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Abstract: Anti-roll and anti-pitch are important directions in the comprehensive research of auto-
mobiles. In order to improve the anti-roll and anti-pitch performance of the vehicle, an inerter was
applied to the vehicle suspension system, and a 14 DOF vehicle nonlinear dynamics model was
established. The influence of the change in inertance in the eight kinds of improved ISD (Inerter-
Spring-Damper) suspension structures on the RMS (root mean square) value of performance indexes
of roll, vertical, and pitch motion of the vehicle was studied. Based on this, the vehicle’s ISD structure
with better performance was selected, and the NSGA-II algorithm was adopted to optimize the
selected structural parameters. The simulation results showed that the four kinds of suspension had-
better comprehensive performance, and their structureswere, respectively, excluding the supporting
spring in parallel, (1) an inerter in series with a spring and a damper in parallel, (2) a damper in series
with a spring and an inerter in parallel, (3) an inerter and a damper in series, and (4) the damper in
parallel with a spring and an inerter in series. The ISD suspension structure had better comprehensive
performance under step steering braking, which was obviously better than the passive suspension,
and effectively improved the vehicle ride comfort, anti-roll and anti-pitch performance. Under the
hook steering braking, the lateral load transfer rate was used to evaluate the vehicle’s anti-rollover
ability. The results showed that the ride comfort and anti-rollover ability of ISD suspension were
better than those of passive suspension. Under the condition of taking into account the anti-pitching
ability, the suspension consists of a supporting spring in parallel with an inerter, and a damper in
series was better.

Keywords: ISD suspension; vehicle model; NSGA-II algorithm; vehicle stability

1. Introduction

The suspension system is an important part of the vehicle chassis, which affects the
stability of the vehicle together with the steering and braking systems [1]. Under extreme
driving conditions such as high-speed obstacle avoidance and low-adhesion road steering,
vehicles are prone to excessive roll or rollover [2]. In urban working conditions with
frequent braking, the car body will produce pitch vibration under the influence of braking
control strategy and suspension parameters, causing discomfort [3–5]. In recent years,
many scholars have devoted themselves to improving the anti-rollover stability of vehicles,
mainly via drive-by-wire steering [6], drive-by-wire control, active suspension [7], and
lateral stabilizer bars [8]. The research on improving the anti-pitch stability of vehicles
mainly focuses on braking and active suspension control [9,10].

In order to determine the optimal suspension parameters to improve the roll and
pitch stability of vehicles, intelligent optimization algorithms are generally used to find the
optimization. At present, the commonly used intelligent optimization algorithms include
genetic algorithms, particle swarm algorithms, ant colony algorithms, simulated annealing
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algorithms, and so on. Hualing Bi [11] improved the searchability of the genetic algorithm
by introducing the tabu mechanism into the genetic algorithm. Heng Wen [12] proposed
a global optimal group search optimization algorithm to improve the performance of the
algorithm by reducing the update times of redundant solutions.

2. Literature Review

To improve anti-roll and anti-pitch stability, Li Shengqin [13] proposed a layered
integrated control strategy for active suspension and differential braking, and the sim-
ulation results showed that the strategy enhanced the anti-rollover stability of the bus.
Zhao Shuen [14] used nonlinear control and fuzzy control to conduct performance research
and designed a multi-level coordinated control system based on multi-level hierarchical
control theory. The anti-lock braking system, semi-active suspension system, and active
front-wheel steering were combined to improve the driving stability of the vehicle. Chen
Long [15] established the lateral dynamics model and the air suspension nonlinear model
and carried out the saddle knot bifurcation analysis on the anti-roll stability of vehicles
under special driving conditions. Huang Kuankai [16] established a dynamic model of
hydraulic interconnected inertial suspension, and the simulation structure showed that the
hydraulic interconnected inerter had significantly improved the anti-roll and anti-pitch
ability of the vehicle, compared with the lateral stabilizer bar and the ordinary hydraulic
interconnected suspension. Lu Shaobo [17] designed a collaborative control strategy of a
braking system controlled by integral sliding mode and a suspension system controlled by
grey mode fuzzy, which improved the anti-roll performance of vehicles compared with a
single control strategy. At present, many scholars have conducted a lot of research on the
use of suspension systems to improve the anti-roll and anti-pitch stability of vehicles, but
the suspension structure is still limited to the traditional “spring-damper” structure and
rarely considered from the new suspension configuration.

