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Abstract: A boost converter is used in various applications to obtain a higher voltage than the input
voltage. One of the current main circuit systems for hybrid electric vehicles (HEVs) is a combination
of a two-phase boost converter (parallel circuit) and a three-phase two-level inverter. In this study,
we focus on the boost converter to achieve even higher efficiency and propose an interleaving scheme
for a boost converter suitable for a three-level inverter (series circuit). The series circuit has two
capacitors connected in series and makes it suitable as a power supply for a three-level inverter. We
analyze the input current ripple of the series and parallel circuit in order to show the superiority of
the series circuit. Furthermore, we propose a novel output voltage control strategy using an optimal
regulator, namely a Linear Quadratic Regulator (LQR), for the series circuit. As a result, we found
the input current ripple of the series circuit is smaller than the parallel circuit and demonstrated the
superiority of the series circuit. The simulation and experimental results show the effectiveness of the
proposed interleaving scheme and optimal regulator.

Keywords: EV; HEV; three-level inverter; two-phase boost converter; interleaved boost converter;
input current ripple; optimal regulator

1. Introduction

As a countermeasure to recent environmental problems, electrification has been widely
promoted in the transportation sector, including automobiles [1–3]. Voltage-source three-
phase inverters are widely used for the variable speed drives of the main motors for
hybrid electric vehicles (HEVs), and the DC power is supplied by a battery through a
boost converter [4]. In the boost converter system, there is a strong need to downsize
the passive elements that make up the bulk of the system. Many studies have been
conducted to miniaturize the passive components. One of the main methods with respect
to circuit topology for HEVs is to apply a two-phase boost converter [5,6] As for the
control strategy, there are methods to reduce the ripple of the battery input current by
employing an interleaving method using a two boost converter [7], to reduce the DC link
capacitor current by cooperative control of the boost converter and inverter to downsize the
smoothing capacitor [8], and to suppress voltage fluctuations by load current feed-forward
control [9].

Multilevel inverters have lower output voltage harmonics due to the increase in the
voltage levels with lower dv/dt compared with conventional two-level inverters, which
results in a decrease in the switching losses. Due to the advantages, the motor drive system
is able to obtain a higher efficiency. Therefore, multilevel inverters are promising power
converters for the main motors of future automobiles including HEVs [10,11]. However,
balancing the control of capacitor voltages is required. For the capacitor voltage balancing
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control method, a method to devise the switching pattern of the inverter is used [12–14].
Reference [15] reports a method in which a boost converter is connected to a three-level
inverter and the capacitor voltage is balanced and controlled by the boost converter. The
series connected boost converter of this method not only performs the boost operation
but also balances the capacitors. This method achieves coordinated control of the boost
converter and three-level inverter. However, in [15], a PWM scheme to reduce the input
current ripple was not discussed.

Therefore, this paper proposes an interleaving scheme for series connected boost
converters that can be applied to three-level inverters [16]. The effectiveness of the proposed
interleaving scheme is clarified by comparing the input current ripple characteristics with
those of the parallel-connection-type interleaving scheme. Furthermore, for the output
voltage control method, we propose a control method using an optimal regulator as a
method that is highly effective in suppressing output voltage fluctuations and has excellent
extendibility when connected to a three-level inverter. The effectiveness of the proposed
optimal regulator is clarified by comparing its response with that of PI control.

The novelty of the paper is the interleaved boost converter topology for a main motor
drive system in HEVs in which an NPC inverter is applied, and its control strategy. The
balancing control of the input voltages is required when the NPC inverter is applied for the
HEVs because the NPC inverter has three input terminals and the neutral point potential
varies due to the imbalance of the terminal voltages of the load. The balancing control
causes a decrease in the inverter voltage utilization factor, which results in a decrease in the
system efficiency. The proposed interleaved boost converter (series circuit) is capable of
input voltage balancing control for the NPC inverter and improves the conversion efficiency
compared with that of the conventional boost converter (parallel circuit). Therefore, this
paper contributes an improvement in the efficiency of the motor drive system. This paper
is organized as follows. Chapter 2 describes the two circuit configurations, and Chapter 3
derives a theoretical expression for the input current ripple. Chapter 4 describes the control
method of the output voltage. Chapter 5 presents the results of simulations and experiments
based on the derived theoretical value of the input current ripple. The response of the
output voltage with the proposed controller is also presented. In addition, a comparison
of the efficiency of the two circuits is presented. The validity of the theoretical equation
for the input current ripple presented in this paper and the effectiveness of the interleaved
scheme are demonstrated by simulation and experimental results.

