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Abstract: Recently, there has been renewed interest in lightweight structures; however, a small
structure change can strongly affect vehicle dynamic behavior. Therefore, this study provides new
insights into non-parametric modeling based on artificial neural networks (ANNs). This work is
then motivated by the requirement for a reliable substitute for virtual instrumentation in electric
car development to enable the prediction of the current value of the vehicle slip from a given time
history of the vehicle (input) and previous values of synthetic data (feedback). The training data are
generated from a multi-body simulation using MSC Adams Car; the simulation involves a double
lane-change maneuver. This test is commonly used to evaluate vehicle stability. Based on dynamic
considerations, this study implements the nonlinear autoregressive exogenous (NARX) identification
scheme used in time-series modeling. This work presents an ANN that is able to predict the side slip
angle from simulated training data generated employing MSC Adams Car. This work is a specific
solution to overtake maneuvers, avoiding the loss of vehicle control and increasing driving safety.

Keywords: artificial neural network; electric car; multibody simulation; vehicle dynamics

1. Introduction

In recent years, there has been an increasing interest in reducing the required time for
product development to improve their stages and processes. It is well known that recent
vehicles integrate more sensors, decreasing computing systems to control and monitor the
vehicle measurements. However, this enhancement significantly increases the complexity of
predicting vehicle dynamic behavior. Hence, there are several advanced driver assistance
systems (ADAS) to improve user safety and mobility, such as lane departure warning,
adaptive cruise control, lane-change systems, side assist, parking assistance, blind-spot
warning, and forward collision warning [1]. These assists can be used to communicate
between one vehicle and another to reduce collision risk during lane changing and car
following [2,3]. These assists improve active driving safety because, when integrated with
radar or cameras, they allow the vehicle to behave intelligently, initially as a warning or by
making decisions based on different driving conditions simulated and tested as hardware
in the loop. This on-board system allows the analysis of the real-time behavior of vehicle
dynamics [4]. Integrating electric power trains modifies the vehicle’s dynamic response
because electric vehicles are heavier. However, they have fewer components, and the
energy storage system modifies the vehicle’s center of mass, which causes the longitudinal
and transverse forces to change. While the center of mass is lower, improving stability,
the transfer of forces between suspended and non-suspended masses generates a change
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in the handling conditions depending on the handling conditions, affecting the energy
consumption from tank to wheel [5].

It is therefore important to employ engineering systems to develop a process involving
all the complexities of each assistance. The main challenges many researchers face are
reducing development time and integrating updated information at early design stages.
Up to now, vehicle stability has been improved using chassis control systems to achieve
electronic stability. This system can also improve vehicle and driving behavior, resulting
in an active safety system to prevent accidents. This kind of system is also employed
to enhance consumption performance as assistance to reduce slip and skidding. The
prediction of the slip angle is essential to improve the active safety of the vehicle [6]. This is
because these systems can control forces at each wheel to stabilize the vehicle based on the
direct-yaw-moment control at each wheel to recover and improve vehicle stability. Figure 1
shows the configuration of the frame of the monocoque structure, the suspension system,
and the power train. It is a two-passenger vehicle with a cargo section. The transfer of forces
between the vehicle and the road is at the wheel’s point of contact with the vehicle. The
longitudinal traction forces are transmitted to the floor by two processes of the viscoelastic
characteristics of the wheel: physical adhesion and local deformation or hysteresis friction,
depending on the type of material used. It has a front engine, and the batteries are located
on the platform of the body, under the seats.

Figure 1. Vehicle dynamics angles and forces.

Yaw monitoring can be used to warn of an unstable driving condition and control slip.
Powertrain traction settings change load transfers due to tractive forces [7,8]. Due to its
dynamic characteristics, the slip ratio is used not only as a vehicle control system [9] but
also to estimate fuel consumption [10]. It also analyzes the vehicle’s dynamics to decrease
the risk of losing control; therefore, these systems actively assist the driver. Although the
car body design has an effect when the car is doing any maneuvering, it is when the driver
can perceive a low torsional stiffness as a delay in the vehicle’s behavior with the road.

Conversely, the longitudinal stiffness contributes to the transmission of forces under
acceleration and braking conditions. It is noted that these mechanical characteristics are
passive, unlike the measurement under driving conditions, which is an active process
that can be employed to improve vehicle dynamics using parameter combinations. These
parameters might involve driver performance, cargo, and others from unexpected changes
such as in environment, temperature, and rain. All these parameters can change the forces
between the wheel and the road, altering the vehicle’s response.

