# Research on the Application and Control Strategy of Energy Storage in Rail Transportation

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Rail Transit Demanded by Energy Challenges

## 3. The Way Energy Storage Is Arranged in Rail Transit

#### 3.1. Types of Energy Storage in Rail Transit

#### 3.2. Structure of the Energy Storage System with Battery

#### 3.3. Structure of the Energy Storage System with Super Capacitor

#### 3.4. Structure of the Energy Storage System with Flywheel

## 4. Energy Storage Control Strategy in Rail Transit

#### 4.1. Control Strategy for Power Quality Management in Rail Transit

_{SR}and I

_{SL}are active compensation current. I

_{es}is the practical value of the compensated transfer active current of the energy storage system, and its value is determined by the charging and discharging rules of the energy storage system.

_{Lq}and I

_{R}

_{q}are the reactive compensation current, I

_{aq}and I

_{bq}are the reactive component of the current to be compensated, I

_{ap}and I

_{bp}are active components of the current to be compensated.

#### 4.2. Control Strategy for Power Conversion System in Rail Transit

#### 4.3. Control Strategy for Energy Storage Management in Rail Transit

## 5. Conclusions

## Funding

## Conflicts of Interest

## Nomenclature

Abbreviation | Meaning |

AC | Alternating current |

DC | Direct current |

ESS | Energy storage system |

BES | Battery energy storage |

SC | Super capacitor |

I_{SR}, I_{SL} | Active compensation current |

I_{es} | Practical value of the compensated transfer active current |

I_{Lq} I_{Rq} | Reactive compensation current |

I_{Lh} I_{Rh} | Harmonic compensation current |

I_{ah} and I_{bh} | Harmonic amplitude |

U_{dc} | DC side voltage of energy storage system |

U_{dc,ref} | Reference value of DC side voltage |

U_{DC} | DC side voltage component without disturbance |

I_{ref} | Energy storage current reference value |

I_{ac} | AC side current of energy storage converter |

P_{load-sch} | Planned load output power |

P_{SC-sch} | Planned supercapacitor output power |

P_{B-sch} | Planned battery output power |

SOC_{SC-sch} | Planned supercapacitor charge state |

SOC_{B-sch} | Planned battery charge state |

SOC_{SC} | Supercapacitor state of charge |

SOC_{B} | Battery state of charge |

I_{sc-ref} | Supercapacitor current reference value |

I_{B-ref} | Battery current reference value |

## References

- Boicea, V.A. Energy storage technologies: The past and the present. Proc. IEEE
**2014**, 102, 1777–1794. [Google Scholar] [CrossRef] - Ursua, A.; Gandia, L.M.; Sanchis, P. Hydrogen Production from Water Electrolysis: Current Status and Future Trends. Proc. IEEE
**2012**, 100, 410–426. [Google Scholar] [CrossRef] - Rajeshwar, K.; McConnell, R.; Licht, S. Solar Hydrogen Generation. Toward A Renewable Energy Future; Springer: New York, NY, USA, 2008. [Google Scholar]
- Wu, X.; Li, H.; Wang, X.; Zhao, W. Cooperative Operation for Wind Turbines and Hydrogen Fueling Stations With On-Site Hydrogen Production. IEEE Trans. Sustain. Energy