2. Circuit Configuration

In this chapter, the series and parallel circuits are presented and the switching mode
analysis in the interleaved scheme is presented. It is assumed that a three-level inverter is
connected as the load of the boost converter. However, a resistor is connected as the load
because this paper focuses on the input current ripple and output voltage characteristics
due to boost operation.

2.1. Interleaving Scheme

Figures 1 and 2 show the parallel and series circuits, respectively. Figure 1 shows a
configuration in which the boost converters are connected in parallel. Figure 2 shows a
configuration in which the boost converters are connected in series. This paper proposes
an interleaving method to generate the gate signals for series circuits. Figure 3 shows
the principle of the interleaving method, where Dp and Dn are the duty ratios given to
the switches (S1 and S2) in Figures 1 and 2, respectively. Figure 3a shows the case where
D ≤ 0.5 and Figure 3b shows the case where D > 0.5. As shown in Figure 3a, the controller
modulates the command value using two carriers f c1 and f c2 with a phase difference of
180 degrees to generate the gate signals for the switches. Here, each switch, carrier, and
duty ratio correspond to f c1 and Dp for S1, and f c2 and Dn for S2, respectively. Due to the
interleaving method, the frequency of the input current ripple is twice the carrier frequency.
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Figure 3. Carriers and switching modes of interleaving method. (a) D ≤ 0.5; (b) D > 0.5.

2.2. Switching Modes

In the two circuits, four modes appear depending on the magnitude of D. The switch-
ing modes of the parallel and series circuits are shown in Figures 4 and 5, respectively. In
both circuits, MODE1 in Figures 4a and 5a is a mode in which both S1 and S2 are on, MODE2
in Figures 4b and 5b is a mode in which both S1 and S2 are off, MODE3 in Figures 4c and 5c
is a mode in which S1 is off and S2 is on, and MODE4 in Figures 4d and 5d is a mode in
which S1 is on and S2 is off. For D > 0.5 in Figure 3b, magnetic energy is stored in both
reactors with MODE 1 in Figures 4a and 5a and boosted with MODE 3 in Figures 4c and 5c
and MODE 4 in Figures 4d and 5d alternately. The upper and lower capacitor voltages
(vcp, vcn) of the series circuit are controlled separately by charging the upper capacitor with
MODE 3 in Figure 5c and the lower capacitor with MODE 4 in Figure 5d.
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3. Input Current Ripple Analysis

This chapter derives a theory of the switching ripple ∆iL of the input current iL for
both circuits. As the operating mode of the input current, this chapter assumes a current
continuous mode. For simplicity of analysis, each phase of the parallel circuit and the upper
and lower of the series circuit are symmetrical. Each inductance value and duty ratio of the
two switches are also the same. In other words, this chapter is analyzed with L1 = L2 = L
and Dp = Dn = D. This chapter also discusses the input current ripple considering the rated
current of the reactor.
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3.1. Input Current Ripple in Parallel Circuits

In a parallel circuit, each reactor is connected in parallel to the power supply, so the
input current ripple ∆iL is the sum of each reactor current ripple ∆iL1 and ∆iL2. Figure 3a
shows the gate signal and each reactor current iL1 and iL2 when D ≤ 0.5. When both S1 and
S2 are off, each reactor current ripple ∆iL1 and ∆iL2 are as follows [7]:

∆iL1 = vdc−Vi
L (0.5 − D)T (1)

∆iL2 = vdc−Vi
L (0.5 − D)T (2)

where ∆iL1, ∆iL2 > 0 as defined in Figure 3 due to Vi < vdc.
Each reactor current has the same peak-to-peak value and a phase difference 180 de-

grees as shown in Figure 3a. The input current ripple ∆iL becomes their sum, and consider-
ing vdc = Vi/(1 − D), the current ripple becomes Equation (3).