Smith [18] proposed an inertial component called the “inerter”, which can effectively
replace the role of mass blocks in vibration isolation performance. By generating inertial
force instead of a mass block, the inerter breaks through the limit of “grounding” of one
endpoint of the mass block, which is also convenient for application in a vibration isolation
system. The inertial force is a linear expression of the relative acceleration of the two
endpoints, expressed as F = b (a2 − a1), where a2 and a1 are the acceleration of the two
endpoints, and b is the inertance of the inerter. Together with the spring and damping,
it forms the ISD suspension system. At present, vehicles’ passive ISD suspension have
been proven to be capable of effectively improving the ride performance of vehicles [19,20],
but there are few studies on the application of the inerter to improve the anti-roll perfor-
mance of vehicles [21]. It can be seen that the inerter has great potential in improving the
anti-roll performance of vehicles. Shen Yujie solves the problem of low-frequency and
high-frequency vibration suppression of vehicles by designing a passive fractional order
electrical network [22] and PDD-based active control design of electromechanical ISD sus-
pension [23]. Literature [21] selected passive suspension, the suspension of a damper and
an inerter in parallel, the suspension of a damper and an inerter in series, and three-element
suspension based on the dynamic vibration absorption principle (all supporting springs
in parallel) built a seven-degree of freedom vehicle model and analyzed the influence of
four suspension structures on vehicle roll. On this basis, a 14-degree-of-freedom model
considering wheel nonlinearity is established, and a vehicle acceleration braking model is
added. The influence of ISD suspension structure on vehicle pitch motion is studied. Ac-
cording to the research results of the literature [21], the improved three-element topological
inertial suspension structure with a supporting spring in parallel is helpful in improving
the roll stability of the vehicle. Therefore, this paper comprehensively considers eight kinds
of improved three-element topological suspension structures with supporting springs in
parallel, adds braking conditions, and analyzes their comprehensive influence on the pitch
stability, roll stability, and vertical stability of the vehicle.
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Therefore, by building a 14-degree-of-freedom nonlinear dynamic model of the vehicle
and taking the improved three-element ISD suspension as the research object, this paper
studied the influence of the inertance of the ISD suspension structure on the ride comfort,
anti-roll performance, and anti-pitch performance of the vehicle via simulation analysis
under the same braking effect. On this basis, the optimal structure is selected for parameter
optimization, and the simulation analysis is carried out.

3. Construction of Vehicle Nonlinear Dynamics Model
3.1. Vehicle Dynamics Model

On the basis of considering the nonlinear dynamics characteristics of the vehicle, the
constructed model is simplified:

(1) Ignore the impact of air resistance and rolling resistance on the car;
(2) Ignore the influence of the steering system and assume that the left and right front

wheel angles are the same as the input variables;
(3) Assume that the center of gravity of the car coincides with the origin of the moving

coordinate system when the car is driving;
(4) Assume that the four tires have the same characteristics.

Figures 1 and 2 are 14 DOF vehicle nonlinear models, including longitudinal, lateral,
vertical, yaw, pitch, roll motion of the vehicle body, vertical jitter of four wheels, and rolling
around the center [24].
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The vertical motion of the body is as follows:

ms
..
zs = Ff l + Ff r + Frl + Frr (1)

The body roll motion is as follows:

Ix
..
ϕ = mt(

.
v + u

.
ψ)h2 + msgh1 sin(ϕ) + (Ff l − Ff r)

w f

2
+ (Frl − Frr)

wr

2
(2)

The pitch motion of the body is as follows:

Iy
..
θ = mt(

.
u− v

.
ψ)h3 + msgh1 sin(θ) + lr(Frl + Frr)− l f (Ff l + Ff r) (3)

The yaw motion of the vehicle is as follows:

Iz
..
ψ = l f [(Fy f l + Fy f r) cos(δ) + (Fx f l + Fx f r) sin(δ)]− lr(Fyrl + Fyrr) +

w f
2 [(Fx f r − Fx f l) cos(δ) + (Fy f l − Fy f r) sin(δ)]

+wr
2 (Fxrr − Fxrl) + (Mz f l + Mz f r + Mzrl + Mzrr)

(4)
The longitudinal motion of the vehicle is as follows:

mt(
.
u− v

.
ψ) = (Fx f l + Fx f r) cos(δ)− (Fy f l + Fy f r) sin(δ) + Fxrl + Fxrr (5)

The lateral movement of the vehicle is as follows:

mt(
.
v + u

.
ψ) = (Fx f l + Fx f r) sin(δ) + (Fy f l + Fy f r) cos(δ) + Fyrl + Fyrr (6)

The vertical displacement equation of the four corners of the car body is expressed as
Zs f l = zs − l f θ + w f

/
2ϕ

Zs f r = zs − l f θ − w f
/

2ϕ

Zsrl = zs + lrθ + wr /
2ϕ

Zsrr = zs + lrθ − wr /
2ϕ

(7)