It is well known that it is a typical maneuver lane change during driving to change
direction, rebound, merge on roads, or exit. This maneuver can be predicted from the
vehicle inside using movements and/or gestures’ driver. It can also be anticipated by the
interaction between the vehicular flow and the road, by some unforeseen event. All these
events can affect the vehicle dynamic even with assist sensors.
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Xing et al., [11] proposed a driver intention inference system, which can eventually be
included in ADAS. This research was focused on the highway lane-change maneuvers to
improve safe driving, evaluating traffic state and dangerous situations. Driver intention
anticipation is important because only half of the drivers turn on signals before lane-change
maneuvers. To predict these intentions can also reduce traffic congestion [12,13]. Although
these systems are considered the lowest automation levels (Levels 1 and 2), there is evidence
that they contribute to lane maintenance [14].

The automotive development process defined the vehicle parameters as expected
targets. However, all these parameters are connected between them and have a strong
influence on the vehicle properties. It is then this complex connection that needs to perform
different assessments through the development process, from the concept stages toward the
start of production. Therefore, the design and evaluation processes require improvement
by implementing methodologies such as system engineering. Consequently, a model is
employed to connect parameters, which can update different subsystems on different levels
of vehicle details. So, the whole vehicle describes the main structure of levels involving
subsystems or sub-assemblies and component levels. If a structure is connected based
on a parametric model, any change in a model component can update the behavior at
the full vehicle level. Vehicle dynamic is the result of all its systems working together.
These systems can be chassis, suspension, brakes, and drivetrains. The iteration between
all these systems would affect user comfort and safety on the same road under different
driving conditions. These conditions can also be varied in the same car with different driver
performance. Other conditions include environmental, road characteristics, road gradients,
temperature, rain, wind, and traffic conditions, as illustrated in Figure 2.

Figure 2. Vehicle dynamics factors.

Factors that influence the vehicle’s dynamics can be controlled either by the vehicle
designer or directly by the driver, such as the characteristic acceleration profile of the
wheel grip due to the generated friction. However, other parameters, such as road and
ambient temperature, cannot be controlled. The same vehicle with the same characteristics
varies in performance and response only by the type of driver; this creates the need to
integrate nonlinear processes to predict and estimate vehicle response under all direct and
indirect variables.

Several studies have employed a non-parametric model based on artificial neural
networks (ANNs) to predict nonlinear dynamic responses [15]. One of these studies re-
ported that overfitting is a typical problem during the training process, and it needs to
be avoided using an optimal inputs/outputs correlation. It also employed Bayesian tech-
niques to estimate error during the training process [16]. ANNs have also been employed
for vehicle applications such as emission [17], energy consumption [18,19], and reduction
of structural vibrations to improve ride comfort. Artificial Intelligence has been integrated
into the development of powertrains; in the gear drivetrain development, its complexity is
due to a smooth perception during driving [20]. Lee et al. [21] reported a deep learning
model to predict lane-change maneuvers based on longitudinal and lateral acceleration
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or deceleration actions. Another work improved active safety by analyzing the driver
distraction based on speed, lane offset, and steering changes [22]. It is well known that
the main tractions of a vehicle’s forces are transmitted through wheels. Furlan et al. [23]
presented an implementation of ANNs to predict viscoelastic behavior and the relationship
between vehicle speed and road friction. The improvement of powertrains requires stan-
dard assistant systems such as cruise control and throttle control enhancing loop control
to reduce emission; this problem was solved using ANNs [24,25]. It was also reported
that the longitudinal wheel slip control under driver behavior uncertainty, environment,
and road changes can be improved via ANNs [26]. A multibody model can be evaluated
utilizing ANNs trained with a data-driven model approach [27,28]. Neural networks can
also be exploited to improve the lateral and longitudinal dynamics using vehicle data such
as steering angle and torque [29].

Taghavifar et al. [30] proposed a non-parametric model based on ANNs to improve
vehicle longitudinal and lateral dynamics, enhancing stability and maneuverability. Yaw
moment is used to improve vehicle stability, which can be affected by lateral wing forces,
disturbance on the trajectory, severe maneuvers, and sudden lane change to prevent colli-
sions [18]. This study provides new insights into ANN implementations to integrate its use
in multibody dynamic simulations in a platform development process. The actual imple-
mentation involves a dynamic recurrent neural network named nonlinear autoregressive
exogenous (NARX); this network has at least one feedback loop with time delays, making
this ANN dynamic. The tapped delay lines on its inputs contain multiple delays, which
can be considered ‘memory’. This feature successfully employs this work due to the input
number employed during training. It is also important to note that this kind of neural
network modeling can be used as a virtual sensor, which can also be implemented on older
cars to improve passenger safety under unexpected maneuvers.

