparameters of the model
are initialized.

Step 3: The training set and test set data are imported, and the input quantity contains
vehicle speed, voltage, motor speed, current, and the SOC value of the previous moment;
the output quantity is SOC, and data normalization is performed.

Step 4: The loss function is defined, the loop is set, and training is ended when the
loss function is less than 10−3, otherwise training continues for the set period.

Step 5: The data are converted into tensor-type data, the hyperparameters of the model
are set, and training is started.

Step 6: After the training is completed, the test set data are put into the model for
prediction, and the predicted values are plotted against the actual values.

Step 7: The model is trained and predicted several times by adjusting hyperparameters
such as the number of hidden layers and the number of neuron nodes to compare the
accuracy of the prediction results.

5. Analysis of Simulation Results

In order to make an intuitive evaluation of the prediction results, the mean absolute
error and root mean square error of the predicted and actual values of SOC are selected as
evaluation indicators in this paper, and the calculation formula is as follows:

MAE =
1
k

k

∑
i=1

∣∣SOCi − ˆSOCi
∣∣ (17)

RMSE =

√√√√1
k

k

∑
i=1

(
SOCi − ˆSOCi

)2 (18)

Different prediction results are obtained by adjusting the hyperparameters of the
model. The adjusted hyperparameters are shown in Table 3:

Table 3. Selection of model hyperparameters.

Training Number Number of
Hidden Layers

Number of
Neurons Batch Size Training Period Learning Rate

1 1 32 5 6000 0.01
2 1 48 1 6000 0.01
3 2 48/48 5 8000 0.01
4 2 48/48 1 8000 0.01
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Corresponding to the parameter settings in Table 3 above, the predicted results for
each number are plotted in Figure 9.
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In Figure 9, the blue line represents the actual battery SOC value and the red line
represents the predicted SOC value. From the Figure 9, it can be found that the prediction
model has a large deviation in the results in the early stage because the SOC decline
cycle start data do not strictly start with the battery in a full-charge state, resulting in
less accurate prediction results. Because the output SOC is a step-down type of data, the
improper selection of hyperparameters may lead to a good fit of the training data but
an overfitting during testing.

The errors of the prediction results are shown in Table 4 for different choices of
hyperparameters, using Equations (17) and (18).

Table 4. Errors in prediction results for different hyperparameters.

Training Number RMSE (%) MAE (%)

1 9.1374 7.6426
2 3.1023 2.5664
3 2.4835 2.0753
4 1.9875 1.7573

From Table 4 above, it can be seen that in model No. 1, the number of fewer neurons
in one hidden layer is not completely learned for the training data, and the loss function is
larger and cannot find the optimal solution, so the prediction results are poorer. In models
2 to 4, the loss function decreases by appropriately increasing the number of network layers
and the number of neurons; and the prediction results are more accurate as the batch size
decreases, but the efficiency decreases.

The results show that the prediction of battery SOC can be achieved using the con-
structed LSTM prediction model, and according to adjusting the hyperparameters of the
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model, the prediction results of the model can be made more accurate and suitable for
solving the SOC estimation problem.

6. Conclusions

In this paper, the collected electric bus driving data are processed to remove abnormal
and useless data for the study based on the working condition characteristics. Only the
SOC declining cycle data are used to find the correlation between the specific energy of
the vehicle and other parameters and extract the feature parameters. Based on the LSTM
network, the SOC prediction model is built and the prediction results with good accuracy
are obtained by adjusting the model hyperparameters, which proves the practicality of
LSTM for battery SOC estimation. Due to the limitation of the dataset in this paper, the
training set is not rich enough in data. In the next research step, the training set data
can be enriched to improve the accuracy of prediction results and add the single-input
single-output LSTM network model, which takes the battery SOC value as the input and
the driving mileage as the output of the model, to predict the driving mileage of the
vehicle and act as an indication for the driver’s travel. Subsequently, the charging and
discharging frequency of multiple electric buses can be scheduled based on the present
SOC prediction model to guide the charging, so that the buses can operate more efficiently
and save operating costs.
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