The movement of unsprung mass is as follows:
mu f l

..
Zu f l = kt(Zr f l − Zu f l)− Ff l

mu f r
..
Zu f r = kt(Zr f r − Zu f r)− Ff r

murl
..
Zurl = kt(Zrrl − Zurl)− Frl

murr
..
Zurr = kt(Zrrr − Zurr)− Frr

(8)

The vehicle ISD suspension force equation is as follows:
Ff l = Y(s)(

.
Zu f l −

.
Zs f l)− k1

2w f
(ϕ− Zu f l−Zs f l

2w f
)

Ff r = Y(s)(
.
Zu f r −

.
Zs f r)− k1

2w f
(ϕ− Zu f r−Zs f r

2w f
)

Frl = Y(s)(
.
Zurl −

.
Zsrl)− k2

2wr
(ϕ− Zurl−Zsrl

2wr
)

Frr = Y(s)(
.
Zurr −

.
Zsrr)− k2

2wr
(ϕ− Zurr−Zsrr

2wr
)

(9)

Tire vertical load change is as follows:

Fz f l = Ff l + mu f l g + msglr
2(lr+l f )

Fz f r = Ff r + mu f rg + msglr
2(lr+l f )

Fzrl = Frl + murl g +
msgl f

2(lr+l f )

Fzrr = Frr + murrg +
msgl f

2(lr+l f )

(10)
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In the above formula, mt represents the vehicle mass; ms indicates the sprung mass;
mu f l , mu f r, murl , and murr are four wheel spring mass; Ix, Iy, and Iz are the moment of
inertia of vehicle body roll, pitch, and yaw, respectively; u denotes the lateral speed of
the vehicle; v represents the lateral speed of the vehicle; ψ represents the yaw angle; θ
represents the pitch angle; ϕ indicates the roll angle; δ represents the front wheel steering
angle; Y(s) is the impedance expression of ISD suspension topology; kt denotes the radial
stiffness of the tire; zs represents the vertical displacement of the body; Zs f l , Zs f r, Zsrl ,
and Zsrr represent the vertical displacement of the sprung mass at the four corners of the
body; Zu f l , Zu f r, Zurl , and Zurr represent vertical displacement of unsprung mass; Zr f l ,
Zr f r, Zrrl , and Zrrr represent road excitation; k1 and k2 represent the roll stiffness of front
and rear suspension; l f and lr represent the distance from the center of mass to the front
and rear wheels; w f and wr denote the front and rear wheel base; h1 represents the distance
between the body’s center of mass and the ground; h2 indicates the distance from the roll
center to the ground; h3 represents the distance from the pitch center to the ground; Ff l ,
Ff r, Frl , and Frr indicate the vertical load of suspension; Fz f l , Fz f r, Fzrl , and Fzrr are the
vertical supporting force of the ground facing the tire; Fx f l , Fx f r, Fxrl , and Fxrr indicate the
longitudinal force of the tire; Fy f l , Fy f r, Fyrl , and Fyrr indicate tire lateral force; and Mz f l ,
Mz f r, Mzrl , and Mzrr indicate the tire righting torque.

The braking model is as follows:
Iwω f l = Tb f l − Fx f l Rw
Iwω f r = Tb f r − Fx f rRw
Iwωrl = Tbrl − Fxrl Rw
Iwωrr = Tbrr − FxrrRw

(11)

In the above formula, Iw represents the moment of inertia of the tire rotating around
the center; ω f l , ω f r, ωrl , and ωrr represent the angular speed at which the tire rotates
around the center; Tb f l , Tb f r, Tbrl , and Tbrr denote wheel-braking torque; and Rw represents
the rolling radius of the wheel.

3.2. Tire Model

The tire model selects the widely used “magic tire formula” [25], whose mathematical
expression is as follows:

Y(x) = D sin{C arctan[B(x + sh)− E(B(x + sh)− arctan(B(x + sh)))]}+ sv (12)

In the above formula, D represents the peak factor; B represents the stiffness factor; E
represents curve curvature factor; C represents curve shape factor; sv represents the vertical
drift of the curve; and sh represents the horizontal drift of the curve.