**2020**, 11, 2775–2789. [Google Scholar] [CrossRef] - Agbossou, K.; Kolhe, M.; Hamelin, J.; Bose, T. Performance of a Stand-Alone Renewable Energy System Based on Energy Storage as Hydrogen. IEEE Trans. Energy Convers.
**2004**, 19, 633–640. [Google Scholar] [CrossRef] - Sabillon, C.; Sighn, B.; Venkatesh, B. Technoeconomic Models for the Optimal Inclusion of Hydrogen Trains in Electricity Markets. In Proceedings of the 2020 IEEE Power & Energy Society General Meeting (PESGM), Montreal, QC, Canada, 2–6 August 2020; p. 1. [Google Scholar] [CrossRef]
- Zhou, T.; Sun, W. Optimization of Battery–Supercapacitor Hybrid Energy Storage Station in Wind/Solar Generation System. IEEE Trans. Sustain. Energy
**2014**, 5, 408–415. [Google Scholar] [CrossRef] - D’Ovidio, G.; Masciovecchio, C.; Rotondale, N. City Bus Powered by Hydrogen Fuel Cell and Flywheel Energy Storage System. In Proceedings of the Electric Vehicle Conference (IEVC), Florence, Italy, 17–19 December 2014; pp. 1–5. [Google Scholar] [CrossRef]
- Abdelrahman, A.S.; Attia, Y.; Woronowicz, K.; Youssef, M.Z. Hybrid Fuel Cell/Battery Rail Car: A Feasibility Study. IEEE Trans. Transp. Electrif.
**2016**, 2, 493–503. [Google Scholar] [CrossRef] - Zhou, H.; Bhattacharya, T.; Tran, D.; Siew, T.S.T.; Khambadkone, A.M. Composite Energy Storage System Involving Battery and Ultracapacitor With Dynamic Energy Management in Microgrid Applications. IEEE Trans. Power Electron.
**2011**, 26, 923–930. [Google Scholar] [CrossRef] - Wu, C.; Lu, S.; Xue, F.; Jiang, L.; Chen, M. Optimal Sizing of Onboard Energy Storage Devices for Electrified Railway Systems. IEEE Trans. Transp. Electrif.
**2020**, 6, 1301–1311. [Google Scholar] [CrossRef] - Al-Thani, H.; Koç, M.; Isaifan, R.J.; Bicer, Y. A Review of the Integrated Renewable Energy Systems for Sustainable Urban Mobility. Sustainability
**2022**, 14, 10517. [Google Scholar] [CrossRef] - Xiong, J.; Zhang, K.; Guo, Y.; Su, W. Investigate the Impacts of PEV Charging Facilities on Integrated Electric Distribution System and Electrified Transportation System. IEEE Trans. Transp. Electrif.
**2015**, 1, 178–187. [Google Scholar] [CrossRef] - Attaianese, C.; Di Monaco, M.; Tomasso, G. Power Control for Fuel-Cell–Supercapacitor Traction Drive. IEEE Trans. Veh. Technol.
**2012**, 61, 1961–1971. [Google Scholar] [CrossRef] - Lukic, S.M.; Cao, J.; Bansal, R.C.; Rodriguez, F.; Emadi, A. Energy Storage Systems for Automotive Applications. IEEE Trans. Ind. Electron.
**2008**, 55, 2258–2267. [Google Scholar] [CrossRef] - Dominguez, M.; Fernandez-Cardador, A.; Cucala, A.P.; Pecharroman, R.R. Energy Savings in Metropolitan Railway Substations Through Regenerative Energy Recovery and Optimal Design of ATO Speed Profiles. IEEE Trans. Autom. Sci. Eng.
**2012**, 9, 496–504. [Google Scholar] [CrossRef] - Ciccarelli, F.; Iannuzzi, D.; Kondo, K.; Fratelli, L. Line-Voltage Control Based on Wayside Energy Storage Systems for Tramway Networks. IEEE Trans. Power Electron.
**2015**, 31, 884–899. [Google Scholar] [CrossRef] - Geng, Y.; Yang, Z.; Lin, F. Design and Control for Catenary Charged Light Rail Vehicle Based on Wireless Power Transfer and Hybrid Energy Storage System. IEEE Trans. Power Electron.
**2020**, 35, 7894–7903. [Google Scholar] [CrossRef] - Luo, A.; Wu, C.; Shen, J.; Shuai, Z.; Ma, F. Railway Static Power Conditioners for High-speed Train Traction Power Supply Systems Using Three-phase V/V Transformers. IEEE Trans. Power Electron.