2. Artificial Neural Network

This paper employs a time-series modeling scheme based on the nonlinear autoregres-
sive exogenous (NARX) scheme [15]; this kind of modeling involves memory (as illustrated
in Figure 3). Such a scheme can be implemented using a recurrent neural network (RNN).
The inputs are of two types of data; the first ones involve the time histories simulated data
of the following variables: time, velocity, longitudinal acceleration, lateral acceleration,
yaw angle, yaw rate, yaw acceleration, pitch angle, pitch rate, roll angle, roll rate, engine
speed, steering rack travel, and steering wheel angle. The second one is synthetic data,
which are the angular velocity of the wheel, slip ratio, normal forces, and relationship of
the angle’s pitch/yaw and roll/yaw. As presented in Figure 3, those inputs are compressed
Is,s(tk)

, where tk = (k − 1)∆, k = 1, 2, . . ., denotes discrete times, with ∆ being the sampling
time resolution. On the other hand, the network’s output estimate for Ossa(tk), which is
the side slip angle. As stated in [31], the inputs and outputs require to be normalized

for network use in the range of [-1, 1], where
(︷︸︸︷

�
)

denotes the network-normalized

version of the variable (�) As previously mentioned, this system has memory the tapped
delay lines (TDLs), which are channels containing past values of the input and output
(feedback) signals.

Concerning Figure 3, one can define S(j) as the number of neurons at each jth layer,
then J can be the total number of layers and M1, M2 the numbers of delays in TDL No. 1
and TDL No. 2, respectively. If a(j)

k is the S(j) × 1 vector comprising the signal outputs of
the jth layer, then one can define pk as the compressed signals to Layer No. 1, where pk is
the (2n1 + 2n1) × 1 column matrix expressed as:

pk =

[︷︸︸︷
Is,s (tk−1)

T . . .
︷︸︸︷
Is,s
(
tk−M1

)T ︷︸︸︷Ossa(tk−1)
T . . .

︷︸︸︷
Ossa

(
tk−M2

)T
]T

(1)



World Electr. Veh. J. 2023, 14, 293 5 of 11

where n1 and n2 are the number of delays in their respective TDLs. For the sake of clarity,
the subscript “a” is dropped in the following part. If a(j)

k is the S(j) × 1 vector comprising
the signal outputs of the jth layer, then:

ak
j =

︷︸︸︷
Ossa(tk−1) (2)

a1
k = g(1)(W(1)pk + b(1)) (3)

aj
k = g(j)(W(j)a(j−1)

k + b(j)), j = 2...J (4)

where W(j) and b(j) are, respectively, the matrix of the weights and vector of biases of
the jth layer, and g(j)(�) is a vector operator comprising the transfer functions of the
neurons of the jth layer. It is also noted that the network is always initialized so that, in pk
(Equation (1)), ︷︸︸︷

Is,s (tk−m)
︷︸︸︷
Ossa(tk−m) = 0, tk−m < t1, m = 1...max(M1, M2) (5)

The RNN model in Figure 3 was implemented for a general purpose using techni-
cal computing software with a neural network facility [31]. The RNN was subjected to
input/output training data for a given user-prescribed architecture. The training proce-
dure employed the Levenberg–Marquardt optimization method to determine the optimal
weights and biases that minimize the mean square value of the error (difference) δ between
the output of the actual data and predicted data for a given input to a value below a
set tolerance specification. The network had 1 layer with 26 neurons and n1 = 2 delays
for the input and n2 = 4 delays for the feedback. In this case, it is the binary sigmoid
transfer function.

Figure 3. RNN architecture for inverse vehicle dynamics model.

There are various benefits to using the Levenberg-Marquardt algorithm. It is more
computationally efficient than the Gauss-Newton approach and converges faster than the
steepest descent method. Additionally, by modifying the damping setting, problems with
poor conditions are better managed.

3. Vehicle Dynamics with Neural Network

Vehicle dynamics are associated with the three main axes that describe the config-
uration of a vehicle, according to SAE J182. In the x-axis, the forces of acceleration and
braking depend on the resistance to motion in the case of acceleration, which depends on
the energy and power required to overcome them. Most forces are transmitted through
the non-suspended masses, i.e., the wheels. Hence, the efficiency of the engine and the
whole powertrain is important, as many elements have losses due to inertial forces and the
characteristics of each system.
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The y-axis is associated with transverse forces, which affect stability and behavior in
curves. It is interested in preventing skidding, oversteering, and understeering conditions.