The tire longitudinal force model is as follows:

Fx0 = Dx sin{Cx arctan[Bx(λ + sh)− Ex(Bx(λ + sh)− arctan(Bx(λ + sh)))]} (13)

In the above formula, λ denotes the longitudinal slip rate of the tire; and when pure
braking, it is λ = u−Rwω

u .
The tire lateral force model is as follows:

Fy0 = Dy sin
{

Cy arctan[By(α + sh)− Ey(By(α + sh)− arctan(By(α + sh)))]
}
+ sv (14)

In the above formula, α indicates the tire side deflection angle.
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The mathematical expression of the four wheels is as follows:

α f l = arctan(
v+l f

.
ψ

u−0.5w f
.
ψ
)− δ

α f r = arctan(
v+l f

.
ψ

u )− δ

αrl = arctan( v−lr
.
ψ

u−0.5wr
.
ψ
)

αrr = arctan( v−lr
.
ψ

u )

(15)

The tire righting torque model is as follows:

Mz = Dz sin{Cz arctan[Bz(α + sh)− Ez(Bz(α + sh)− arctan(Bz(α + sh)))]}+ sv (16)

Under the combined conditions of steering and braking, the mathematical expressions
of the corrected tire longitudinal force and lateral force are as follows:

Fx =
|σx|

σ
Fx0 (17)

Fy =

∣∣σy
∣∣

σ
Fy0 (18)

In the above formula, σ =
√

σ2
x + σ2

y ; σx = − λ
1+λ ; σy = − tan α

1+λ .

3.3. ISD Suspension Model

In this paper, eight improved three-component vehicle ISD suspensions [19] are
adopted, and their structural diagram is shown in Figure 3. In addition to S2 and S6,
a support spring is connected in parallel with the original three-element ISD topology to
ensure suspension performance.
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According to Figure 3, taking L1 as an example, the suspension structure of the
left front wheel of the wheel is selected, where K is the supporting spring stiffness, k f
is the auxiliary spring stiffness, b f is the inertance of the inerter, and c f is the damping
coefficient. The impedance expressions of eight kinds of ISD suspension structures are
presented, respectively.
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The ISD suspension impedance expression of L1 topology is as follows:

Y1(s) =
(K + k f )b f c f s2 + Kk f b f s + Kk f c f

b f c f s3 + k f b f s2 + k f c f s
(19)

The ISD suspension impedance expression of L2 topology is as follows:

Y2(s) =
b f s2 + c f s + K

s
(20)

The ISD suspension impedance expression of L3 topology is as follows:

Y3(s) =
b f (K + k f )s2 + c f (K + k f )s + Kk f

b f s3 + c f s2 + k f s
(21)

The ISD suspension impedance expression of L4 topology is as follows:

Y4(s) =
b f c f s3 + b f (K + k f )s2 + c f Ks + Kk f

b f s3 + c f s2 + k f s
(22)

The ISD suspension impedance expression of L5 topology is as follows:

Y5(s) =
b f c f s3 + b f Ks2 + c f (K + k f )s + Kk f

b f s3 + c f s2 + k f s
(23)

The ISD suspension impedance expression of L6 topology is as follows:

Y6(s) =
b f c f s2 + b f Ks + Kc f

b f s2 + c f s
(24)

The ISD suspension impedance expression of L7 topology is as follows:

Y7(s) =
b f c f s3 + b f k f s2 + c f (K + k f )s + Kk f

c f s2 + k f s
(25)

The ISD suspension impedance expression of L8 topology is as follows:

Y8(s) =
b f c f s3 + b f (K + k f )s2 + c f k f s + Kk f

b f s3 + k f s
(26)

4. Action Law of ISD Suspension Topology
4.1. Pavement Input Model

Reference [26] on the single wheel pavement input model takes white noise as the
excitation source of random pavement input, and its mathematical expression is as follows:

Zr(t) = −2π f0Zr(t) + 2π
√

G0uw(t) (27)

In the above formula, Zr represents road excitation; w(t) is the Gaussian white noise
with a mean of 0; f0 represents the lower cut-off frequency, which is 0.01 Hz; and G0
represents the roughness coefficient of the road surface. The value of the B-class road
surface is 6.4× 10−5 m3.

Assuming that the vehicle is driving in a straight line at the initial speed of 20 m/s, the
road input of the front wheel and the rear wheel are the same, and the rear wheel will have
a wheelbase/speed lag relative to the front wheel. The road excitation at the left and right
wheels is strongly correlated at low frequency and weakly correlated at high frequency.
The road excitation output from the left wheel is intercepted by the design of high and low
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pass filters, and the road excitation output of the right wheel is obtained by adding and
fitting. The road excitation of four wheels is shown in Figure 4.
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4.2. The Influence of Eight ISD Suspension Structures on Vehicle Performance

The main parameters of the vehicle obtained by referring to the experimental vehicle
data are shown in Table 1.

Table 1. Vehicle parameters.