∆iL = ∆iL1 + ∆iL2 =
2Vi
L

(0.5 − D)

(1 − D)
DT (3)

Figure 3b shows the gate signal and each reactor current when D > 0.5. In this case,
when both S1 and S2 are on, each reactor current ripple ∆iL1 and ∆iL2 are as in Equation (4).

∆iL1 = ∆iL2 =
Vi
L
(D − 0.5)T (4)

The input current ripple ∆iL is expressed as Equation (5).

∆iL = ∆iL1 + ∆iL2 =
2Vi
L

(D − 0.5)T (5)

3.2. Input Current Ripple in Series Circuits

In a series circuit, each reactor is connected in series with the input power supply, so
the reactor value is doubled and the input current ripple ∆iL is half that of one phase in
a parallel circuit. In other words, the current ripple is half of Equation (1) when D ≤ 0.5.
Moreover, when vdc = Vi/(1 − D) is taken into account, Equation (6) is obtained.

∆iL =
Vi
2L

(0.5 − D)

(1 − D)
DT (6)

On the other hand, the current ripple for D > 0.5 is half of Equation (4).

∆iL =
Vi
2L

(D − 0.5)T (7)

Based on the above equations, if the inductance values of both the parallel circuit and
the series circuit are equal, the input current ripple of the series circuit is one-quarter that of
the parallel circuit. Next, the input current ripple is discussed considering the rated current
of the reactor. Since the parallel circuit is connected in parallel, the rated current of the
reactor is half of the input current. On the other hand, the series circuit is series connected,
so the rated current of the reactor is the same as the input current. Therefore, the rated
current of the reactor in a series circuit is twice that of a parallel circuit. The volume and
weight of the reactor are approximately determined by the product of the inductance value
and the square of the reactor current (LI2). If the inductance value of the series circuit is
set to one-quarter of the parallel circuit, the input current ripple of the two circuits will
be equal.

4. Output Voltage Control

This chapter describes the output voltage control method using PI control. After that,
the output voltage control method using the optimal regulator (LQR) is described. There
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are two advantages of applying LQR to multilevel inverters. First, LQR allows a fast load
response by using optimal control input. In Reference [8], it is demonstrated that the fast
load response of the controller is capable of downsizing the smoothing capacitor. The series
circuit is designed to be applied to a three-level inverter, which requires a larger smoothing
capacitor than a two-level inverter in order to balance the neutral point potential in the DC
link voltage. Therefore, LQR can contribute to the reduction in the smoothing capacitor
capacity of the three-level inverter. Next, when the number of state variables increases by
connecting a boost converter and a three-level inverter, LQR can collectively control the
state variables of the extended system due to its excellent extendibility.

4.1. PI Control

Figures 6 and 7 show the control block diagram of each boost converter circuit. In
Figure 6, the reactor current (iL1, iL2) and output voltage (vdc) are obtained by sensors, and
the deviation between the voltage command value and the actual voltage is input to the
PI controller to obtain the input current command. The deviation between the current
command value and the actual current is then input to the PI controller to calculate the duty
ratio of the boost converter, which is modulated by a carrier wave to generate a gate signal.
In Figure 7, the capacitor voltages (vcp, vcn) and reactor current (iL) are obtained by sensors,
and the duty ratio is calculated as in Figure 6. The difference between Figures 6 and 7 is
that a control system for the neutral point potential (NPP) is added to control the balance
between the upper and lower capacitor voltages. Neutral point potential vn is defined as
the following equation:

vn =
vcn − vcp

2
(8)
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The command value of the neutral point potential is set to vn* = 0. The current PI
controller outputs vdc_ref so that Dp equals Dn when the neutral point potential is 0 V. The
NPP PI controller outputs vn_ref according to the error of the neutral point potential from
the command value to realize the balance control. Defining the difference between Dp
and Dn as D’= Dp − Dn, the NPP PI controller corrects Dn with D’ when the neutral point
potential varies.
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4.2. Output Voltage Control Using Optimal Regulator

The state equation in the current continuous mode of the series circuit shown in
Figure 2 can be expressed by the following equation when the state averaging method
is used, where the output time of each MODE is T1 = (Dp + Dn − 1) T for MODE1,
T3 = (1 − Dp) T for MODE3, and T4 = (1 − Dn) T for MODE4, for D > 0.5 shown in Figure 3b.