**2011**, 26, 2844–2856. [Google Scholar] [CrossRef] - He, X.; Shu, Z.; Peng, X.; Zhou, Q.; Zhou, Y.; Zhou, Q.; Gao, S. Advanced Cophase Traction Power Supply System Based on Three-Phase to Single-Phase Converter. IEEE Trans. Power Electron.
**2013**, 29, 5323–5333. [Google Scholar] [CrossRef] - Viktor, S.; Oleksiy, D.; Petro, B.; Yevhen, K.; Vitalij, L.; Drubetskaya, T. Asymmetric power supply circuit design for electric rolling stock on the electrified DC rail. In Proceedings of the 2020 IEEE 7th International Conference on Energy Smart Systems (ESS), Kyiv, Ukraine, 12–14 May 2020; pp. 326–329. [Google Scholar] [CrossRef]
- Arboleya, P.; Diaz, G.; Coto, M. Unified AC/DC Power Flow for Traction Systems: A New Concept. IEEE Trans. Veh. Technol.
**2012**, 61, 2421–2430. [Google Scholar] [CrossRef] - Ronanki, D.; Williamson, S.S. Evolution of Power Converter Topologies and Technical Considerations of Power Electronic Transformer-Based Rolling Stock Architectures. IEEE Trans. Transp. Electrif.
**2017**, 4, 211–219. [Google Scholar] [CrossRef] - Feng, J.; Chu, W.Q.; Zhang, Z.; Zhu, Z.Q. Power Electronic Transformer-Based Railway Traction Systems: Challenges and Opportunities. IEEE J. Emerg. Sel. Top. Power Electron.
**2017**, 5, 1237–1253. [Google Scholar] [CrossRef] - Chymera, M.; Renfrew, A.C.; Barnes, M.; Holden, J. Simplified Power Converter for Integrated Traction Energy Storage. IEEE Trans. Veh. Technol.
**2011**, 60, 1374–1383. [Google Scholar] [CrossRef] - Shu, Z.; Xie, S.; Li, Q. Single-Phase Back-To-Back Converter for Active Power Balancing, Reactive Power Compensation, and Harmonic Filtering in Traction Power System. IEEE Trans. Power Electron.
**2010**, 26, 334–343. [Google Scholar] [CrossRef] - Grbovic, P.J.; Delarue, P.; Le Moigne, P.; Bartholomeus, P. A Bidirectional Three-Level DC–DC Converter for the Ultracapacitor Applications. IEEE Trans. Ind. Electron.
**2009**, 57, 3415–3430. [Google Scholar] [CrossRef] - Pires, V.F.; Foito, D.; Cordeiro, A. A DC–DC Converter With Quadratic Gain and Bidirectional Capability for Batteries/Supercapacitors. IEEE Trans. Ind. Appl.
**2017**, 54, 274–285. [Google Scholar] [CrossRef] - Zandi, M.; Payman, A.; Martin, J.-P.; Pierfederici, S.; Davat, B.; Meibody-Tabar, F. Energy Management of a Fuel Cell/Supercapacitor/Battery Power Source for Electric Vehicular Applications. IEEE Trans. Veh. Technol.
**2010**, 60, 433–443. [Google Scholar] [CrossRef] - Cui, G.; Luo, L.; Liang, C.; Hu, S.; Li, Y.; Cao, Y.; Xie, B.; Xu, J.; Zhang, Z.; Liu, Y.; et al. Supercapacitor Integrated Railway Static Power Conditioner for Regenerative Braking Energy Recycling and Power Quality Improvement of High-Speed Railway System. IEEE Trans. Transp. Electrif.
**2019**, 5, 702–714. [Google Scholar] [CrossRef] - Camara, M.B.; Gualous, H.; Gustin, F.; Berthon, A.; Dakyo, B. DC/DC Converter Design for Supercapacitor and Battery Power Management in Hybrid Vehicle Applications—Polynomial Control Strategy. IEEE Trans. Ind. Electron.
**2009**, 57, 587–597. [Google Scholar] [CrossRef] - Abeywardana, D.B.W.; Hredzak, B.; Agelidis, V.G. A Fixed-Frequency Sliding Mode Controller for a Boost-Inverter-Based Battery-Supercapacitor Hybrid Energy Storage System. IEEE Trans. Power Electron.
**2016**, 32, 668–680. [Google Scholar] [CrossRef] - Yildirim, D.; Aksit, M.H.; Yolacan, C.; Pul, T.; Ermis, C.; Aghdam, B.H.; Cadirci, I.; Ermis, M. Full-Scale Physical Simulator of All SiC Traction Motor Drive With Onboard Supercapacitor ESS for Light-Rail Public Transportation. IEEE Trans. Ind. Electron.