Parameter Value

Vehicle mass mt/kg 1659
Sprung mass ms/kg 1410

Front wheel unsprung mass mufl,mufr/kg 26.5
Rear wheel unsprung mass murl,murr/kg 24.4

Left wheel base wf/m 1.574
Left and right wheel base wr/m 1.593

Distance from front axle to center of mass lf/m 1.278
Distance from rear axis to center of mass lr/m 1.430

Height of center of mass h1/m 0.50
Roll height h2/m 0.40

Distance from center of roll to center of mass h3/m 0.25
Body roll moment of inertia Ix/kg·m2 925

Body pitch moment of inertia Iy/kg·m2 2577
Body yaw moment of inertia Iz/kg·m2 2603

Wheel inertia Iw/kg·m2 0.99
Wheel radius Rw/m 0.345

Front suspension spring stiffness of the original model kf0/kN·m−1 25
Rear suspension spring stiffness of the original model kr0/kN·m−1 22

Front suspension damping coefficient of the original model cf0/N·s·m−1 1800
Rear suspension damping coefficient of the original model cr0/N·s·m−1 1500

Tire stiffness kt/kN·m−1 192
Front suspension roll stiffness k1/N·m·rad−1 47,298
Rear suspension roll stiffness k2/N·m·rad−1 37,311

This paper aims to investigate the effects of ISD suspension topology on vertical, roll,
and pitch dynamic responses under steering braking conditions. The inertial factor is
considered to be the main factor affecting the anti-roll and anti-pitch stability of ISD sus-
pension. By analyzing the linear increase in the inertance, the suitability of ISD suspension
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can be evaluated. Therefore, eight kinds of improved ISD suspension are studied, and the
remaining parameters are kept unchanged. The simulation analysis was carried out only
by gradually increasing the inertance (0~5000 kg) of the front and rear wheels linearly. The
random input model is used as the road random excitation; the road grade is B, the initial
speed is 20 m/s, the steering angle of the front wheel is 6◦ step input, and the clamp brake
is braking under the maximum pipeline pressure. Figures 5–9 show the simulation results;
among them, (a) and (b) are the variation rules of the eight structural performance indica-
tors, and (c) is the local amplification of the variation rules of the performance indicators of
the six results with relatively similar results at (1000~5000 kg).

According to the results, eight kinds of ISD suspension structures are divided into two
groups. The results of L1, L4, L5, and L6 were relatively stable, while the results of L2, L3,
L7, and L8 were relatively volatile.

As can be seen from Figures 5–9, with the increase in inertance, the performance
indexes of L4, L5, L6, and L8 structures in the range of 0–200 kg inertance of the front
wheel significantly decline, and the overall vehicle performance tends to be stable. With
the decrease in the RMS value of pitch angle and roll angle acceleration, it can be seen
that the anti-pitch and anti-roll performance of vehicles can be improved with the increase
in inertance. The vehicle acceleration, suspension working space, and dynamic tire load
decrease significantly, which indicates that the ride comfort of L4, L5, L6, and L8 suspension
structures is improved.
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Figure 5. The variation rule of the RMS value of vehicle body acceleration. (a) The vehicle body
acceleration law of L1, L4, L5, and L6; (b) the vehicle body acceleration law of L2, L3, L7, and L8;
(c) local amplification of the vehicle body acceleration of L1, L4, L5, L6, and L8.
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Figure 6. The variation law of the RMS value of roll angle acceleration. (a) The roll angle acceleration
law of L1, L4, L5, and L6; (b) the roll angle acceleration law of L2, L3, L7, and L8; (c) local amplification
of the roll angle acceleration of L1, L4, L5, L6, and L8.
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Figure 7. The variation rule of the RMS value of the pitch angle acceleration. (a) The pitch angle
acceleration law of L1, L4, L5, and L6; (b) the pitch angle acceleration law of L2, L3, L7, and L8;
(c) local amplification of the pitch angle acceleration of L1, L4, L5, L6, and L8.
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Figure 8. The variation rule of RMS value of suspension working space. (a) The suspension working
space law of L1, L4, L5, and L6; (b) the suspension working space law of L2, L3, L7, and L8; (c) local
amplification of the suspension working space of L1, L4, L5, L6, and L8.
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However, the performance indicators of L2 and L7 structures fluctuate overmuch, and
there is no convergence trend. Among them, the pitch angle and roll angle acceleration
are overlarge, which seriously affects the safety of the vehicle. The performance index
of the L3 structure increases with the increase in inertance. Compared with the original
“spring-damper” parallel structure, the performance index of the L3 structure deteriorates
significantly, which limits the improvement in vehicle driving performance. The perfor-
mance indexes of the L1 structure are higher than L4, L5, L6, and L8, and the dynamic tire
load deteriorates seriously, and the road friendliness is poor, as shown in Figures 5c–9c.
Therefore, L1, L2, L3, and L7 are not selected as optimized structures.

Via comparative analysis, the variation law of vehicle dynamic performance response
indexes of eight kinds of structures under steering braking conditions was obtained. L4,
L5, L6, and L8 structures were selected as the next parameter optimization objects to study
ISD suspension structures with better performance.

