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Abstract: Energy storage systems (ESSs) are critically important for the future of electric vehicles.
Due to the shifting global environment for electrical distribution and consumption, energy storage
systems (ESS) are amongst the electrical power system solutions with the fastest growing market
share. Any ESS must have the capacity to regulate the modules from the system in the case of
abnormal situations as well as the ability to monitor, control, and maximize the performance of
one or more battery modules. Such a system is known as a battery management system (BMS).
One parameter that is included in the BMS is the state-of-charge (SOC) of the battery. The BMS is
used to enhance battery performance while including the necessary safety measures in the system.
SOC estimation is a key BMS feature, and precise modelling and state estimation will improve
stable operation. This review discusses the current methods used in BEV LIB SOC modelling and
estimation. It also efficiently monitors all of the electrical characteristics of a battery-pack system,
including the voltage, current, and temperature. The main function of a BMS is to safeguard a battery
system for machine electrification and electric propulsion. The major responsibility of the BMS
is to guarantee the trustworthiness and safety of the battery cells coupled to create high currents
at high voltage levels. This article examines the advancements and difficulties in (i) cutting-edge
battery technology and (ii) cutting-edge BMS for electric vehicles (EVs). This article’s main goal is
to outline the key characteristics, benefits and drawbacks, and recent technological developments
in SOC estimation methods for a battery. The study follows the pertinent industry standards and
addresses the functional safety component that concerns BMS. This information and knowledge
will be valuable for vehicle manufacturers in the future development of new SOC methods or an
improvement in existing ones.

Keywords: battery management system; SOC estimation; Kalman filter method; deep learning method

1. Introduction

The worldwide community is now facing significant ramifications, notably global
warming and the release of greenhouse gases (GHGs), due to the widespread utilization
of petrol and diesel in vehicular operations. This practice results in the annual emission
of substantial amounts of carbon dioxide (CO2). In addition, the rising cost of crude
oil has resulted in significant setbacks for the car industry, hence emphasizing the need
to advance the development of vehicles powered by alternative fuels. The adoption of
EVs has garnered significant interest and emerged as a compelling option for scholars
and automotive experts to tackle the aforementioned issues. This is mostly owing to the
potential attributes of EVs in mitigating greenhouse gas emissions.
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An electrical ESS known as a battery has the ability to store an ample quantity of
energy for a longer time period. The BMS, which serves as a crucial control component,
is used to ensure the operational integrity and safety of a battery-pack system [1–3]. The
primary purpose of a BMS is battery protection. For the purposes of ageing, cell balance,
and safety, each cell must be continuously monitored. In the occurrence of any abnormal
situations at the system, BMS ensures that the predefined remedial measures are carried
out. Furthermore, because it affects the profile of power consumption, BMS validates the
proper technique to manage system temperature. The battery management technologies
used in hybrid electric vehicles (HEVs) and EVs have been described in [4]. Concerns and
difficulties with the present BMSs are discussed in the study. A crucial job for a BMS is
to assess the condition of a battery, including its life, health, and charge. Analysing the
most current methodologies for battery state evaluation, probable future issues for BMSs
are explored, along with potential remedies. BMS hardware principles were explored
in [5] by the authors. This study elaborates on the BMS hardware features for stationary
applications and EVs. Using a bipolar-resonant LC converter, the authors proposed an
advanced multicell-to-multicell battery equalizer in [6]. Its quick balancing and excellent
efficiency were demonstrated through mathematical study and comparison with conven-
tional equalizers. In [7], it was discussed how BMSs the lithium-polymer (LiPo) and Li-ion
(LIBs) batteries used in new EVs and HEVs were susceptible to electromagnetic interfer-
ence (EMI). Radiated susceptibility and direct power injection (DPI) tests in a chamber
were performed on a special test board to practically evaluate the EMI vulnerability in the
front-end integrated circuit of a BMS. In [8], the authors discuss the PSIM validity as an
automotive simulation tool by creating module boxes for not only the electrical systems,
but also the mechanical, energy-storage, and thermal systems of the vehicles.

The estimate of SOC is a crucial technology in the field of electric cars. Its preci-
sion has a direct impact on the performance of the EV. Consequently, it influences the
dependability and cost of the vehicle. The metric in question has significant importance
inside the battery management system. On the one hand, it may provide drivers with vital
information pertaining to the extent of driving capacity. On the contrary, it also serves
as a crucial foundation for mitigating the detrimental effects of battery overcharge and
overdischarge on battery longevity, as well as facilitating battery pack management and
maintenance [9]. Nevertheless, as a result of the intricate electrochemical properties of the
battery, it demonstrates a significant level of nonlinearity when used. The state variable
of battery SOC cannot be monitored directly. The estimation of battery terminal voltage,
charge and discharge current, and other externally detectable factors is the only viable
approach. Furthermore, the estimation procedure is susceptible to several parameters like
temperature, cycle durations, discharge rate, voltage, noise, and others. These factors pose
challenges in the precise estimation of the SOC of the battery in real time [10]. Hence, it is
essential to develop a suitable battery model for research purposes in order to accurately
estimate the SOC of the power battery. A precise and suitable battery model can success-
fully demonstrate the relationship among the exterior characteristics of the battery and
its internal condition. This model can also simplify and describe the challenge of estimat-
ing the SOC. The simulation, design, and optimization of electric cars have significant
importance. In [11], a mathematical simulation model of an electric vehicle traction battery
was developed, in which the battery was studied during the dynamic modes of its charge
and discharge for heavy electric vehicles in various driving conditions—the conditions
of the urban cycle and movement outside the city. The state of a lithium-ion battery is
modelled based on operational factors, including changes in battery temperature. The
decision making and control of the BMS system are influenced by both the complexity
of the model and the computing cost of the processor [12]. The impact of developing a
precise and simple battery model, as well as accurate battery SOC assessment, is evident
in its direct influence on both the performance and energy management control of EV.
In practical application, the degradation of batteries will directly affect the accuracy of
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the management system to estimate the state of charge (SOC) and the peak power, thus
affecting the performance of batteries, even causing safety problems [13].

The SOC in battery management systems has emerged as a crucial and significant
variable that has garnered much attention in academic study over the last several decades.
The SOC of a battery performs a similar function to that of a fuel gauge in a gasoline-
powered car, providing an indication of the remaining energy stored inside the battery for
the purpose of powering a vehicle [14]. The precise assessment of battery states serves the
dual purpose of providing insights into the present and future performance of the battery,
as well as ensuring the dependable and secure functioning of EVs. Nevertheless, the
assessment of battery SOC is a significant obstacle in ensuring the effective functioning of
EVs. The direct observation of battery SOC is hindered by its non-linear and time-varying
features, as well as the presence of electrochemical processes [15]. Moreover, the battery’s
performance is significantly influenced by factors such as ageing, temperature fluctuations,
and charge–discharge cycles, hence making the precise estimation of SOC a formidable
job [16]. There is a scarcity in the literature of studies that offer a comprehensive elucidation
of the many techniques used to estimate the SOC of EVs [17–19]. In [20], a risk-assessment
analysis with application to charging infrastructures connected to MGs under the control
of the OCPP-v2.0.1 protocol is explained. When compared to the traditional approaches,
the unique method for precise hysteresis modelling suggested in [21] can greatly rise the
accuracy of the SOC estimation. A recursive least-squares (RLS) filter and an auto regressive
exogenous (ARX) model are used to estimate the battery’s parameters, while an extended
Kalman filter (EKF) is used to estimate the SOC. The BMS demonstration board design
utilizing Electromagnetic Compatibility (EMC) system modelling was presented in [22].
The study describes the use of EMC system simulation to rapidly identify the reason and
optimize the board design. The battery pack thermal behaviour under a low demand was
reported and analysed by Kang et al. [23]. Heat dissipation, joules heating with comparable
resistance and reversible heat are the types for the recommended thermal forecast model. By
utilizing the hybrid pulse power characterization, the SOC intervals control the equivalent
resistances. The existing body of research has shown many prevalent approaches for
estimating SOC. Nonetheless, it is important to note that each of these techniques has
some limitations, mostly in terms of their accuracy and the insufficiency of available data.
Furthermore, the estimating procedure is rendered very challenging due to the presence
of sophisticated calculations and the substantial computational expenses associated with
them. Therefore, scholars, researchers, and scientists have conducted comprehensive study
aimed at improving the precision of battery SOC. However, the challenges associated with
accurately measuring SOC have yet to be fully overcome. Furthermore, the difficulties
associated with determining the SOC have yet to be recognized. Therefore, this study work
aims to bridge the current knowledge gap by examining several approaches and addressing
the primary concerns and obstacles associated with the estimate of SOC. This study will
provide valuable insights for automotive makers and engineers in terms of determining
the most suitable approach and identifying potential obstacles.

Using optimization approaches, [24] examined the precise models of the effects of high-
power charging and the battery constraints. When increasing the efficiency of grid-connected
storage systems, Arnieri et al. developed an effective management technique [25] that considered
the real correlation between the discharging/charging power of the battery and efficiency. A
technique for assessing pulse power performance in accordance with pulse length was put
out by Lee et al. This technique is used for the production of power in the application of
transportation electrification and ESS [26]. A distinctive voltage equalizer, which is based on
a voltage multiplier, was suggested by Uno et al. This voltage equalizer includes switches,
though there are less compare to typical topologies, causing a compact circuit. Li-ion-battery
equalization testing was conducted on a model of twelve cells in [27]. A regression study was
delivered in the incremental capacity (IC) curve from the new state to a 100-cycle ageing state by
Lee et al. in [28]. The existing methods of increasing the energy efficiency of electric transport
by analysing and studying the methods of increasing the energy storage resource was studied
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in [29]. The components, designs, and safety issues associated with BMS functioning were
thoroughly evaluated in this paper. Furthermore, it evaluated technical standards pertinent to
the BMS to help with the creation of new standards.