.
x(t) = Ax(t) + Bu(t) = f(x(t), u(t)) (9)

y(t) = Cx(t) (10)

x(t) := [iL vcp vcn]
T , y(t) =

[
0 1 0
0 0 1

]
x(t) (11)

A =


0 −Dp

L −Dn
L

Dp
C − 1

CR 0
Dn
C 0 − 1

CR

, B =

1/L
0
0

 (12)

where u(t):= Vi, Dp = 1 − Dp, Dn = 1 − Dn, C = Cp = Cn, R = Rp = Rn. From Equations (9)–(12),
the state Equation (9) is a nonlinear system. In this paper, the state equation is designed
to be linearized around the equilibrium point. The equilibrium point is set as x(t) = X,
u(t) = U. Assuming that the variation in the equilibrium point is sufficiently slower than
the carrier period, a small signal model is obtained as follows:

∆
.
x(t) = ∆A∆x(t) + ∆B∆u(t) (13)

∆y(t) = ∆C∆x(t) (14)

∆A =

[
∂f(X, U)

∂x(t)

]T
=


0 −Dp

L −Dn
L

Dp
C − 1

CR 0
Dn
C 0 − 1

CR

 (15)

∆B =

[
∂ f (X, U)

∂u(t)

]T
=


−Vcp

L −Vcn
L

IL
C 0

0 IL
C

 (16)

∆C =

[
0 1 0
0 0 1

]
(17)

x(t) := X + ∆x(t), ∆x(t) := [∆iL ∆vcp ∆vcn]
T

u(t) := U + ∆u(t), ∆u(t) := [∆Dp ∆Dn]
T

X :=
[
IL Vcp Vcn]T , U :=[Dp Dn]T

where Dp = Dn = D, and the value of the equilibrium point is Equation (18).

D =
Vi
Vdc

, IL =
Vi

2RD2 , Vcp = Vcn =
Vi

2D
(18)

Equation (13) is expanded as the servo system so that the controlled variables vcp and
vcn are able to follow the step response. The state equation of the expanded system with ad-
ditional state variable ω(t), which is the integral of the deviation e(t) between the controlled
variables vcp, vcn and their reference values, is expressed as the following equations:

.
x̃e(t) = ∆Aex̃e(t) + ∆Beũe(t) (19)
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ũe(t) = Fx̃e(t) (20)

∆Ae =

[
∆A O
−∆C O

]
, ∆Be =

[
∆B
O

]
, F = [K G] (21)

x̃e(t) :=
[

x(t)
ω(t)

]
(22)

u(t) = Kx(t) + Gω(t), ω(t) :=
∫ t

0 e(t)dt (23)

Figure 8 shows the configuration of the derived controller. The optimal regulator is
used to determine the gains K and G in Equation (23). The evaluation function is expressed
as the following:

J =
∫ ∞

0

(
x(t)TQx(t) + u(t)TRu(t)

)
dt (24)

where Q is the weight coefficient matrix for each state variable and R is the weight coeffi-
cient matrix for the magnitude of the control input.
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Figure 8. Configuration of series circuit with LQR.

5. Experimental Verification
5.1. PI Control Design

Figure 9 shows the experimental setup. Table 1 shows the main circuit parameters.
The parameters of the PI controller were designed using Bode diagrams and simulations.
The response speed of the output voltage was set to be about 0.1 s for a 50 V step change in
the command value. Simulation of the circuit shown in Figure 7 with the parameters shown
in Table 1 resulted in a control bandwidth of 500 rad/s for the current control system,
which allows the system to boost voltage stably. The control bandwidth of the voltage
control system is 1/10 of that of the current control system, and the control bandwidth of
the neutral point potential PI control is less than 1/2 of that of the voltage control system.
Table 2 shows the control parameters.
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Table 1. Circuit conditions.