**2019**, 67, 6290–6301. [Google Scholar] [CrossRef] - Zhang, Z.; Ouyang, Z.; Thomsen, O.C.; Andersen, M.A.E. Analysis and Design of a Bidirectional Isolated DC–DC Converter for Fuel Cells and Supercapacitors Hybrid System. IEEE Trans. Power Electron.
**2011**, 27, 848–859. [Google Scholar] [CrossRef] [Green Version] - Gao, L.; Dougal, R.; Liu, S. Power Enhancement of an Actively Controlled Battery/Ultracapacitor Hybrid. IEEE Trans. Power Electron.
**2005**, 20, 236–243. [Google Scholar] [CrossRef] - Lee, J.-H.; Lee, S.-H.; Sul, S.-K. Variable-Speed Engine Generator With Supercapacitor: Isolated Power Generation System and Fuel Efficiency. IEEE Trans. Ind. Appl.
**2009**, 45, 2130–2135. [Google Scholar] [CrossRef] - Ariyarathna, T.; Kularatna, N.; Gunawardane, K.; Jayananda, D.; Steyn-Ross, D.A. Development of Supercapacitor Technology and Its Potential Impact on New Power Converter Techniques for Renewable Energy. IEEE J. Emerg. Sel. Top. Ind. Electron.
**2021**, 2, 267–276. [Google Scholar] [CrossRef] - Golchoubian, P.; Azad, N.L. Real-Time Nonlinear Model Predictive Control of a Battery–Supercapacitor Hybrid Energy Storage System in Electric Vehicles. IEEE Trans. Veh. Technol.
**2017**, 66, 9678–9688. [Google Scholar] [CrossRef] - Herrera, V.I.; Gaztanaga, H.; Milo, A.; Saez-De-Ibarra, A.; Etxeberria-Otadui, I.; Nieva, T. Optimal Energy Management and Sizing of a Battery--Supercapacitor-Based Light Rail Vehicle With a Multiobjective Approach. IEEE Trans. Ind. Appl.
**2016**, 52, 3367–3377. [Google Scholar] [CrossRef] - Thounthong, P.; Chunkag, V.; Sethakul, P.; Davat, B.; Hinaje, M. Comparative Study of Fuel-Cell Vehicle Hybridization with Battery or Supercapacitor Storage Device. IEEE Trans. Veh. Technol.
**2009**, 58, 3892–3904. [Google Scholar] [CrossRef] - Yoo, H.; Sul, S.-K.; Park, Y.; Jeong, J. System Integration and Power-Flow Management for a Series Hybrid Electric Vehicle Using Supercapacitors and Batteries. IEEE Trans. Ind. Appl.
**2008**, 44, 108–114. [Google Scholar] [CrossRef] - Lu, S.; Corzine, K.A.; Ferdowsi, M. A New Battery/Ultracapacitor Energy Storage System Design and Its Motor Drive Integration for Hybrid Electric Vehicles. IEEE Trans. Veh. Technol.
**2007**, 56, 1516–1523. [Google Scholar] [CrossRef] - Cao, J.; Emadi, A. A New Battery/UltraCapacitor Hybrid Energy Storage System for Electric, Hybrid, and Plug-In Hybrid Electric Vehicles. IEEE Trans. Power Electron.
**2011**, 27, 122–132. [Google Scholar] [CrossRef] - Liu, S.; Xie, X.; Yang, L. Analysis, Modeling and Implementation of a Switching Bi-Directional Buck-Boost Converter Based on Electric Vehicle Hybrid Energy Storage for V2G System. IEEE Access
**2020**, 8, 65868–65879. [Google Scholar] [CrossRef] - Mukoyama, S.; Nakao, K.; Sakamoto, H.; Matsuoka, T.; Nagashima, K.; Ogata, M.; Yamashita, T.; Miyazaki, Y.; Miyazaki, K.; Maeda, T.; et al. Development of Superconducting Magnetic Bearing for 300 kW Flywheel Energy Storage System. IEEE Trans. Appl. Supercond.
**2017**, 27, 1–4. [Google Scholar] [CrossRef] - Mitsuda, H.; Inoue, A.; Nakaya, B.; Komori, M. Improvement of Energy Storage Flywheel System With SMB and PMB and Its Performances. IEEE Trans. Appl. Supercond.