This paper provides a brief overview of the estimation of SOC for LIBs in EVs. The
primary objective is to evolve accurate SOC estimation techniques for LIBs. Furthermore,
there are several challenges associated with the methodologies. This article conducts
a review of published work to acquire information on SOC estimation techniques and
proposes the best efficient algorithm. A comprehensive explanation of SOC estimation
methods, including their merits and demerits, is provided. The paper also addresses
challenges related to the implementation of various SOC methods. This information and
knowledge will be valuable for vehicle manufacturers in the further improvements of new
SOC techniques or an improvement in existing ones.

2. Different Battery Chemistry

EVs equipped with batteries are now exerting a significant influence on the automo-
tive industry. The construction of contemporary EVs involves the use of several battery
technologies, posing a challenge in identifying the most suitable option that effectively
fulfils the essential criteria across multiple dimensions. These dimensions include energy
storage efficiency, structural attributes, safety considerations, operational lifespan, and cost
considerations. The detailed classifications of different types of battery that are used in EV
are displayed in Figure 1.

Figure 1. Classification of battery.

2.1. Lead-Acid Battery

This was the earliest rechargeable battery, introduced in 1859. There are many good
reasons for the popularity of the battery. One of them is their cheapness on a low cost-per-
watt basis. Mostly, the frame of the battery is built from lead alloy as pure lead cannot
support itself. So, to add mechanical strength, many common metals are used, such as
antimony, tin, calcium, selenium, etc. [30]. Lead acid batteries are mainly classified into
two categories, flooded and valve-regulated. Both of the battery types are almost similar
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but the main difference between them is their system design, such as a flooded battery
requiring alignment to prevent the leakage of electrolyte while value-regulated batteries
do not. A flooded battery also requires a ventilation system to send out the gases formed
during the cycling, while valve-regulated ones do not. Valve-regulated lead batteries are
further classified into two types: gel and absorbed glass mat (AGM). The main difference
between the two batteries is in the form of electrolyte stored in the battery. In the gel
type, a condensing agent is used to change the material from liquid to gel, while in AGM
a glass matrix is used. Figure 2 shows the comparison between Gel and AGM batteries’
performances in relation to their available power, cost, capacity, life cycle, thermal runaway,
and deep discharging.

Applications of Lead Acid Battery

This is widely used in the automobile sector such as in EVs, forklifts and golf carts. It is
mainly used to power the cranking motor and other electric systems present in vehicles. An
acid battery is also used in backup power systems in businesses, homes and critical facilities. It
is also used in marine applications such as for powering boats and other marine applications.

2.2. Nickel Battery
2.2.1. Nickel–Iron (NiFe) Battery

This was first developed in 1901 by Edison and Jungner. The positive terminal of
the battery is made up of nickel oxyhydroxide, whereas the negative terminal is of iron
material [31]. The battery has a low specific energy and exhibits a huge self-discharge
rate. The main key problem in the growth of the battery is iron poisoning of the negative
electrode. Due to its resistance to vibration and high temperature, the battery is used in
mining in Europe.

2.2.2. Nickel–Cadmium (NiCd) Battery

The developmental work performed regarding this battery was mainly contributed
by Edison and Jungner. Also, a tubular plate-type battery was invented by Edison in
the year 1908. The main reason behind the introduction of this battery was to restrict
the mechanical distortion formed because of the bulging of the positive electrode in a
pocket plate battery [31]. It was also helpful to increase the battery life cycle in the deep-
discharging-cycle process. But due to the high manufacturing cost, the battery was not
further manufactured. The performance of a nickel—cadmium battery depends on many
factors, which includes cell construction, the production process, the cell type, the operating
temperature, etc. It has many advantages such as a high cycle count, ultra-fast charging
with little stress, a prolonged shelf life and many more. But it has many disadvantages,
such as diminished specific energy, cost, a huge self-discharge rate and many more [32].

Figure 2. Comparison between gel and AGM battery [32].
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2.2.3. Nickel–Hydrogen (NiH) Battery

The construction of this battery is almost identical to the cadmium battery. The
difference is created by replacing the electrode. In this battery, the cadmium electrode of
the battery is replaced by a standard hydrogen electrode, which enlarges the energy density
value of the battery [32]. The battery was specially designed for aerospace applications.
The main advantages of the battery are a long life, a good life due to low corrosion, low
self-discharge, etc.

2.2.4. Nickel–Metal Hydride (NiMH) Battery

Ni-MH batteries are a crucial type of battery used in portable electronic devices. They
were first patented in 1986 and became widely marketed in 1989. Its design resembles
that of a Ni-Cd battery quite a bit [30]. Metal hydride batteries took up a huge amount
of attention because of their huge valued energy density, huge discharge rate and high
tolerance to over discharge. These batteries also have resistance from dendrite formation
and memory effects because of recrystallization.

2.2.5. Applications of Nickel-Based Battery

Nickel–cadmium batteries are used as the main battery in aircrafts, whereas the metal
hydride battery is used in hybrid cars and in uninterruptible power supply (UPS). The
nickel–iron battery is used in rail road signalling, mining and in rockets. Nickel–hydrogen
batteries are exclusively used in satellites and in space programs.

2.3. Lithium-Ion Battery

After the remarkable work conducted on lithium-ion batteries in 1991, they have
become popular among the battery market because of their high energy density and
prolonged life. The anode and cathode of the battery are split with the help of a separator
and electrolyte. But the most important characteristics of the battery includes a long life,
discharging and charging efficiency, a low cost, a large temperature-range performance,
etc. Mostly, lithium batteries are packed in two popular formats. The first is in metal cans
(prismatic or cylindrical shapes), which are also known as Li polymer batteries. Another
form is a stack formation, in which gel is used to prevent the leakage of the electrolyte [32].
Generally, the main power source of the battery is active lithium-ion movement from the
cathode to the anode. So, to achieve a huge value of capacity, a high amount of lithium is
used. Hence, different types of cathodes are used, which include lithium manganese oxide,
lithium cobalt oxide, lithium iron phosphate, etc. [33].

2.3.1. Lithium Cobalt Oxide (LiCoO2) Battery

In 1991, Sony created this battery and Mizushima improved the battery materials as
per the patents [34,35]. It contains cobalt oxide as the cathode and graphite as the anode.
The battery itself has a diminished life time, small load capacities and needs shielding
against overheating and immoderate stress, but has a quick charge time [36,37].

2.3.2. Lithium–Manganese Oxide (LiMn2O2) Battery

Li et al. first introduced this battery in 1983 in a material research bulletin [38]. Its
3D spinel shape helps the battery to lower its internal resistance for quick charging and
gives a high discharging current. Due to its 3D architecture, the battery has positive
aspects, such as a high point thermal stability and safety. But this limits the life of the
battery. It provides approximately 50% more specific energy than a battery based on nickel.
The battery has a higher capacity loss during the recharging cycle as a large amount of
manganese decomposes in the electrolyte at a high temperature [39].

2.3.3. Lithium–Nickel–Manganese–Cobalt Oxide (LiNiMnCoO2) Battery

This battery mainly comprises of nickel, manganese and cobalt, all in proportions
of one-third each. The main secret of the NMC battery lies in the addition of nickel and
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manganese in it. Nickel has prominent specific energy but has low stability, whereas
manganese has the property of a spinel architecture, allowing it to achieve small internal
resistance, but comes with small specific energy [40]. Adding the metals in the battery
together enhances the strength of each one. This battery is in huge demand because of its
low self-heating change.

2.3.4. Lithium–Nickel–Cobalt–Aluminium Oxide (LiNiCoAlO2) Battery

This battery consists of mixed metal oxides. Metal oxides have particular importance
in their applications when manufacturing the battery. This battery has a much-diminished
share in the world market [41]. But now, experts are interested in the battery because of its
impressive profiles (power density, specific power, cost, and safety) [42].

2.3.5. Lithium-Titanate-Oxide Battery

The titanate anode in LIB has been commonly used since 1980 [43]. It is a replacement
for the graphite anode and has a spinel structure. But due to its low specific energy, the
battery is still in the development zone and work is still pending on it.

2.3.6. Applications of Lithium-Ion Battery

From the above information, we can easily say that the LIB has a good energy density
value. Therefore, LIBs are mostly used in next-generation biomedical applications, in
electric automobile applications and in aerospace. The battery cells are arranged in a
different connection to render a high energy, and these arrangements are used in powering
heavy electric vehicles and EVs and also in other applications.

Comparisons of different types of LIBs used in EVs from the following perspectives:
specific energy (SE), specific power (SP), safety (SF), performance (PF), life span (LS), and
cost (CS) is shown in Figure 3.

Figure 3. Comparison between different types of LIBs [32].