The vertical vehicle dynamics, described by the z-axis, is where the primary and
secondary elements of the suspension system, the shock absorbers, and springs work.
It is required to control the vertical accelerations of the body, improve handling, and
increase safety.

During driving, nonlinear processes are performed; due to this, it is important to
estimate and correct dynamic conditions of the vehicle with sensors, on-board systems,
and algorithms that evaluate the behavior and response under different driving conditions.
The dynamic resistance of the vehicle depends on the resistance to rolling by the required
traction forces on the wheels. Aerodynamic loads that are a function of vehicle characteris-
tics, wind speed, and also vehicle speed, fluid dynamics suggest an effect by vehicles and
conditions around the same vehicle. Another variant of driving resistance depends on the
condition of the road, not only whether it is paving or the characteristics of the pavement,
but also on the slopes.

In order to understand load transmission between the non-suspended mass and the
road, the evaluated longitudinal vehicle dynamics are shown in Figure 4.

Figure 4. Normal forces on the vehicle.

The normal forces are evaluated using Equations (6) and (7)

Fz1 =
1
2

mg
a2

l
− 1

2
ma

h
l

(6)

Fz2 =
1
2

ma
h
l
+

1
2

mg
a1

l
(7)

where the normal forces Fzi are evaluated as a function of the transmission of the accelera-
tion (a), m is the mass, and g expresses the acceleration of gravity and the distance between
the center of mass with the frontal axle a1 and rear axle a2, respectively.

Normal forces have two components: the static and the dynamic part. The first is
based on the position of the center of gravity; depending on the configuration of the
drivetrain, the longitudinal position is modified. The second part of the equation describes
the dynamic behavior when accelerating; because of this, the second term of the equation
is subtracted from the front axle, but in the rear, normal forces are added.

The vehicle’s velocity depends on the angular velocity ωw of the wheel and its effective
radius Rw.

vx = Rwωw (8)

Based on the velocity and the maneuver are found parameters of vehicle dynamics as
longitudinal acceleration, lateral acceleration, yaw angle, yaw rate, yaw acceleration, pitch
angle, pitch rate, roll angle, roll rate, engine speed (rpm), steering rack travel, and steering
wheel angle.



World Electr. Veh. J. 2023, 14, 293 7 of 11

The longitudinal slip ratio of a tire is expressed by

s =
Rgωw

vx
− 1 (9)

where Rg is the tire’s unloaded radius, ωw is the tire’s angular velocity, and vx is the forward
velocity. Slip ratio s is positive for driving or negative for braking.

To evaluate the vehicle’s dynamic conditions, it is subjected to driving conditions and
routes that allow the development of standardized test methods to know the response of
different vehicles under the same driving condition. The severe lane-change maneuver is
evaluated to prevent loose control as the double lane change, as described in ISO 3888. This
improves the active safety impacting the driver, occupants, pedestrians, or other vehicles
for emergency braking. Simulation velocities at 40, 50, 60, and 70 km/h are used to analyze
its behavior. The normal forces play a crucial role in vehicle dynamic control systems, and
an accurate estimation of them could substantially improve vehicle handling and safety.
Variations of the vehicle mass and the suspension system substantially affect the roll and
pitch dynamics.

This proposal is for an electric vehicle of 4 wheels, with a configuration of two wheels
frontal and two wheels rear (2F/1R). The configuration described corresponds to a three-
wheeled vehicle. However, the rear axle has two wheels, as Figure 1 describes. The main
target is not only for city use but also for off-road conditions. The wheels are 195/50 R15.
The main characteristics of the vehicle are summarized in Table 1.

Table 1. Vehicle characteristics.

Description Parameter Value
Vehicle Mass m 658.12 kg

Distance between gravity center and front axle a1 583.04 mm

Distance between gravity center and rear axle a2 1482.71 mm

Height h 344.5 mm

Moment of inertia (x-axis) Ixx 8.801893 × 10 7 [kg·mm2]

Moment of inertia (y-axis) Iyy 3.858123 × 10 8 [kg·mm2]

Moment of inertia (z-axis) Izz 4.1517993 × 10 8 [kg·mm2]

Based on the multibody simulation using Adams Car, the vehicle responses are shown
in Figures 5 and 6.

Figure 5 shows the history of lateral acceleration and the respective velocity. The time
needed to complete the maneuver depends on the speed. The central zone is observed
when the vehicle is in the lane change; before and after this zone is the behavior to perform
the lane-change maneuver.