Input voltage Vi 100 V

Carrier frequency f c1, f c2 10 kHz

IGBT FGH40T120SMD
rated voltage 1200 V
rated current 40 A

Diode FEP16DT
rated voltage 600 V
rated current 16 A

DC reactor -
inductance L1, L2 1.8 mH
rated current 9 A
core silicon steel plate
resistance 68.6 mΩ

Capacitanc Cp,Cn 1500 uF

Table 2. Parameters of PI controllers.

Parameter Value

Kpi 4
Tii 4 ms
Kpv 0.075
Tiv 40 ms
Kpn 2
Tin 0.1s

5.2. Optimal Regulator Design

In this paper, the weight coefficients in Equation (24), which are necessary to calculate
the gain of LQR, are designed through simulations. The output voltage response is set to
be about 0.1 s as well as that of PI control, and the weight coefficient matrices Q and R of
the LQR are set as Q = diag [q1, q2, q3, q4, q5] and R = diag [r1, r2], in which diag denotes the
diagonal matrix. Each coefficient corresponds to q1:iL, q2:vcp, q3:vcn, q4:∆vcp, q5:∆vcn, r1:Dp,
r2:Dn.

Figure 10 shows the simulated results when the weights are changed. Here, the weight
coefficients for the inputs were set to R = diag [1, 1]. Comparing Figure 10a,b, it can
be seen that the larger the weight on the deviation, the faster the response. Comparing
Figure 10c,d, it can be seen that the response can be made faster by increasing the weight of
∆vcn. Simulated results show that the desired response can be obtained when Figure 10e
is used. For gain calculation, the “Arimoto-Potter method” is used. Table 3 shows the
gains designed.
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Figure 10. Simulated results for weight coefficients design. (a) Q = diag([1,1,1,1,1]); (b)
Q = diag([1,1,1,100,100]); (c) Q = diag([5,5,5,100,100]); (d) Q = diag([5,5,5,100,1000]); (e)
Q = diag([5,5,2,100,1000]); (f) Q = diag([5,5,10,100,1000]).

Table 3. Parameters of LQR for Q = diag [5,5,2,100,1000], R = diag [1,1].

Feedback Gain

K1 −0.028 K6 1.310
K2 −1.060 G1 8.072
K3 0.744 G2 0.886
K4 0.133 G3 −56.322
K5 3.302 G4 −45.360

5.3. Boost Operation and Neutral Point Potential Control Characteristics

Figure 11 shows the experimental results when the proposed LQR is used in the circuit
shown in Figure 2. The output voltage command value is 280 V and the neutral point
potential command value is 0 V. The load resistance is 200 Ω. Figure 11 shows that both the
output voltage and neutral point potential follow the command value well.
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5.4. Input Current Ripple Characteristics

Figures 12 and 13 show the experimental results of the input current ripple. The load
resistance is 100 Ω (Rp = Rn = 50 Ω). Figures 12 and 13 show the input current ripple of
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the parallel and series circuits, respectively. These are the results obtained by open-loop
control for the duty ratios of 0.3, 0.5, and 0.6, respectively. When D = 0.3 and 0.6, the
input current ripple of the series circuit is approximately one-quarter that of the parallel
circuit. Figures 14 and 15 show the simulated results of the input current for the same
load condition. It can be seen that the simulation and experimental results are in good
agreement for D = 0.5 and D = 0.6. Comparing Figures 12a and 14a in the case of D = 0.3,
there is a difference between them. It can be mainly attributed to the effect of the turn
on and turn off time in the experiment. Figure 16 shows a comparison of the theoretical,
simulated, and experimental results for the input current ripple. In the experimental results,
the duty ratio was set to a maximum of 0.65 due to the limitation of the rated voltage of the
experiment equipment. As shown in Figure 16, the input current ripple of the series circuit
is one-quarter that of the parallel circuit.