3. Battery Management System
3.1. Types of BMSs

In Figure 4, different BMS topologies are shown with their schematic views and
connections.
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3.1.1. Modular BMS

A modular BMS is designed with a modular construction, or it can also be stated that
the system is divided into different modules based on the functions or application of the
unit. The various functions or tasks of the system, such as current and voltage measurement
and monitoring, temperature sensing, cell balancing and other functions, are sorted into
different or isolated modules, with each having its own hardware and software part or
components. The main architecture of the modular system is based on the communication
or connection between the main controller and the distributed modules. All modules
are commonly linked with a communication bus, like a Common Area Network (CAN),
Ethernet and others like RS-485. Each module of the system has its own microcontroller
and sensors with other required components. The main controller is responsible for all the
decision and data co-ordination. It can also be linked with the other services to provide
real-time data present in the system. In [44], the design, deployment and implementation
of a modular BMS is discussed for IoT applications. The main advantage of the BMS
is improved manageability. The different modules of the BMS can be located nearer to
the batteries, which avoids long cable connections. The scalability of the system can also
enlarge in comparison to centralized BMS. The cost of its modularized units is higher
than centralized BMS. A modular BMS can be further classified on the basis of its specific
requirement of application such as at the string level, module level and cell level.

• String level: in this system, each BMS module is accountable for controlling and
monitoring a group of battery modules or cells, which are in a series connection;

• Module level: in this system, each BMS module is accountable for controlling and
monitoring a single battery module or sub pack in the battery;

• Cell level: in this system, each BMS module is accountable for controlling and moni-
toring a single battery cell.

3.1.2. Centralized BMS

The centralized BMS is designed with a centralized architecture, or we can state
that there is only one integrated unit or controller in the whole system. Here, complete
functionality is merged into a single unit or module, which is attached to the battery cells
or battery unit via several connection wires [45]. The essential or main components of
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the system include the controller, communication interfaces and sensors. The primary
or central controller is accountable for various functions such as cell voltage and current
monitoring, temperature status and others. Mainly, the centralized system is used in
stationary energy storage systems such as renewable energy storage (RES), and in some
EV applications as well. The main benefits of the system include cost-efficiency, repair and
management. If only one integrated circuit is utilized, the cost of the application reduces
and errors can also be easily identified. The plain defined structure of the system provides
effective control of the system. But the huge cable connection increases the probability of
short circuits in the system. Moreover, the inputs in the system can easily be incorrectly
connected and mixed up. The main controller in the circuit is only point of defeat. In the
case of the malfunction or failure of the main controller, the whole system is endangered or
can become uninterruptible.

3.1.3. Decentralized BMS

The decentralized BMS is designed with a distributed architecture [46]. In this archi-
tecture, the various functions and tasks of the system are bifurcated into multiple units or
controllers that are allocated all over the battery pack. In this system, each module of the
BMS is accountable for controlling and monitoring a specific subset of the battery, such as
the modules, string or groups of cells. Becoming popular in the EV industries, it has several
advantages like scalability factor, growing functional safety and minimum integration
efforts. All the units of this system are connected with other using a communication bus
network such as CAN, Ethernet or RS-485. In this system, the main BMS controller is
responsible for managing the tasks of various units. A decentralized BMS without a com-
munication system is proposed in [37]. The main advantage of the system is the number of
inputs; it is not fixed for the system. It can be extended or reduced even after attachment
of the system. Moreover, its flexibility and scalability are also some advantageous factors.
Overall, a decentralized BMS offers a flexible, cost-efficient and fault-tolerant solution for
managing the performance and safety of a battery pack.

3.2. Battery Thermal Management

The temperature management system of its battery is one of the most important parts
of an EV. Therefore, a key area of study focus is in the thermal management of the battery’s
ideal operating temperature range during discharging and charging modes. At the time
when an electric vehicle gets charged, discharged, and operated, the system is utilized
to estimate the temperature of the battery pack. With a higher temperature-related fault
operation, component failure rates rise. The battery-pack temperature is monitored by
thermal management systems to avoid this. In order to initiate the cooling procedure and
control the temperature as the temperature increases, a signal for control is supplied to the
coolant circuit [47]. Battery longevity and safety throughout charging and discharge cycles
in vehicles depend on maintaining the battery’s temperature in an appropriate temperature
range between 25 ◦C and 40 ◦C [48], as thermal runaway can result in fires in battery
packs. A variety of thermal management schemes are frequently applied in a battery to
guarantee stability of its temperature and provide cell temperature uniformity [49]. Liquid-
and air-cooling structures are categorized as active cooling components [50] because they
consist of pumps, fans and other equipment. Active cooling systems need a larger area
and electricity to operate than PCMs, which are referred to as passive systems for thermal
management [51]. The air-cooling technique is the easiest and most energy-efficient type
of construction, but due to its low efficiency, it is often not suggested for large power
applications. On the one hand, liquid cooling provides the best consistency and efficiency
but comes at the cost of a higher complexity, volume, and energy use. More advanced
methods are effective, simple to incorporate, and compact, such as PCM, which is a
thermoelectric component, or hybrid cooling. However, their installation comes at a higher
cost, and in some situations, it makes the battery-pack system as a whole much more
challenging to maintain due to the BMS’s integration of all battery sensory circuits. The
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system’s output, which might be digital or analogue, will change how much power is
needed by the thermal control system to warm, equalize, and cool a battery cell.

3.3. Cell Balancing

Voltage, the capacity fade rate, the SOC and the aging rate among cells may be
inconsistent due to variations in reactions and manufacturing processes. Therefore, cell
voltage equalization is extremely significant. Technologies for cell balance can be divided
into two categories: balanced cells can be either passive or active.

3.3.1. Techniques for Passive Cell Balancing

The former approach diminishes the total battery lifespan by facilitating the dissipation
of excess power from the battery cells using resistors, unless the charge level aligns with
that of the pack’s less-charged cells or an equivalent charge level. The use of the passive cell
balancing technique is relatively uncomplicated; nevertheless, its efficiency is comparatively
lower. Therefore, it is not recommended to utilize this approach during the discharge
process. One of the most straightforward approaches to achieve cell balancing is through
the use of shunt resistors. These resistors may be divided into two types: fixed resistors and
variable resistors. In the context of the fixed shunt resistor, the manipulation of resistance
serves as a means to restrict voltage, while concurrently allowing for the continuous
bypassing of current. Rather than engaging in the continuous discharge of cells with high
charge, a variable resistor approach employs controlled relays [52,53].

3.3.2. Techniques for Active Cell Balancing

The active cell balancing technique involves the transfer of charge across cells with
varying levels of charge, using either capacitive or inductive flow. The correction of cell
imbalances may be achieved by securely transferring electrical energy from a lower SOC to
a greater SOC. In comparison to passive balancing techniques, this approach demonstrates
more efficacy in optimizing the available power of the battery, since it facilitates the transfer
of surplus energy to a low-energy cell rather than allowing it to dissipate [54,55].

3.4. Fault Diagnosis

In EVs, defect diagnostics is a critical supplementary function of BMS. There are many
different fault types, including actuator faults, cooling system faults, internal/external
short-circuits, thermal runaway, overheating, overcharge or overdischarge, external or
internal short-circuits, sensor faults, internal/external faults, overheating and cell connec-
tion failures. A lot of emphasis has been placed on distributed fault diagnosis first. One
of the primary duties of the BMS is to mitigate the potential hazards inherent in using
a battery pack, hence safeguarding the well-being of both the end-users and the battery
itself. The majority of dangerous circumstances are brought on by defects, which should
be prevented by the safety features of the BMS by reducing their frequency and severity.
With a view to assure the security of the battery system, sensors, contactors, and insulators
are frequently included [5]. Additionally, there are limits of operation for temperature,
current and voltage, which are tracked by sensors linked to the battery’s cell [56]. As a
result, fault diagnostic techniques are necessary for BMS. These algorithms provide the
functions of prior failure detection and give the batteries and users suitable and prompt
control actions [57]. BMS continuously monitors the battery system, utilizing sensors, state
estimates, modelling, and data analysis in order to spot any anomalies that may arise
when the battery system is in use [5]. Effective completion of this task is challenging due
to the numerous internal and external flaws. For the proper identification and isolation
of a particular defect and the application of the appropriate control action, several fault
diagnostic techniques must cooperate. The BMS’s fault diagnostic methods, however, are
constrained in terms of computer power and time. These fault diagnostic methods must
have a low processing effort, yet maintain accuracy and reliability, due to the huge quantity
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of battery pack’s cells in many applications [58]. The schematic diagram of fault diagnostics
in the BMS is depicted in Figure 5.

Figure 5. Fault diagnosis in the BMS.

3.5. FMEDA BMS

FMEDA is the Failure Modes, Effects and Diagnostics Analysis of BMS. It is a crucial
requirement for obtaining certification according to IEC 61508, through conducting a risk
assessment. It serves as a key tool in the process of detecting and evaluating all related risks
and hazards. FMEDA is a comprehensive assessment that scrutinizes various failure modes
and the diagnostic functionalities of equipment. The provided table displays a preliminary
FMEDA for each of the pertinent major components. Table 1 presents the diverse FMEDA
conducted on the BMS designed for large-scale integration [59].

Table 1. FMEDA of BMS.