5. Optimization of Vehicle ISD Suspension Parameters Based on NSGA-II

Based on the NSGA algorithm, the NSGA-II algorithm [27] adopts a fast, non-dominated
sorting method and elite genetic strategy to speed up the running speed of the program
and uses the crowding degree method to realize the sorting of individuals in the region
and find the optimal result to ensure that the optimal individual has a greater probability
of being retained. Among them, the algorithm parameters selected in this paper are as
follows: the initial population number is set to 200, the evolutionary maximum algebra is
set to 100, the optimal coefficient is set to 0.3, and the stopping algebra is set to 200. The
algorithm flow chart is shown in Figure 10.
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5.1. Optimal Target Selection

The vertical, anti-pitch, and anti-roll stability are mainly considered in the above
steering braking conditions. For the evaluation of vertical stability, the RMS value of
body acceleration is selected as the optimization objective. For the evaluation of anti-pitch
stability, the RMS value of pitch angle acceleration is selected as the optimization objective.
For the evaluation of anti-roll stability, the RMS value of roll angle acceleration is selected
as the optimization objective. In the optimization process, in order to reflect the effect of
the inerter, keep the stiffness of the supporting spring unchanged, and other parameters to
be optimized are X = [k f , kr, c f , cr, b f , br].

The objective function under steering braking condition J1, J2, and J3 are obtained
as follows: 

minJ1 = BA(X)
minJ2 = RA(X)
minJ3 = PA(X)

(28)

where J1, J2, and J3 represent the objective functions of vertical stability, anti-pitch stability,
and anti-roll stability, respectively; BA(X), PA(X), and RA(X), respectively, represent
the RMS values of body, pitch angle, and roll angle acceleration of the ISD suspension to
be optimized.

5.2. Constraint Selection

First of all, the performance indexes for evaluating vertical, anti-pitch, and anti-roll
stability should not be worse than those of passive suspension. Then, in the design of
suspension parameters, considering that the working distance between the wheel and the
body should be limited to a certain range and better grip should be ensured when the
wheel is in contact with the road, the ISD suspension working space and dynamic tire load
are designed to be smaller than those of passive suspension. Therefore, the optimization
conditions are as follows:

st



BA(X) < BApass
RA(X) < RApass
PA(X) < PApass
DTL(X) ≤ DTLpass
SWS(X) ≤ SWSpsss
UB < X < LB

(29)

In the above formula, DTL(X) represents the RMS value of the dynamic tire load
of the left front wheel suspension; SWS(X) represents the RMS value of the suspension
working space of the left front wheel; DTLpass represents the RMS value of the dynamic
tire load of the left front wheel passive suspension; SWSpass represents the RMS value
of suspension working space of the left front wheel passive suspension; UB represents
the lower limit of the optimization target parameter, the values for [0, 0, 0, 0, 0, 0]; and
LB represents the upper limit of the optimization target parameter, the values for [30,000,
30,000, 5000, 5000, 5000, 5000]. The performance indexes of passive suspension are shown
in Table 2.

Table 2. Performance index of passive suspension.

Performance Index RMS Value

Body acceleration/(m·s−2) 0.8684
Roll angle acceleration/(rad·s−2) 0.6338
Pitch angle acceleration/(rad·s−2) 0.4885

Suspension working space/(m) 0.0395
Dynamic tire load/(KN) 0.8771
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5.3. NSGA-II Algorithm Steps

The fast, non-dominated sorting of the NSGA-II algorithm is to sort the individuals
in the population according to the Pareto level. The individuals with Pareto level 1 are
not dominated by other individuals, which is called a non-dominated solution. In the
first round of non-dominated sorting, the number of individuals ni dominated by each
individual i and the set SI dominated by each individual i are recorded via traversal. At
this point, the ni = 0 individual is recorded in the non-dominated set of level 1. Since
the ni and the SI of each individual need to be traversed, the time complexity of a single
target is O(N2), so the time complexity of M targets is O(MN2). In the second round of
sorting, an individual i is removed from the non-dominated solution set of the previous
round, and then an individual j is removed from SI . At this time, ni − 1 is added to the
non-dominated solution set of the next round. If ni = 0, this individual j is added to the
non-dominated solution set. Therefore, the total time complexity of non-dominated sorting
is O(MN2) = O(MN2) + O(N2).

Then, the crowding degree is calculated to establish the poset. The crowding degree
is obtained by the sum of the subgoal differences of the individuals before and after the
individuals. The crowding degree of the individual i in M subgoals is

P[i]distance = ΣM
k=1(P[i + 1] fk

− P[i− 1] fk
) (30)

where P[i] fk
is the value of the individual i subtarget fk.