(a) (b)

Figure 5. Cont.
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(c) (d)

Figure 5. Acceleration behavior: (a) 40 km/h, (b) 50 km/h, (c) 60 km/h, and (d) 70 km/h.

Figure 6 shows the angles required for double lane change at different speeds. Inter-
estingly, this correlation is related to the taw angle remaining constant by being the same
maneuver. However, the pitch angle increases directly proportional to the speed.

Figure 6. Vehicle angles at different velocities: (a) 40 km/h, (b) 50 km/h, (c) 60 km/h and
(d) 70 km/h.

The parameters used to train the network are velocity, longitudinal acceleration, lateral
acceleration, yaw angle, yaw rate, yaw acceleration, pitch angle, pitch rate, roll angle, roll
rate, engine speed, steering rack travel, steering wheel angle, slip ratio, normal forces, and
the relationships of the angles during the maneuver, shown in Figure 7. The output is the
side slip angle. The inputs contribute to stabilizing the vehicle on different maneuvers,
preventing the loss of vehicle control. This type of maneuver is necessary to overtake a
vehicle and return to the same lane to avoid impacting a vehicle that abruptly decreases its
speed, through which a person, another vehicle, or an animal passes.
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(a) (b)

(c) (d)

Figure 7. Slip ratio prediction: (a) 40 km/h, (b) 50 km/h, (c) 60 km/h and (d) 70 km/h.

4. Results and Discussion

Artificial intelligence through neural networks can be applied to dynamic phenomena,
such as the response of a vehicle considering different driving conditions. These phenomena
are nonlinear not only because of the interrelationship of the different components and
events, but also when considering indirect effects such as sudden braking or crossing a
pedestrian or an obstacle. This maneuver generates the need for a lane change; having
two lanes in the opposite direction adds one more maneuver to return to the same lane,
concluding a double lane change.

Any maneuver can affect the lateral dynamics of a vehicle because lateral forces are
generated at the point of contact between the wheels and the pavement; this is transmitted
through the suspension system to the body, also depending on the characteristics of stiffness,
which, if low, is presented with a delay. The driver perceives this and can be attenuated
with assistance systems as it can cause the vehicle to generate moments around the center
of mass, as shown in Figure 1.

Although the synthesized virtual tracks simplify and reproduce driving on the road, it
is necessary to represent all the conditions to include the variables. In this work, we have
measured the vehicle’s response under a double lane-change maneuver.

Based on the responses of the kinematic simulation, together with the characteristics
of the electric vehicle, synthesized signals were added through the vehicle’s response to
include the traction forces that are a function of the normal forces. By controlling the slip
rate, it is possible to reduce the risk of sliding conditions. These results, taken together,
suggest that it is possible to predict the slip ratio at double lane change using ANN. The
average error is < to 1% at velocities of 40, 50, 60, and 70 km/h.

5. Conclusions

This study uses an ANN based on vehicle responses and synthetic data to propose a
slip ratio at double lane change. Lane change is a fundamental aspect of vehicle driving,
having an effect on the one hand on active safety comfort, and through ADAS, this infor-
mation can be used to communicate with other vehicles, for example, in a simultaneous
or sequential lane change, or a combination of a series of vehicles, with the nearest one
changing lanes, while the one coming behind does the braking, avoiding collisions. The
double lane change is simulated using MSC Adams Car. Changes in vehicle dynamics
due to lane change can be predicted by the responses of the same vehicle, as well as by
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responses synthesized according to its behavior. With these signals, it is possible to predict
the slip ratio using neural networks with an average error of 0.0485%, 0.0198%, 0.0123%,
and 0.0170% at velocities 40, 50, 60 and 70 km/h, respectively.

Although this study focuses on slip ratio at double lane change prediction in a double
lane change, the findings may well have a bearing on extending to another maneuver.

The integration of kinematic simulation using MSC Adams Car will allow the virtual
development of new platforms integrating the dynamic responses of the vehicle in dual
lane change. This will allow the analysis at the early stages of the development of the
adjustment of sensors and assistance to improve maneuverability but also have an impact
on the safety of occupants and pedestrians by reducing collisions.

The proposed methodology can be used at the early stages of design where virtual
models are available, and preseries vehicles due to the responses can be obtained by instru-
mentation with transducers as accelerometers and linear variable differential transformers
to measure displacement and, in another way, signals obtained by the vehicle sensors.
Predicting and controlling under extreme driving conditions, such as double lane changes,
increase the vehicle’s active safety.
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