Apparatuses Disaster Cause Causes Effects

Lithium-Ion Battery

Short-circuit
Cell-balancing fault

and incorrect
connection

Corrosion,
degradation, and the
potential risk of fire

Abnormal output
voltage

Law battery ability
and overheating

Load damage, battery
fire, and explosion

Cracking of battery Lower battery
capacity

The phenomenon of
system performance

deterioration

Non-continuous Lower battery
capacity

The phenomenon of
system performance

deterioration

Analog Front End IC

Voltage measurement
error

Measurement circuit
component error

The absence of
dangerous failure.

Current measurement
error

Measurement circuit
component error

No overcurrent
control, dangerous

failure

Temperature
measurement error

Measurement circuit
component error

Dangerous failure,
fire and

explosion
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Table 1. Cont.

Apparatuses Disaster Cause Causes Effects

Micro-Controller Unit

Operation error Unstable source
voltage/clock

No battery control
and dangerous failure

Bits error (SRAM) Unstable source
voltage/clock

No battery control
and dangerous failure

Ineffective
communication

Circuit fault, Unstable
source voltage

Not receiving
measurement data

Analog-to-digital
converter read error

Measurement circuit
error and unstable

source voltage.

Current and
temperature error,

and dangerous failure

Charging,
Discharging relays

and Isolation
Inoperative Component fault and

wire disconnection
No safety function

and dangerous failure

Driver IC

IC fault Damage and
component fault

No isolation control,
dangerous failure, fire

and explosion

Control failure Circuit abnormality
and component fault

No isolation control,
dangerous failure, fire

and explosion

Sensing Component
Abnormal reading, no

readings, and
abnormal behaviour

Component fault, IC
damage, and circuit

abnormality

No battery parameter
measurement, error
readings, dangerous

failure, fire and
explosion

3.6. Performance and Safety Test Standards for BMS

This section highlights some safety considerations, including overvoltage protection
and cell balancing, which are vital components to be included in any documentation
pertaining to BMS. Moreover, Table 2 provides a comprehensive overview of the primary
performance and safety assessments pertaining to stationary applications, as outlined in
the various standards or recommendations.

Table 2. Standards for BMS.

Test Name Standards

OCV IEC 62619 [60], UL 9540 [61], UL 1973 [62], NAVSEA S9310 [63]
OCC UL 9540 [61], IEC 62619 [60], NAVSEA S9310 [63], UL 1973 [62]

Over-discharge UL 1973 [62], NAVSEA S9310 [63], UL 9540 [61],
Overheating Control IEC 62619 [60]

Cell Balancing IEEE 1679.1 [64]
Disconnection IEEE 1679.1 [64]

Cell Operating Range UL 9540 [61], IEC 62619 [60], UL 1973 [62], IEEE 1679.1 [64]
Temperature Range IEEE 1679.1 [64]

Thermal Management IEEE 1679.1 [64], UL 9540 [61], UL 1973 [62]
Heating and Cooling IEEE 1679.1 [64]

Thermal Fault IEEE 1679.1 [64]
Short Circuit NAVSEA S9310 [63]

4. Methods of SOC Estimation

One of the most important aspects of batteries is the SOC, although describing it
presents a number of difficulties [15]. The term SOC is often used to denote the ratio
between a battery’s current capacity Q(t) and its nominal capacity Q(n). The nominal
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capacity refers to the upper limit of charge that a battery can store. The SOC may be
computed using the following Equation (1).

SOC(t) = Q(t)/Qn (1)

These SOC-estimating approaches are classified in five different ways, which are
adaptive methods, direct measurement methods, the non-linear observer method, learning
algorithm methods and the hybrid method. Figure 6 shows the detailed classification of
SOC estimation methods.

Figure 6. Classification of SOC estimation methods.

4.1. Direct Measurement

This method employs battery parameters such as voltage and impedance. Many
more approaches have been used, including the OCV, terminal voltage, and impedance
measurement techniques.

4.1.1. OCV Methods

The OCV method produces a battery SOC estimation value that can be used to calculate
the battery capacity. As there is no voltage drop to the load or the voltage is not shared
with the load, OCV represents the whole source voltage. OCV is a voltage state that occurs
when the voltage source is not connected to the circuit or the load. The battery’s SOC and
its OCV have a roughly linear connection, as shown by Equation (2):

VOC(t) = a1 × soc(t) + a0 (2)

where a0 is the terminal voltage of the battery when the SOC = 0%, and a1 is found from a0
and VOC(t) at SOC = 100%. It should be noted that all batteries will not have the same SOC-
OCV connection. A pulse load is applied to the LIB and allowed to approach equilibrium,
allowing researchers to assess the OCV connection with SOC [65].

4.1.2. Terminal Voltage Method

Since the terminal voltage approach is based on the terminal voltage decreasing due to
internal impedances when the battery is depleting, the EMF of the battery is proportional
to the terminal voltage. The terminal voltage technique has been applied at various
temperatures and currents [66].
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Though the battery’s terminal voltage sharply drops towards the discharge, the pro-
jected inaccuracy of this method is important [67].

4.1.3. Impedance Method

By recording the voltage and current during sinusoidal excitations at various stimula-
tion frequencies and computing the complex quotient of these signals to determine the cell
impedance, an impedance measuring system is created. In the Nyquist plane, two circles
can be used to represent the impedance of a battery cell [68]. The chemistry of a cell has a
major impact on the impedance spectrum’s curve: electrochemical impedance spectroscopy
(EIS)-based techniques have recently been used to accurately analyse electrochemical
processes that occur in real time and diagnose lithium batteries [69,70].

4.1.4. CC Method

For calculating SOC, the discharging current is the input used in the book-keeping
approximation technique, which integrates the discharging current over time. This ap-
proach enables the inclusion of nearly internal battery effects, such as the capacity loss,
self-discharge, and effectiveness of discharging. The CCM is one type of estimating tech-
nique used in book-keeping. The SOC is most frequently calculated using the CCM in
industry [71]. This technique uses battery current measurements that have been mathemat-
ically integrated during the usage time to determine SOC values provided by Equation (3):

SOC = SOC(t− 1) + I(t)/Qn × ∆t (3)

where I(t) is the discharging current, and SOC(t− 1) is the previously estimated SOC values.
Though the CCM is a direct approach, it has disadvantages such a primary value error and
compounded errors; thus, the following considerations must be made: batteries’ currents
can be measured, but there is always a chance for measurement noise and inaccuracies.
Equation (3) eventually loses accuracy owing to compounded mistakes caused by noise, a
broad range in sensor resolution, and rounding errors. As a result, supporting algorithms
are required. In the context of thermodynamic equilibrium in battery systems, it is possible
that determining the initial SOC may provide practical challenges, hence limiting the ability
to precisely characterize the SOC of a battery [72]. This technique is unable to totally
decrease the accumulative error. The CC method was used as the only tool to compute the
SOC in [73]. Since it includes a method that enables an on-line adaptive parameter estimate
of a source-dependent electric circuit model (ECM), this study employs CCM as a special
approach for the SOC estimation.

4.2. Adaptive Method

The adaptive methods are self-designing and may automatically normalize the SOC
for different discharge situations.

4.2.1. KF Methods

KF is a clever and well-designed instrument that is frequently used in aircraft, nav-
igation tracking, and automotive applications. The self-correcting nature of the KF is its
most notable characteristic. A KF linear model has two equations: a state equation that
forecasts the state at a certain time and a measurement equation that changes the state at
that time [74], which are calculated using Equations (4) and (5):

State Equation : Sm+1 = Emsm + Fmcm + pm (4)

Measurement Equation : Tm = Gmsm + Hmcm + nm (5)

where E, F, G, and H denote the covariance matrices, S is the state of the system, p is
the noise of the process, c is the input of the control, m is the input of the measurement,
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and n is the noise of the measurement. A RC battery model for simulating a KF was
created by Ting et al. [75]. The RC model’s mathematical equations are still used, but they
have been transformed into a state–space model to represent the battery properties. The
conclusion showed that, in comparison to the observed error, the predictable value of the
root-mean-square error (RMSE) for the SOC using the KF is small. Using the dSPACE and
MATLAB software, the researchers of [76] also applied a similar methodology to the ECM
of an LIB. Less than 5% SOC inaccuracy was calculated. In order to improve the non-ideal
factors, Yatsui [77] integrated the KF findings with the CC and OCV approaches. The SOC
precision was increased when the KF was run, with an inaccuracy of just 1.76%. The KF,
however, cannot be utilized immediately. It requires intricate calculations and is extremely
resilient to a variety of operating environments and battery ageing. However, MI-UKF is
immune to unexpected operational demands and can increase the accuracy of UKF by more
than 1% [78–80]. Also, the state of trajectory prediction based on KF for object tracking was
carried out in [81].