Then, via the elite strategy, excellent individuals are retained, and their individual sets
are put into the newly generated parent sets according to the Pareto level from small to
large. When the Pareto level is k, and the individual sets with level k are put into the parent
sets, the total number of parent sets is less than the total number of individuals. Then, the
individual sets with level k + 1 are put into the parent sets. If the total number of parent sets
is greater than the total number of individuals, then the crowding degree of all individuals
with grade k + 1 should be calculated, the crowding degree is sorted from small to large,
and a poset is established. The individuals in the partially ordered set are added to the
parent set successively until the total number of individuals is equal, all individuals after
the partially ordered set are eliminated, and all individuals whose Pareto level is greater
than k + 2 are eliminated.

5.4. Optimization Result

After optimization by the NSGA-II algorithm, the component parameters of four kinds
of ISD suspension structures are obtained. The results of parameter optimization are shown
in Table 3.

Table 3. Parameter optimization result.

Suspension Structure kf (N/m) kr (N/m) cf (N·s/m) cr (N·s/m) bf (kg) br (kg)

L4 11,395 17,269 2213 2895 376 4514
L5 28,708 8310 2860 3406 1023 3484
L6 / / 2815 3425 3168 3614
L8 8583 16,313 2971 2421 102 2180

6. Simulation Analysis

In this section, the performance of four selected ISD suspensions is compared with that
of passive suspension. In order to evaluate the integrated performance of inerter to improve
vehicle ride comfort, anti-roll, and anti-pitch, the step steering braking and fishhook steering
braking conditions were selected for simulation. The numerical simulation analysis was
carried out in the Matlab environment, the sampling interval was set to 0.001 s, and the
white noise with zero mean and 20 dB power was selected for the pavement input.
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6.1. Load Transfer Rate

In addition to the roll angle acceleration to evaluate vehicle roll stability, this paper also
uses lateral load transfer rate (LTR) to judge vehicle rollover risk [12], whose expression is

LTR =
Fz f r + Fzrr − Fz f l − Fzrl

Fz f r + Fzrr + Fz f l + Fzrl
(31)

When |LTR| = 1, the vertical load on the left or right wheel is 0; this means that the
vehicle is about to roll over. The vehicle roll risk can be judged by the value of |LTR|.

6.2. Step Steering Braking

Table 4 is obtained by using the optimized parameter results in Table 3. The random
input model is used as the road random excitation, the road grade is B, the initial speed is
20 m/s, the steering angle of the front wheel is 6◦ step input, and the clamp brake is braking
under the maximum pipeline pressure. Figures 11–13 show the comparison of body, roll
angle, and pitch angle acceleration under 20 m/s step steering braking, respectively. On
the basis of the time domain graph, the power spectral density (PSD) graph is obtained by
Fourier series.

Table 4. Suspension performance index RMS value and improvement.

RMS Value L4 Improvement L5 Improvement L6 Improvement L8 Improvement

Body acceleration/(m·s−2) 0.6542 24.67% 0.6089 29.88% 0.6230 27.51% 0.5604 35.47%
Roll angle

acceleration/(rad·s−2) 0.5972 12.61% 0.6126 10.35% 0.6107 10.64% 0.5859 14.26%

Pitch angle
acceleration/(rad·s−2) 0.3951 19.12% 0.3776 10.35% 0.4077 16.54% 0.4567 6.52%

Suspension working
space/(m) 0.0389 1.44% 0.0383 2.78% 0.0394 0.20% 0.0368 6.92%

Dynamic tire load/(kN) 0.7188 18.05% 0.8033 8.42% 0.7905 9.88% 0.7465 14.90%
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As shown in the time domain diagram in Figures 11a–13a, compared with the passive
suspension, the body, roll angle, and pitch angle acceleration are all improved to some
extent. L8 has the most significant improvement in ride performance and roll resistance,
and the RMS values of body and roll angle acceleration are reduced by 35.47% and 14.26%,
respectively. L4 has the highest pitch resistance improvement, and the RMS acceleration
of pitch angle acceleration decreases by 19.12%. Although there is a certain gap between
L5 and L6 and the optimal value, compared with the passive suspension, the performance
is significantly improved, and the RMS value of each acceleration is reduced by at least
10.35%. The small panel of the time domain diagram in Figures 11–13 details the differences
in body, roll, and pitch acceleration under step steering braking.