**2009**, 19, 2091–2094. [Google Scholar] [CrossRef] - Ichihara, T.; Matsunaga, K.; Kita, M.; Hirabayashi, I.; Isono, M.; Hirose, M.; Yoshii, K.; Kurihara, K.; Saito, O.; Saito, S.; et al. Application of Superconducting Magnetic Bearings to a 10 kWh-Class Flywheel Energy Storage System. IEEE Trans. Appl. Supercond.
**2005**, 15, 2245–2248. [Google Scholar] [CrossRef] - de Andrade, R.; Sotelo, G.G.; Ferreira, A.C.; Rolim, L.G.B.; Neto, J.L.D.S.; Stephan, R.M.; Suemitsu, W.I.; Nicolsky, R. Flywheel Energy Storage System Description and Tests. IEEE Trans. Appl. Supercond.
**2007**, 17, 2154–2157. [Google Scholar] [CrossRef] - Li, X.; Anvari, B.; Palazzolo, A.; Wang, Z.; Toliyat, H. A Utility-Scale Flywheel Energy Storage System with a Shaftless, Hubless, High-Strength Steel Rotor. IEEE Trans. Ind. Electron.
**2017**, 65, 6667–6675. [Google Scholar] [CrossRef] - Werfel, F.N.; Floegel-Delor, U.; Riedel, T.; Rothfeld, R.; Wippich, D.; Goebel, B.; Reiner, G.; Wehlau, N. Towards High-Capacity HTS Flywheel Systems. IEEE Trans. Appl. Supercond.
**2010**, 20, 2272–2275. [Google Scholar] [CrossRef] - Ghosh, S.; Kamalasadan, S. An Energy Function-Based Optimal Control Strategy for Output Stabilization of Integrated DFIG-Flywheel Energy Storage System. IEEE Trans. Smart Grid
**2017**, 8, 1922–1931. [Google Scholar] [CrossRef] - Murakami, K.; Komori, M.; Mitsuda, H. Flywheel Energy Storage System Using SMB and PMB. IEEE Trans. Appl. Supercond.
**2007**, 17, 2146–2149. [Google Scholar] [CrossRef] - Subkhan, M.; Komori, M. New Concept for Flywheel Energy Storage System Using SMB and PMB. IEEE Trans. Appl. Supercond.
**2011**, 21, 1485–1488. [Google Scholar] [CrossRef] - Lee, J.-P.; Park, B.-J.; Han, Y.-H.; Jung, S.-Y.; Sung, T.-H. Energy Loss by Drag Force of Superconductor Flywheel Energy Storage System With Permanent Magnet Rotor. IEEE Trans. Magn.
**2008**, 44, 4397–4400. [Google Scholar] [CrossRef] - Komori, M.; Uchimura, Y. Improving the Dynamics of Two Types of Flywheel Energy Storage Systems With SMBs. IEEE Trans. Appl. Supercond.
**2005**, 15, 2261–2264. [Google Scholar] [CrossRef] - Gee, A.M.; Dunn, R.W. Analysis of Trackside Flywheel Energy Storage in Light Rail Systems. IEEE Trans. Veh. Technol.
**2015**, 64, 1. [Google Scholar] [CrossRef] - Zeraati, M.; Golshan, M.; Guerrero, J. Voltage quality improvement in low voltage distribution networks using reactive power capability of single-phase PV inverters. IEEE Trans. Smart Grid
**2019**, 10, 5057–5065. [Google Scholar] [CrossRef] - Mariscotti, A.; Pozzobon, P.; Vanti, M. Distribution of the Traction Return Current in AT Electric Railway Systems. IEEE Trans. Power Deliv.
**2005**, 20, 2119–2128. [Google Scholar] [CrossRef] - Zhu, Z.; Ma, F.; Wang, X.; Deng, L.; Li, G.; Wei, X.; Tang, Y.; Liu, S. Operation Analysis and a Game Theoretic Approach to Dynamic Hybrid Compensator for the V/v Traction System. IEEE Trans. Power Electron.
**2018**, 34, 8574–8587. [Google Scholar] [CrossRef] - Ma, F.; Xu, Q.; He, Z.; Tu, C.; Shuai, Z.; Luo, A.; Li, Y.; Ma, F.; Shuai, Z. A Railway Traction Power Conditioner Using Modular Multilevel Converter and Its Control Strategy for High-Speed Railway System. IEEE Trans. Transp. Electrif.