4.2.2. EKF Methods

Due to the inherent inability of the KF to effectively account for the nonlinear charac-
teristics shown by battery models, the EKF has often been used as a suitable alternative in
nonlinear applications. The process of linearizing the battery model in the EKF involves
using a Taylor series. In order to refine the estimated parameters for SOC, the predicted
value is compared to the observed voltage of the batteries. This comparison necessitates
the linearization of the state–space model at each occurrence in time. While the accuracy
of first-order Taylor series is compromised in highly non-linear scenarios [82], there is a
possibility of encountering a linearization error when dealing with systems that exhibit
significant non-linearity. To estimate the SOC and the capacity of a battery using the recom-
mended OCV–SOC relationship, Lee et al. [83] developed an electrochemical model using
a dual EKF. The construction of the standard OCV–SOC data relies on a reference voltage,
with a selected cut-off value of 3.6 V, which is arbitrarily designated for the purpose of
establishing the correlation between OCV–SOC. The predicted conclusion indicated that
the model exhibited more accuracy compared to the actual number, with a lowered primary
error rate of 5%. In reference [84], the SOC estimation for LIBs was conducted using a
nonlinear battery model and an EKF. The nonlinear model was formed by sequentially
coupling a second-order RC model with an OCV model, both of which exhibit nonlinear
behaviour. The EKF is used in order to mitigate the adverse effects caused by measurement
and process noise. The proposed technique demonstrates enhanced accuracy in forecasting
the SOC, particularly in cases when the original SOC is not known. In reference [85], the
authors used the EKF and its dual variant, the Dual EKF, to estimate the SOC of LiFePO4
cells. These estimation methods were applied for the zero-state hysteresis (ZSH) model
and the hysteresis state model. The outcomes indicated that the suggested methodology
is capable of accurately estimating the SOC in dynamic scenarios, with a margin of error
of 4%.

4.2.3. UKF Methods

The UKF technique is used to solve these issues because EKF only works in the first
and second orders of a nonlinear model and introduces a sizable inaccuracy in extremely
nonlinear state–space models. With the help of the unscented transform and the discrete-
time-filtering method, UKF is an upgraded type of KF that addresses filtering issues.
The UKF approach demonstrates the capability to effectively and precisely estimate the
covariance and mean values associated with the Taylor series. However, the technique has
weak resilience as a result of modelling uncertainty and system perturbations. For UKF-
based SOC estimate, He et al. [86] took battery voltage and CC into consideration. The UKF
is utilized to autonomously control the model parameters, with the objective of reducing
the inaccuracies in the SOC estimation caused by variations in external conditions and
battery self-discharge. Data gathered from LiFePO4 batteries used in various experiments
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were used to gauge the method’s performance. In order to estimate the SOC in LIBs online,
the Adaptive UKF (AUKF) was presented by the authors in [87]. One benefit of this method
is that it allows for adaptive correction of the noise covariance in both the process and
measurement state. Additionally, due to the ZSH model’s straightforward design, this
strategy may be put into practice quickly and with minimal resources. The comparison
analysis conducted on the algorithms EKF, AEKF, and UKF demonstrates that the AUKF
model exhibits superior performance and accuracy.

4.2.4. SKF Methods

Another alternate approach for evaluating states in a non-linear system is SPKF. With
a small number of functions, SPKF outperforms EKF in terms of its mean and covariance
accuracy. The method selects the number of sigma points that perfectly match the mean
and covariance values of the model that is being built. This model has the same computa-
tional difficulty as EKF without taking Jacobian matrices into account, which is a benefit.
Additionally, the original function and derivatives do not need to be computed by the
model. In [88], three model-based algorithms, SPKF, EKF, and the Luenberger observer,
were evaluated for their ability to estimate the SOC for LiFePO4 batteries. According to the
experimental findings, SPKF increases the SOC estimation’s accuracy while taking battery
tracking precision and resilience into account. Since SPKF does not need the computation
of Jacobian matrices, it also provides stability in numerical computations.

4.2.5. PF Methods

The estimation of states is conducted with the PF algorithm, which employs the
Monte Carlo simulation technique by employing a non-Gaussian distribution and arbitrary
particles to approximate the PDF of a non-linear system. Two methods for the estimation
of SOC using PF were developed by Gao et al. [89]. The relationship between the SOC
value and the variable discharge current is described by the process model, whereas the
relationship between the SOC, the discharge current and the temperature on the battery
terminal voltage is depicted by the measurement model. The simulation results show the
suggested approach to be effective, since it has a calculation time that is six times quicker
than EKF. In their study, He et al. [90] introduced the UPF method as a means of measuring
the SOC in high-power LIBs. When developing a new model, several factors are considered,
including the temperature, charge/discharge rate, drift noise, and operating miles. UPF
has a superior performance to UKF in numerical calculations, as shown by a reduction of
30.2% in the RMSE and 12.6% in the Maximum Absolute Error (MAE).

4.2.6. H-∞ Methods

The H-∞ filter takes into account the dynamic parameter of the battery and does
required the awareness of any details regarding the characteristics of measurement and
process noise. It is a straightforwardly constructed model with significant resilience to
functioning in certain circumstances. However, the accuracy of the model might be affected
by ageing, hysteresis, and temperature impacts. For the purpose of estimating a lithium-ion
battery SOC, an H-∞-based approach is introduced in [91]. The analysis of a second-order
RC filter circuit included the consideration of time-dependent properties. In order to
obtain parameters of the model like voltage, current, and resistance, a Hybrid Pulse Power
Characterization (HPPC) experiment was run. The suggested model was tested using six
Urban Dynamometer Driving Schedule (UDDS) cycles and improved the accuracy of the
battery, with a respectable SOC estimate error of 2.49%. The SOC of a LIB was estimated
using a universal linear model in [92] that used an adaptive H-∞ filter (AHF). Since the
process of charging and discharging in each cycle is connected to both free parameters and
the SOC, some of the model’s parameters were taken into account as a function of SOC.
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4.2.7. RLS Methods

RLS is a valuable technique that finds use in time-varying systems. The adaptive
dynamic model parameters are calibrated by the algorithm using the forgetting factors. In
reference [93], a proposed approach is presented for estimating the SOC using a recurrent
neural network (RNN) that is based on an adaptive model. With the aid of the forgetting
factor, the RLS method is utilized to predict the model parameters for calculating SOC. The
predicted value of SOC is afterwards matched to the actual value, revealing that the model
exhibits strong performance, with a peak error of 1.032%.

4.3. Non-Linear Observer Method
4.3.1. SMO Methods

To ensure the strength and resilience of the system over disturbances and the uncer-
tainty of the model, SMO has been used to improve tracking control. The state equation is
used to create the output state for the model, which is then broken down into the viewer’s
equations in the subsequent step. To ensure the resilience features, the sliding regime is
controlled by feedback switching gain. Kim et al. [94] established a technique for SOC esti-
mation of a battery by using a simple RC circuit and an SMO. The suggested methodology
effectively controlled the convergence time when subjected to a high charge/discharge
value. The resilience of the model was significantly enhanced, resulting in its successful
performance even in the face of uncertainties and disruptions. The processes underwent
validation utilizing the UDDS, and the results revealed that the SOC inaccuracy was below
3%. Chen et al. [95] used the Adaptive Gain SMO (AGSMO) method on a composite ECM
to approximate the SOC. The extraction of model parameters was performed based on the
battery pulse charge, while the circuit model and terminal voltage were used to generate
the state equations. The SOC is calculated using a battery ECM in [96] based on AGSMO.
Both urban and suburban locations were used for validation tests, and the findings showed
promise in terms of the SOC error, which was less than other traditional methods based
on SMO. An improved SMO was suggested in [97] for estimating the SOC of liquid-metal
batteries. First, the forgetting factor RLS approach was used to determine model param-
eters across the entire working range based on a combined ECM. To effectively examine
the linear correlation between the SOC and the OCV, a direct differentiation method was
proposed. In [98], to obtain a precise estimation of SOC, the study used a Terminal SMO
(TSMO) technique that was founded on a hysteresis RC ECM. In [99], a new estimation
approach for LIB SOC is presented. A fractional-order SMO was presented to estimate the
SOC and voltage based on the equivalent Thevenin model, and the stability evidence was
provided. This method exhibited a superior accuracy and robustness to the widely used
KF method.

4.3.2. PIO Methods

PIO is an effective control technique that has been used extensively to replace feedback
control systems. This controller’s job is to rapidly and accurately converge the predicted
voltage to the actual voltage. An LIB RC battery model was created by Xu et al. [100] for
the purpose of estimating the SOC using PIO. The battery model’s observability matrix was
then created in order to reconstruct the state variables. Using a test workbench, the battery
model was determined from the SOC–OCV relationship. Additionally, the suggested model
was authorized using the UDDS driving cycle, and the outcome of study indicates that the
error is restricted to 2% when in comparison with known and unknown SOC situations.
In [101], a multi-level PIO-based rapid estimation technique for battery impedance and
SOC was discussed. The system compensation factor was then added to the observer to
dynamically alter the battery model’s parameters as the observer model reflected changes
in the battery state characteristics through dynamic impedance. The experiment, known as
the compound DST, served to validate the algorithm’s efficiency. An enhanced adaptive
PIO is suggested in [102] to further improve the accuracy of the estimation of charge state.
Battery settings were updated in real time based on the charge level and error feedback. In
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this work, the battery model was discussed, together with the development of an enhanced
adaptive PIO. To test the approach, a first-order RC model was created in MATLAB.

4.3.3. NLO Method

Numerous observers, both non-linear and linear, have been utilized to determine
the state [103–105]. Although the linear observer is frequently utilized, its employment
increases the SOC estimation’s error. Xia et al. [106] suggested an NLO-based SOC estimate
approach for LIBs. The ninth-order polynomial and state–space equations were used to
estimate the SOC from OCV. The model was verified via the use of an urban driving cycle
test and discharge test. The outcomes indicate that the proposed approach outperforms
both the EKF and SMO in terms of its accuracy, convergence speed, and computing cost.
The development of a nonlinear observer with terminal voltage feedback injection (VFNO)
is described in reference [107] for the purpose of monitoring the SOC of LIBs. This observer
is based on the electrochemical single-particle (SP) model. The use of the Lyapunov stability
theory was employed to establish the convergence of the SP-VFNO system, accounting
for the presence of measurement error. The battery testing system measures the current,
SOC reference and the terminal voltage value. The results of the experiments show that
the suggested SP-VFNO approach is superior, with a quicker rate of convergence and an
improved prediction precision, which can aid in the correct estimation of the SOC for BMS
in real-world applications.