In the late braking period of the vehicle, due to the role of a larger braking force, the
frequency of the vehicle will be reduced to a lower level (usually below 4 Hz), which is
just in line with the sensitive area of the human body (0.4~4 Hz). In order to evaluate the
vibration suppression ability of suspension in the sensitive frequency of the human body,
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the PSD of the body, roll angle, and pitch angle acceleration in the range of 0–15 Hz were
selected. It can be seen from the frequency domain diagram in Figures 11b–13b that the
body, pitch angle, and roll angle acceleration PSD of the four structures are all reduced to a
certain extent within the sensitive frequency of the human body, which proves that they can
effectively improve the ride comfort, anti-roll, and anti-pitch ability of the vehicle under
steering braking conditions. In the enhanced panel of the frequency domain diagram shown
in Figures 11b–13b, compared with the passive suspension, the body, roll angle, and pitch
angle acceleration PSD of the four structures near 1 Hz (extreme value) are significantly
reduced, and the low-frequency vibration isolation performance is significantly improved.
Figures 14 and 15 show the comparison of suspension working space and dynamic tire
load under 20 m/s step steering braking.
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As can be seen from Figure 14, the suspension working space of L8 has been signif-
icantly improved, and its RMS value has decreased by 6.92%. The suspension working
space of L4, L5, and L6 structures has little change, but all was improved to some extent.
As can be seen from the enhancement panel in Figure 15, the dynamic tire load of L4, L5,
L6, and L8 is less than that of the passive suspension, of which L4 has improved by 18.05%.
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6.3. Fishhook Steering Braking

In order to evaluate the anti-rollover ability of the vehicle under extreme steering
conditions, the fishhook steering of the front wheels, as shown in Figure 16, was selected.
Figures 17–19 shows the comparison of body, roll angle, and pitch angle acceleration under
the steering braking of a 20 m/s fishhook.
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Figure 17. Body acceleration under fishhook steering braking.

As shown in Figures 17 and 18, about 2 s after the second turn, body, and roll angle
acceleration reach the maximum value, and the peak values of body and roll angle acceler-
ation of L4, L5, L6, and L8 structures decrease significantly. From the aspect of peak time,
the roll angle acceleration of L4, L5, L6, and L8 structures decreased by 32.49%, 18.47%,
26.83%, and 31.47%, respectively, compared with the passive suspension. Among them, the
optimal structure in the literature [21] is the same as the L4 structure in this paper, but since
the literature [21] only considers the vehicle roll stability performance under the steering of
the fish hook, it can be concluded that the maximum of the vehicle roll angle of the optimal
structure in the literature [21] at the speed of 80 Km/h is reduced by 39.84%, compared
with the passive suspension, which corresponds to the results in this paper. It is proved
that the ISD suspension structure can improve the roll stability performance of the vehicle.
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The enhancement panel shown in Figure 19 shows little change in pitch angle acceleration
compared to the passive suspension. From the RMS value, only the L6 structure’s RMS
value of pitch angle acceleration is less than that of the passive suspension, while the L4,
L5, and L8 structures’ RMS value of pitch angle acceleration is also within the design’s
acceptable range, controlled within 13%.
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Figure 20 shows the change in LTR value during the steering braking of 20 m/s
fishhook. As can be seen from the figure, the peak value of the lateral load transfer
rate of ISD suspension at dangerous moments decreased significantly. Compared with
passive suspension, L4, L5, L6, and L8 decreased by 25.74%, 13.17%, 20.94%, and 24.60%,
respectively, indicating that the anti-roll performance of the vehicle was improved. The
trend is consistent with the angular acceleration response of the roll angle acceleration.
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Figure 20. Lateral load transfer rate.

7. Conclusions

In order to study the vertical, roll, and pitch stability of the vehicle, this paper builds
the vehicle dynamic model and eight ISD suspension structures considering the steering
braking of the vehicle.

The variation law of ISD suspension performance indexes in roll, vertical, and pitch
motion was analyzed by using linear increasing inertance. The simulation results showed
that the performance indexes of the four kinds of suspension tended to be stable, and their
structures are, respectively, excluding the supporting spring in parallel, (1) an inerter in
series with a spring and a damper in parallel, (2) a damper in series with a spring and an
inerter in parallel, (3) an inerter and a damper in series, and (4) the damper in parallel with
a spring and an inerter in series. And the effectiveness of increasing inertance in improving
vehicle ride comfort, anti-roll, and anti-pitch performance was verified.

Using the simulation of step steering braking and fishhook steering braking on random
road surfaces, compared with passive suspension, the four kinds of suspension can improve
vehicle ride comfort, anti-roll, and anti-pitch ability under step steering braking conditions,
especially in the 0–4 Hz frequency range, the vibration suppression effect is obvious. It
shows that the ISD suspension structure can effectively improve the ride comfort and anti-
roll and anti-pitch performance of the vehicle. Under fishhook steering braking conditions,
lateral load transfer was considered as an index to evaluate vehicle rollover risk. The ride
comfort and roll resistance of the four kinds of suspension were significantly improved,
and only the suspension consists of a supporting spring in parallel with an inerter, and a
damper in series took pitch stability into account.
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