5.5. Output Voltage Response Characteristics

Figure 17 shows the response of the output voltage and input current when the
voltage command is changed in steps from 150 V to 200 V. Both the output voltages in
cases Figure 17a,b respond in about 100 ms, which is the desired response. Figure 18
shows the response when the load is changed from 200 W to 500 W. In case Figure 18a, the
output voltage drops by a maximum of about 25 V and fluctuates for 140 ms, while in case
Figure 18b, the output voltage drops by up to 8 V but recovers in about 10 ms. Figure 19
shows the response when the load is varied from 500 W to 200 W. In case Figure 19a, the
output voltage rises up to about 20 V and fluctuates over 140 ms. In case Figure 19b, the
output voltage rises by a maximum of about 8 V but recovers in about 10 ms. These results
show that the response of the proposed LQR to load fluctuations is superior to that of
PI control.
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5.6. Efficiency Characteristics

Figure 20 shows the characteristics of conversion efficiency versus output voltage.
When the load power is 500 W, the parallel circuit has high efficiency when the output
voltage is 160 V (duty ratio 0.38) or lower. At higher output voltages, the series circuit is
highly efficient. When the load power is 800 W, the series circuit is higher in efficiency when
the output voltage is 240 V (duty ratio 0.58) or higher. Thus, the conversion efficiency of the
series circuit is higher than that of the parallel circuit at light loads and high output voltages.
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Figure 20. Efficiency characteristics for output voltage.

Figure 21 shows a comparison of the efficiency with respect to the load. As for 280 V,
the efficiency of the series circuit is higher than that of the parallel circuit over the entire
range. As for 200 V, the efficiency of the series circuit is higher below 630 W. When the load
power is 300 W, the efficiency of the series circuit is 96%, compared to 92% for the parallel
circuit. These results show that the series circuit has an advantage in conversion efficiency
in the light load and high voltage range. Figures 22 and 23 show the loss separation results
for the parallel and series circuits. When the output power is 500 W, the switching losses
are 32.4 W and 12.5 W, and the iron losses are 19.5 W and 5.22 W, respectively. The iron loss
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of the series circuit is about one-quarter that of the parallel circuit, and the switching loss is
about one-third. The reason of that is related to the input current ripple ∆iL described in
Section 5.4. The difference between the input current ripple ∆iL of the two circuits becomes
large when the duty ratio is greater than 0.5. The input current ripple ∆iL of the parallel
circuit is larger than that of the series circuit. Therefore, as shown in Figure 20, the efficiency
of the parallel circuit decreases largely due to increased switching losses.
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Figure 21. Efficiency characteristics for output power.
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Figure 22. Loss comparison of parallel circuit when output voltage is 280 V.
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6. Conclusions

In this paper, an interleaving scheme for a series connected boost converter was
proposed for application to a three-level inverter. The effectiveness of the proposed inter-
leaving scheme is clarified by comparing the input current ripple characteristics with those
of the parallel-connection-type interleaving scheme. The conclusions obtained in this paper
are as follows:

i. The series circuit is capable of both boosting and neutral potential control by means
of a boost converter connected in a dependent manner, and is effective for use in a
three-level inverter.

ii. A theoretical analysis of the input current ripple of the series circuit was performed.
The validity of the analysis was demonstrated by experiments and simulations
using an experimental apparatus with an output voltage of 280 V.
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iii. When the inductances of the series circuit and the parallel circuit are equal, the
input current ripple of the series circuit is one-quarter that of the parallel circuit.

iv. When the inductance of the series circuit is one-quarter of the parallel circuit and
the volume and weight of both circuits are equal, the input current ripple of the two
circuits are equal.

v. As an output voltage control method for the series circuit, a control method using
an optimal regulator was proposed, and a design method using the state averaging
method is presented. The proposed optimal regulator has a better load regulation
response than the general PI control method, suggesting that it is effective in
downsizing the smoothing capacitor.

vi. The series circuit has higher conversion efficiency in the light load, high voltage
region than the parallel circuit, and is suitable for operation in this region.
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