4.4. Learning Methods
4.4.1. NN Method

An intelligent mathematical tool known as an NN can demonstrate a complex nonlin-
ear model due to its adaptability and capacity. In order to construct the NN network of
LiFePO4 batteries, the NN requires inputs of the discharge current, terminal voltage, and
temperature, and the outputs of the SOC. This method has the benefit of being able to oper-
ate in non-linear battery scenarios when the battery is being charged or discharged. Still,
the method maintains a lot of data for training, which overloads the system and necessitates
a lot of memory storage. In order to allow for the impact of hysteresis OCV, Chen et al. [108]
proposed an EKF-based battery model. After that, NN and EKF were combined for the
SOC estimation. The projected conjunction model performs best in regard to estimation
accuracy, with an error of less than 1%. For identifying a suitable NN model, the inputs
used include the voltage at the present state, the SOC, and the current. Additionally, the
output of interest is the voltage, as shown in reference [109]. The trained model is converted
to a collection of state–space equations, after which the SOC is calculated using the EKF
method. The capacity estimation of LIB is proved via the use of charge–discharge tests
and back-propagation neural networks (BPNNs) [110]. The model employs capacity as the
dependent variable, while the discharge current and voltage are included as independent
variables. Additionally, the RBFNN is a practical mathematical approach for calculating
the SOC if the system has partial data. In terms of efficiency and precision, this method is
extremely good for designing a battery model.

4.4.2. BPNN Method

The most common variety of ANNs is the BPNN. BPNNs are often used in the estimate
of a SOC because of their remarkable properties [111]. SOC estimation is characterized
by a nonlinear and extremely complex association between the target and input [112].
A battery’s recent history of voltage, current, and ambient temperature are used by the
ANN-based SOC indicator to estimate the current SOC [113].

4.4.3. ANN Method

An ANN, a nonlinear map displaying a complex nonlinear model can be created using
the NN approach [114], which has exceptional potential. The calculation of SOC in this
study was based on an OCV approach, utilizing a dual NN fusion LIB model. Specifically,
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the linear neural network LIB simulation was employed to determine the parameters of
ECM. Additionally, a second BPNN was utilized to establish the relationship between
OCV and the SOC [115]. An additional advancement in BPNN led to the creation of a
method that enhances prediction accuracy and robustness by combining Particle Swarm
Optimization (PSO) and principal component analysis [116]. The overfitting of the model
was suppressed by employing a load-classifying NN model for predicting SOC [117].
A NLO constructed using an RBFNN and employing a complete ECM has also been
presented [117]. In the field of SOC estimation, a nonlinear autoregressive with exogenous
input-based NN was proposed by Lipu et al. [118]. In recent times, a recurrent nonlinear
autoregressive NN with external inputs was introduced by Hannan et al. [119], and it used
a search procedure to improve SOC estimation. PSO was used to determine an SOC using
the Levenberg–Marquardt optimized multi-hidden layer nonlinear neural network model,
suggested by Xia et al. [120]. To describe LIB dynamics and estimate the SOC, a stacked
LSTM recurrent neural networks was developed [121]. Despite the original SOC being
wrong, the method quickly estimates the true SOC. Recently, a similar strategy that used
transfer learning to quicken NN training, and a rolling learning technique to incorporate
SOH influence, was presented [122]. This method produced precise predictions under
many circumstances, making it simple to apply a well-trained model to batteries with
related chemistries. Chen et al. [123] made more strides by utilizing a moving horizon
estimate and an autoregressive LSTM for SOC estimation. The authors made additional
progress by utilizing a moving horizon estimate and an autoregressive LSTM network
for SOC estimation. This method’s suitability for SOC estimation in cases of ambiguity
or significant departures from the initial SOC, even when the original SOC turned out to
be inaccurate, was examined. Recently, a similar strategy that used transfer learning to
speed up NN training and a rolling learning technique to incorporate the SOH influence
was described. The technique produced accurate estimation under many circumstances,
making it simple to apply a well-trained model to batteries with related chemistries.

4.4.4. RBFNN Method

The RBFNN, also referred to as RBF, is a representative network used for local approx-
imation. The RBF network consists of three layers. As a fixed link between the input layer
and the hidden layer, a weight of 1 is set up. The hidden layer consists of a collection of
radial basis functions. Through the use of a nonlinear transformation in the basic functions,
the input space may be converted into a new space. The output layer nodes in the new
space are a result of the linear weighted combination, where the parameters of the RBF
include the associated centre vector and width. In general, the hidden-layer nodes exhibit
the same radial function. However, there are various forms of radial functions, and the
Gaussian function is commonly utilized as a typical basis function due to its radial symme-
try. The weight vector between the input layer and hidden layer defines the centre vector
of the basis function. As a result, the hidden layer demonstrates a clustering effect on the
input samples. An effective estimating technique for systems with insufficient information
is the RBFNN. The use of this method allows for the investigation of the relationships
between a primary sequence and the remaining comparative sequences within a specified
collection. SOC estimation has made use of the RBFNN. In the study referenced as [124],
the RBFNN SOC estimation approach was used to approximate the SOC of a battery across
different discharging scenarios. This method relies on input data like the terminal voltage,
discharging current, and battery temperature. In reference [125], the author presents a
concise neural model based on RBF for the purpose of estimating the SOC of lithium
battery packs. To begin with, the fast recursive algorithm (FRA) was used to choose an
appropriate input set that exhibits a significant correlation with the package SOC. This
input set was derived from the direct measurements of temperature, current, and voltage
data. Furthermore, RBF neural model was developed to estimate the SOC of a battery
pack. The model employed the FRA technique to eliminate unnecessary hidden-layer
neurons. Subsequently, the use of the PSO technique was employed to optimize the kernel
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parameters. In this research, three models were used for the estimation of a battery SOC: a
traditional RBFNN model, an enhanced RBFNN model using the two-stage approach, and
a least-squares SVM model. This comparative analysis aims to evaluate the performance of
these models in estimating the battery SOC.

4.4.5. FL Method

The use of FL in the modelling of intricate and nonlinear systems has been shown
to be very efficacious. In [126], the authors describe the development and testing of a
workable method for calculating the SOC of a battery system. Data generated using CC and
impedance spectroscopy methods were analysed using fuzzy logic models in this method.
For usage with lithium-ion batteries in portable defibrillators, an FL-based SOC estimation
approach was created in [127].

4.4.6. SVM Method

A cluster of supervised learning techniques called a support vector machine utilizes
kernels for several kinds of learning tasks. A SVM may exceed traditional neural networks
since they are dependent on the structural risk-minimization principle. Nevertheless,
this method has drawbacks, including an expanding modelling size and a single output
structure. According to observed results, an improved SVM for the regression-based
SOC estimation procedure has been proposed. This approach is simple and reliable in
comparison to artificial neural networks. As an alternative, adaptive UKF and least-square
SVM (LS-SVM) have been used for the approximation of battery SOC, where the LIB model
might be accurately generated and adjusted even with a small number of training samples.
The model transfers the input data x into a high dimensional feature space through non-
linear mapping. Wu et al. [128] stated the equations of SVM with a sample of N points
{xk, yk}, where input and output vectors are denoted as xk ∈ Rn and yk ∈ Rn, respectively,
which are calculated using Equation (6):

y = α× β(x) (6)

where α represents the weight vector, which has the same dimension as the filter space. β(x)
denotes the mapping to a feature space with a certain dimensionality, while s represents the
expression of bias. One notable benefit of this methodology is in its capacity to efficiently
and accurately estimate the SOC via the use of suitable training data, especially in scenarios
involving non-linear and high-dimensional models. The model, however, contains a lot of
really complex computing. Furthermore, a model’s parameters must be modified through
a process of trial and error, which is likely to take a lot of time. The SVR algorithm, in [129],
is used to estimate the SOC of LIBs with a large capacity. While the battery is being charged
or discharged, a few independent variables, namely temperature, current, and voltage, can
be utilized for obtaining the model’s parameters. SOC’s outstanding precision is supported
by the model, which has an estimated coefficient value of 0.97. When determining SOC,
LSSVM-based SOC takes into consideration the correlation between the voltage, current,
and temperature in [130]. The evaluation tests reveal that the model can quickly and
precisely calculate SOC while being able to bear noise. SOC was predicted by using the
weighted least squares support vector machine (WLS-SVM) methodology in [130], where
it was hypothesized that SOC and the voltage, current, and temperature have a similar
relationship. Experiments were used to validate the strategy, and findings indicated that
less complex calculation improves resilience.

4.4.7. GA Method

The GA has been shown to be a successful method in the domains of engineering,
physics, and mathematics for the purpose of identifying the optimum nonlinear system
parameters. Its primary aim is to optimize the parameters in order to increase the efficiency
of the system. In their study, Zheng et al. [131] put forward a hypothesis regarding the
charging cell voltage curves (CCVC) as a means of estimating the capacity of a LiFePO4
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battery. They used a simplified ECM including a voltage–capacity rate curve (VCRC) for
this purpose. Many LiFePO4 cells connected in series were used to test the model, and the
results demonstrated that the error was less than 1%. In their study, Xu et al. [132] used an
RC model to estimate the SOC of a LIB. This estimation was achieved by a combination of
the CC approach and a model-based SOC estimation method.