**2016**, 2, 96–109. [Google Scholar] [CrossRef] - Liu, L.; Dai, N.; Lao, K.W.; Hua, W. A Co-Phase Traction Power Supply System Based on Asymmetric Three-Leg Hybrid Power Quality Conditioner. IEEE Trans. Veh. Technol.
**2020**, 69, 14645–14656. [Google Scholar] [CrossRef] - Chen, S.-L.; Li, R.-J.; Hsi, P.-H. Traction System Unbalance Problem—Analysis Methodologies. IEEE Trans. Power Deliv.
**2004**, 19, 1877–1883. [Google Scholar] [CrossRef] - Gazafrudi, S.M.M.; Langerudy, A.T.; Fuchs, E.F.; Al-Haddad, K. Power Quality Issues in Railway Electrification: A Comprehensive Perspective. IEEE Trans. Ind. Electron.
**2014**, 62, 3081–3090. [Google Scholar] [CrossRef] - Hu, S.; Xie, B.; Li, Y.; Gao, X.; Zhang, Z.; Luo, L.; Krause, O.; Cao, Y. A Power Factor-Oriented Railway Power Flow Controller for Power Quality Improvement in Electrical Railway Power System. IEEE Trans. Ind. Electron.
**2016**, 64, 1167–1177. [Google Scholar] [CrossRef] - Feng, X.; Gooi, H.B.; Chen, S.X. Hybrid energy storage with multi-mode fuzzy power allocator for PV systems. IEEE Trans. Sustain. Energy
**2014**, 5, 389–397. [Google Scholar] [CrossRef] - Chong, L.W.; Wong, Y.W.; Rajkumar, R.K.; Isa, D. An optimal control strategy for standalone PV system with Battery-Supercapacitor Hybrid Energy Storage System. J. Power Sources
**2016**, 331, 553–565. [Google Scholar] [CrossRef] - Garcia-Torres, F.; Bordons, C. Optimal economical schedule of hy-drogen-based microgrids with hybrid storage using model predic-tive control. IEEE Trans. Ind. Electron.
**2015**, 62, 5195–5207. [Google Scholar] [CrossRef] - Hredzak, B.; Agelidis, V.G.; Jang, M. A model predictive control system for a hybrid battery-ultracapacitor power source. IEEE Trans. Power Electron.
**2013**, 29, 1469–1479. [Google Scholar] [CrossRef] - Zhang, D.; Zhang, Z.; Wang, W.; Yang, Y. Negative Sequence Current Optimizing Control Based on Railway Static Power Conditioner in V/v Traction Power Supply System. IEEE Trans. Power Electron.
**2015**, 31, 200–212. [Google Scholar] [CrossRef] - Jabbour, N.; Mademlis, C. Supercapacitor-Based Energy Recovery System With Improved Power Control and Energy Management for Elevator Applications. IEEE Trans. Power Electron.
**2017**, 32, 9389–9399. [Google Scholar] [CrossRef] - Zhang, S.; Luo, Y.; Wang, J.; Wang, X.; Li, K. Predictive Energy Management Strategy for Fully Electric Vehicles Based on Preceding Vehicle Movement. IEEE Trans. Intell. Transp. Syst.
**2017**, 18, 3049–3060. [Google Scholar] [CrossRef] - Choi, M.-E.; Kim, S.-W.; Seo, S.-W. Energy Management Optimization in a Battery/Supercapacitor Hybrid Energy Storage System. IEEE Trans. Smart Grid
**2011**, 3, 463–472. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Xin, D.; Li, J.; Liu, C.
Research on the Application and Control Strategy of Energy Storage in Rail Transportation. *World Electr. Veh. J.* **2023**, *14*, 3.
https://doi.org/10.3390/wevj14010003

**AMA Style**

Xin D, Li J, Liu C.
Research on the Application and Control Strategy of Energy Storage in Rail Transportation. *World Electric Vehicle Journal*. 2023; 14(1):3.
https://doi.org/10.3390/wevj14010003

**Chicago/Turabian Style**

Xin, Dixi, Jianlin Li, and Chang’an Liu.
2023. "Research on the Application and Control Strategy of Energy Storage in Rail Transportation" *World Electric Vehicle Journal* 14, no. 1: 3.
https://doi.org/10.3390/wevj14010003