4.4.8. DL Method

The comprehension of SOC estimation has improved because of deep learning (DL)
techniques. Because of its excellent capacity for self-learning, the LSTM network [133]
offers a good SOC estimate performance. An LSTM network is used to calculate a battery’s
SOC using the observed voltage, current, and temperature. Additionally, DNN [134] takes
the use of the battery’s temperature and converts it into weights of DNN to produce a
viable estimate across a different range of temperatures. A GRU [135] was used to assess
the performance of two popular lithium-ion batteries and determine the battery SOC at
various temperatures. In contrast to a conventional FFNN, the RNN uses hidden nodes
to retain data about earlier inputs, enabling the SOC estimate to take this knowledge into
account. RNN variations like LSTM and GRUs increase the basic RNN’s capacity for long-
term reliance. A CNN is a further effective deep learning research architecture. The CNN
uses convolutional behaviour in a specific way to extract connections between input data,
but the LSTM specifies long-term dependence and can handle time series data. A mixed
CNN–LSTM network was suggested [136] to represent the complicated battery dynamics.

4.5. Hybrid Method

The advantages of each SOC estimate approach are combined by hybrid models,
which provide globally optimal estimation performance. Comparing hybrid techniques to
individual techniques, the collected works show that hybrid methods typically result in a
good estimation of SOC.

4.5.1. Combination of CC and EMF Method

A novel approach for estimating the SOC has been developed and integrated into a real-
time estimate system [137]. This technique involves a combination of direct measurement
and battery electromotive force measurement during the equilibrium phase, as well as
estimation by CC during the discharge phase. In the course of cycling, any battery will lose
capacity. A straightforward Qmax adaptation approach is presented in order to accurately
compute the SOC and the remaining run-time and to enhance the SOC estimation system’s
capability to handle the ageing impact. The system’s maximum charge is indicated here
by Qmax. This method takes advantage of the charge state’s steady conditions in order to
adjust Qmax for the ageing impact. Given that batteries lose capacity when they are cycled,
it is inferred that the Qmax adaptation technique will significantly improve the accuracy of
both the SOC and RRT estimation.

4.5.2. Combination of CC and KF Methods

To obtain the approximate beginning value to converge to its genuine value in this
case, the Kalman filter approach is employed. The SOC is then estimated for the lengthy
operating period using the Coulomb counting approach. In comparison to the actual SOC,
the SOC estimation error is 2.5%. Using the Coulomb counting approach is favourable in
comparison, with an estimation error of 11.4% [138]. Table 3 describe the merit and demerit
of SOC estimation methods.
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Table 3. Merit and demerit of SOC estimation methods.

Estimation Method Merit Demerit

Direct Measurement
Method

OCV

The design of the system is characterised by
its simplicity, which contributes to its ease of

use. Moreover, the system exhibits a high
level of accuracy in its estimation capabilities.

The prolonged duration of retention and the
presence of hysteresis.

IR
The hypothesis is characterised by its

simplicity and demonstrates a high level of
anticipated precision.

The equipment used for resistance testing
incurs significant expenses. The internal
resistance has a low value, with a narrow

range of variation, and is significantly
influenced by temperature and the number

of cycles.

Learning Algorithms

NN

There is no need for a battery model that has
substantial variability in processing
capability, as well as the capacity for

self-learning, and the ability to detect the
SOC in real time.

The number of samples has a significant
influence on the outcomes of training, with

samples exerting a greater effect on the
duration of the learning process and the level

of sampling effort required.

SVM

The method exhibits a high level of
generalizability, since it is not contingent

upon the specific battery model. Moreover, it
demonstrates favourable estimate accuracy
and speedy convergence time, particularly

when used to small datasets.

The degree of precision in estimating is
mostly contingent upon the availability of a
substantial quantity of sample data and the
appropriate assignment of weight factors.

DL

The system has exceptional capabilities in
terms of generalization, parallel processing,
and estimation. The final result exhibits a

great degree of accuracy and stability.

The process of training a model is intricate,
requiring substantial computer resources and
careful design. Additionally, it is susceptible

to the problem of over-fitting.

GA
The system has a high degree of parallel

operation, demonstrating self-adaptation, as
well as exceptional resilience.

The methodology used exhibits a high level
of intricacy, resulting in a rather sluggish

global search rate and a propensity to
become ensnared inside the confines of the

local optimum.

Adaptive Method

KF

In terms of inaccuracy, it exhibits a high level
of estimating accuracy, regardless of the

initial SOC, and has a commendable ability
to resist interference.

The precision of the estimate is contingent
upon the quality of the model, and is notably

influenced by temperature, while being
constrained to linear systems.

EKF

This solution is appropriate for non-linear
systems, as well as operational environments
characterized by significant fluctuations in

current.

Neglecting higher-order terms during the
linearization process leads to a considerable

discrepancy and diminished resilience.

DKF
The estimate accuracy is of high quality,

leading to an effective reduction in system
and model noise.

The magnitude of computational tasks is
substantial, and the process of computation

is time-consuming.

UKF
The use of this approach is advantageous for
nonlinear systems as it effectively mitigates

faults arising from linear systems.

The presence of anomalous disturbance and
uncertainty in the initial value contribute to
the divergence of the system, resulting in a

low level of resilience.

Adaptive
Kalman

filter

The system has the ability to consistently
estimate its status in real time and make

adjustments to account for the impact of noise.

The hypothesis of zero mean noise and
variance are expected to be identified, but the

measured value may exhibit variations.

Particle
filter

The proposed approach is not subject to the
linear and Gaussian assumptions imposed by

the model, and it exhibits minimal
constraints.

The precision of the estimate exhibits
instability, and there is a likelihood of

occurrence of particle depletion events.
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4.6. Challenges of SOC Estimation

The diverse and intricate elements that affect battery SOC are numerous. Numerous
methods have been put forth by academics to estimate SOC; however, neither accuracy nor
applicability are still guaranteed. There are two primary issues that exist within this domain.
The first difficulty involves enhancing the accuracy, robustness, and effectiveness of the
SOC estimate, while simultaneously avoiding an increase in the difficulty of estimation
methods. The second challenge pertains to decreasing the difficulty of the estimate process,
hence facilitating its execution in hardware. The two issues exhibit a mutual dependence
on one other, rendering them incapable of being resolved in isolation. The primary goal
is to achieve a harmonious equilibrium between precision and computational intricacy in
the techniques used for estimating the SOC while adhering to the principle that simplicity
is preferable. In order to accomplish this objective, it is necessary to devise strategies
aimed at mitigating or substantially diminishing the origins of imprecision within the
SOC estimation approaches. This review identifies the main sources of errors in SOC
estimation. These sources include (1) sensing noise with a zero-mean, which is an inherent
characteristic in real-world applications; (2) errors in battery models used for estimation;
(3) assumptions made regarding parameters in optimization processes; and (4) unidentified
error sources that may arise from unknown causes or the combination of aforementioned
errors. Table 4 describes the challenges of SOC estimation methods.

Table 4. Challenges of SOC estimation methods.

No. Challenges Causes Impacts Remedy

1 Hysteresis
Characteristics

The key contributing
components are concentration
polarisation, electrochemical

polarisation, and ohmic
resistance.

The SOC is more valuable
when it is charging than

when it is draining.

According to a recommendation
[139], the use of the OCV-SOC

hysteretic relationship of LiFePO4
batteries is advised for the

estimation of SOC. In order to
enhance the precision of estimates

in the presence of hysteresis,
researchers have developed the
Dual IIM (invariant imbedding

method) technique [140].

2
The monitoring of

battery health presents
many challenges

The complex electrochemical
phenomenon underlying the
functioning of a battery. The
presence of signal noise and

interruption may significantly
affect the accuracy and

reliability of measurements.

Measuring battery
parameters directly
presents challenges.

A proven prognostic model was
created with the intention of

gathering the variables constantly
from a specified test cycle under
controlled circumstances [141].

3 Cell unbalancing

Every individual battery cell
has distinct manufacturing and

chemical characteristics that
can undergo alterations

throughout the processes of
charging and draining.

The consequences of
overcharging include

distortion, leakage, and a
rise in pressure in

lithium-ion batteries.
Over-discharge might lead

to a reduced life cycle.

It is possible to suggest an efficient
cell balancing method with active

and passive components [142].

4 Battery modelling

The development of a battery
model poses significant

challenges due to the intricate
electrochemistry involved and

the dynamic nature of the
surroundings.

Cannot function under
situations of dynamic load
and automatically change

model parameters.

The proposition of an improved
self-correcting (ESC) model is

feasible, and involves a
higher-order RC model [143].
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Table 4. Cont.

No. Challenges Causes Impacts Remedy

5 Communication
method

Because charging mechanisms
vary, it is challenging to create

a standard charger.

Lack of a standard charger
could make it difficult to

charge a battery.

Information may be sent between
a battery and a charger via
wireless technology [144].

6 Charge and discharge
rate

Phase diffusion is a significant
factor that restricts a high

discharge current in plastic
LIBs.

Influences the density of
the electrode and the

electrolyte as well as the
transfer of charges

The permissible lithium-ion
battery charging and discharging
current range is specified [145].

7 Aging

Result of declining capacitance
and internal resistance. The
properties of the electrolyte,

anode, and cathode, as well as
irreversible changes in the

components’ structural
makeup, are additional

considerations.

Battery fire results from
dendrite formation.
Unexpectedly rising

temperature results in
catastrophic failure.

The NESPM model is created to
address the impact of ageing

resulting from the formation of the
SEI layer [146]. A model is

proposed in this study to evaluate
battery health indicators by

optimizing a single parameter as
batteries age [147].

8 Estimation of
maximum capacity

Discharge processes do not
always take place at consistent
cut-off voltages or at the same

discharge currents.

An inaccurate assessment
of maximum capacity
might have a negative

impact on the SOC
accuracy.

The authors propose the use of a
hardware-in-the-loop (HIL) and

the Recursive Least Squares (RLS)
technique as approaches to

estimate the SOC for
electrochemical polarization (EP)

batteries [148].

9 Temperature
Resulting from a drop in

viscosity and an increase in the
electrolyte’s activity.

An increase in battery cell
resistance is caused by

rising temperatures. The
capacity of batteries

diminishes as the
temperature drops.

The determination of the ideal
temperature and charging rate

range for lithium-ion batteries has
been documented [149].

10 Self-discharge

The phenomenon of
self-discharge in lithium-ion

batteries may be attributed to
the generation of SEI and the

depletion of lithium ions
inside the battery system.

The gradual dissipation of
charge occurs due to

factors such as the storage
length, ambient

temperature, and cycle
periods.

The prediction-error minimization
method is used to provide an ECN

model during the discharge
process [125].

4.7. Key Issue and Future Work

Major concerns and upcoming work a variety of methodologies have been shown to
be successful in calculating the SOC condition of LIBs, according to the thorough study in
Section 4. To increase estimation accuracy and calculation efficiency for online applications,
though, significant progress is still needed. The accurate tracking of SOC in practice is
vulnerable by a number of issues since it is a dynamic coupling system.

Future work and important concerns for online SOC estimation. As shown in Figure 7,
five viewpoints are used to highlight the challenges and future prospects for SOC estimation
from the literature.
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4.7.1. Estimation Errors

First of all, no model can accurately capture the non-linear behaviour of LIBs. The
hysteresis effect, for instance, makes modelling more uncertain. In order to recreate the
dynamics of the battery, a more precise model must be created using the genetic multi-
physical modelling technique. Second, in the case of identifying model parameters, the
effectiveness of state estimation can be hampered by erroneous values. However, existing
Parameter Identification Methods (PIMs) like RLS and Particle Swarm Optimization (PSO)
have been shown to be efficient. Thirdly, measurement noise is produced by sensors that
measure things like temperature, current and voltage. Finally, as was previously described,
the estimating methods also include processes and noise from measurements throughout
online applications. It is therefore necessary to enhance or integrate the existing estimating
techniques to reduce system mistakes for accurate SOC estimation.

4.7.2. Discrepancies between Laboratory Experimentation and Real-World Application

Still, the majority of investigation for estimating battery SOH and SOC is in the testing
stage. In practice, some influencing elements like fluctuating ambient temperature and
computational performance have a significant impact on estimating battery SOC and SOH.
The LIBs in charging systems or EV operate under challenging settings, with frequent
changes in the outside temperature. Since temperature has a substantial impact on the elec-
trochemical dynamics of LIBs, there is a big gap between laboratory study and real-world
application. Hence, especially for model-based procedures, the fluctuating thermal data
must be taken into account in state estimation methods or battery modelling. Model param-
eters for model-based approaches must be timeously updated under different operating
circumstances. The actual parameter modification will consequently surely make BMS’s
computations more difficult. Hence, it is required to perform a sensitivity analysis of the
parameters of the battery model with various SOCs in order to identify the key factors that
are extremely sensitive to the accuracy of the prediction state. The computational burden
of the online application can be decreased by maintaining other insensitive parameters at a
constant value or updating them less often. Future research should, therefore, concentrate
on SOC and SOH estimation, taking into account the crucial variables of temperature and
computing load, as this enables the engineering implementation of laboratory approaches
in practice.

4.7.3. Joint Estimation

Specific SOC estimation has been projected using different methods. Limited research
has been devoted to the precise integration of SOC estimates. The attainment of somewhat
accurate findings can only be achieved by the individual evaluation of each component
while disregarding the influence of others. Given the inherent complexity of batteries as
dynamic systems, it is important to acknowledge the presence of several interconnected
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states, such as the interplay between the SOC and other relevant factors. Specifically, due
to the substantial impact of capacity degradation on the parameters used in model-based
approaches for SOC estimation, the precise forecast of the SOC should be linked to the
variation in SOH. Additionally, the accurate beginning number for SOC monitoring can
be provided by the dependable SOH estimation. Keep in mind that a joint estimation can
result in a higher computational load than a single stage estimation. A promising but
difficult effort is the correct co-estimation of SOC. As a result, the future is moving in the
direction of more precise and computationally efficient uses of sophisticated methods.

4.7.4. Various Uses

LIBs are being used extensively in EVs because of dependability and a large energy
density. While many methods have been established expressly for the estimation of LIBs,
the majority of the cutting-edge strategies show low generality when used with different
LIB applications. On the one hand, the approaches currently in use focus more on the cell
battery than they do on battery modules or battery packs. Realistic meanings in practice
include addressing the batteries’ unreliability and offering a precise battery pack. The
accurate estimating methods must be investigated for these various applications since, on
the opposite end of the spectrum, the LIBs in EVs hold diverse functioning conditions. The
battery’s deterioration and the discharged batteries make the battery’s performance more
unpredictable and unstable. Therefore, it is crucial to build estimation techniques for the
second-hand use of old batteries in various industries. To put it simply, significant research
is still needed to increase the consistency and precision of state estimate algorithms used in
various LIB applications.

4.7.5. Data-Driven Method

Data-driven methodologies have drawn more focus for the state estimate of LIBs as a
result of the development of cloud technology and the accessibility of massive volumes
of data monitoring. Based on self-learning properties, data-driven approaches are better
able to record the nonlinearity than model-based approaches. It is essential to strengthen
two crucial directions, algorithm enhancement and feature selection, or increase the re-
silience and dependability in order to obtain good performance in actual applications.
One way to obtain the real-time and efficient monitoring of several batteries in use is to
build smart cloud computing solutions. The real-world data also include complicated
operational circumstances, which can help state prediction in practice be more accurate.
On the other hand, the training features have a significant effect on how well a machine
learning approach functions. The extraction of useful features from a variety of sensor
data, including acoustic–ultrasonic, current, temperature, voltage and EIS signals during
charging or discharging phases, is therefore crucial. The time taken for estimating SOC
must be decreased to achieve online estimation. This necessitates a minimal number of
carefully chosen training variables; hence, the development of sophisticated online adaptive
learning algorithms with less input is imperative. Combining intelligent approaches with
a battery model to account for battery dynamics may be a smart idea in order to increase
estimation accuracy. Data-driven approaches should, therefore, be improved in order to
encourage the use of machine learning technologies in real-world settings.

5. Conclusions

Prospective SOC estimate systems for EV batteries were examined in this study, with
an emphasis on the last few years’ worth of advancements. For SOC estimation, direct
measurement methods, adaptive methods, a non-learning observer-based method, learning
algorithms and hybrid methods were explored. Finally, the most important concerns and
future research were suggested for the practice of the SOC estimation of LIBs. When used
in practice, the existing online estimating techniques still have a lot to learn. On the one
hand, the battery state estimation is significantly impacted by big mistakes in the battery
model and measurement devices. Additionally, as these approaches are often created using
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laboratory data, a big gap exists between the lab and actual implementations. Because
the battery is a nonlinear and dynamic electrochemical system, its status may be readily
influenced by a variety of parameters such as the ambient charge–discharge rate and
temperature, which makes state assessment in practice more challenging. The complexity
of the computations required by data-driven- and model-based approaches, particularly
when used with battery packs, surely adds to the computing burden. This review offers the
following advice on how to get through the difficulties:

• A more realistic model that can adapt to the real-world environment’s complexity may
be created using the genetic multi-physical modelling approach in conjunction with
comparable circuit modelling, temperature, and electrochemical analysis.

• There is a need to enhance the computational efficiency, estimation accuracy, and
practical applications of parameter determination techniques.

• To increase estimation accuracy, coupled SOH and SOC estimation algorithms can be
created. To accomplish a quick state estimation, it is specifically recommended that the
EIS model-based and data-driven-based approaches be supplementarily investigated.

• In order to enable the batteries in various applications, such as the battery pack in
electric vehicles and charging systems, estimate techniques should be created.

• To enhance the estimation of accuracy and efficiency using data-driven approaches,
it is important to investigate efficient estimation techniques and feature selection
based on sample data. And it is hoped that the big data platform-based data-driven
methodologies will be created to enable real-world applications.

In conclusion, developing an SOC estimation taking into account the real-world ap-
plications of LIBs is still a popular study area. For diverse application contexts, specific
estimating approaches might be chosen. The future study, development, and implemen-
tation of practical BMS can hopefully benefit from the highlighted significant issues and
standards.
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