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Abstract: The optimal design of a super highspeed flywheel rotor could improve flywheel battery
energy density. The improvement of flywheel battery energy density could enhance the performance
of the flywheel lithium battery composite energy storage system. However, there are still many
problems in the structure, material and flywheel winding of super highspeed flywheels. Therefore,
in this paper, electric flywheel energy and power density parameters are designed based on CPE
(Continuous Power Energy) function and vehicle dynamics. Then, according to the design index
requirements, the structure, size and material of the electric flywheel rotor are designed. Furthermore,
the numerical analysis model of stress and displacement of multi-ring interference fit flywheel rotor
under plane stress state is established. On this basis, the influence laws of flywheel rotor wheel flange
numbers and interlaminar interference on stress distribution of flywheel rotor are analyzed, and
the assembly form of wheel flange is determined. Finally, the stress check of the flywheel rotor is
completed. The results show that the super highspeed flywheel rotor designed in this paper meets
vehicle dynamics requirements in terms of energy storage and power. In terms of strength, it meets
the design requirements of static assembly stress and dynamic stress at maximum speed.

Keywords: super high-speed flywheel; rotor design; performance analysis; energy storage system

1. Introduction

The flywheel system studied in this paper is a “mechanical battery” that organically
combines a high-speed motor with a high-inertia flywheel. Its charge and discharge process
does not involve chemical changes. It has the advantages of green environmental protection,
good temperature adaptability, long cycle life and high power density, and it has broad
application prospects in electric vehicles [1–3]. Some scholars put forward the concept of
a flywheel battery in the 1980s but were limited by the technical conditions at that time,
and it has not been widely used. In recent years, with the progress of composite materials,
high-speed motors, magnetic bearings and power electronics technology, the research on
flywheel batteries has gradually become a hot spot [4].

The development of a highly efficient energy system and the improvement of limited
onboard energy utilization efficiency play an important role in extending the mileage range
of electric vehicles, a common concern of the electric vehicle industry [5]. At present, using
a single lithium battery system as the whole vehicle energy system is the mainstream
technology program in the electric vehicle industry. Using a single lithium battery system
as the whole vehicle energy system has the advantages of simple topology and lower cost.
Still, at the same time, there are problems such as deep coupling between battery working
current and vehicle working conditions and low battery working efficiency [6]. Especially
driving cycle of the urban, high-load conditions with frequent changes are easy to cause
high-current charge and discharge problems of lithium battery, which seriously affects the
working efficiency of battery [7,8].

The composite energy storage system scheme based on a super capacitor-lithium
battery can effectively improve the working efficiency of a lithium battery by taking
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advantage of the instantaneous power intervention advantage of a supercapacitor [9].
However, affected by the lower volume energy density of a super capacitor, the super
capacitor-lithium battery composite energy storage system has great installation difficulties
in an environment of limited layout space, such as a vehicle, limiting the application of
this kind of battery in an electric vehicle, especially in passenger vehicles [10]. The electric
flywheel has the same functions and advantages as the supercapacitor and a larger volume
energy density, which is conducive to improving the feasibility of its application in electric
vehicles [11].

Super high-speed flywheel technology can effectively improve the energy density of
flywheel batteries [12]. When the flywheel is running at high speed, the rotor structure
and material of the flywheel will have a great impact on its mechanical properties. When
the flywheel is running at high speed, the structure and material of the flywheel rotor
will have a great impact on its mechanical properties. At present, the research on super
highspeed flywheels mainly focuses on the development of highspeed motors, the design
and control of magnetic bearing, and the design of the vacuum chamber, while the research
on the design and performance of highspeed flywheel rotor is lacking [13,14]. Therefore,
in this paper, electric flywheel energy and power density parameters are designed based
on vehicle dynamics. Then, the numerical analysis model of stress and displacement of
the multi-ring interference fit flywheel rotor is established. Finally, the stress check of the
flywheel rotor is completed.

2. Design of Flywheel Rotor Energy and Power Parameters

The flywheel battery mainly comprises a flywheel rotor, flywheel control motor, high-
speed bearing, vacuum chamber and DC/DC device, and its basic structure is shown in
Figure 1. There are three working modes of flywheel battery: charge, storage and discharge.
The specific working principles are as follows, shown in Figure 2.
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(1) Charge mode. The flywheel control motor works in the state of the motor. After the
DC/DC device processes the electric energy, the flywheel control motor is driven,
and the coaxial flywheel rotor is accelerated. The electric energy is transformed into
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the kinetic energy of the flywheel rotation. The flywheel rotor reaches the maximum
design speed and can be filled.

(2) Storage mode. The system has neither energy input nor energy output. Due to the
use of a vacuum chamber and electromagnetic bearings, the energy loss is very small,
and the flywheel is almost maintained at a certain speed.

(3) Discharge mode. The flywheel control motor works in the state of power generation.
When the external load has power demand, the high-speed rotating flywheel drives
the coaxial flywheel control motor to rotate. The flywheel control motor generates
alternating current, and the kinetic energy of the flywheel rotor is converted into
electrical energy. The electrical energy is supplied to the load after rectification and
transformation. In this process, the flywheel decelerates. The system no longer
releases energy when the flywheel speed reaches the minimum design speed.

2.1. Design of Flywheel Rotor Energy Parameters

For an electric vehicle equipped with a flywheel-lithium battery composite energy
storage system, the peak power of the whole vehicle, the peak power of lithium battery
and the peak power of the flywheel battery shall meet:

Prep_max≤Pbat_max+Pfb_max (1)

where Prep_max is the maximum power required by the vehicle, which can be calculated
and determined by the vehicle dynamics equation [15]. Pbat_max is the maximum power of
the lithium battery, and Pfb_max is the maximum power of the flywheel battery.

In order to make full use of the advantage of flywheel instantaneous high power
intervention and reduce the power change range of lithium battery, the output power
threshold value of lithium battery is set as Pbat_limit. When the required power of the whole
vehicle is less than Pbat_limit, the lithium battery assumes all the required power of the
whole vehicle. When the required power of the whole vehicle is greater than Pbat_limit, the
flywheel battery is used for compensation control.

Pfb=
{

0, Prep≤Pbat_limit
Prep−Pbat_limit,Prep>Pbat_limit

(2)

where Pfb is the power of the flywheel battery, and Prep is the required power of the
whole vehicle.

The vehicle PE function can be calculated by integrating the power demanded beyond
the lithium battery power threshold Pbat_limit:

F(Pbat_limit)=


0, Prep≤Pbat_limit

t∫
0

(Prep−Pbat_limit)dt,Prep>Pbat_limit
(3)

Within the continuous working time 0-t of the vehicle, firstly, the driving condition of
the whole vehicle can be divided into several periods according to the threshold power
Pbat_limit of the lithium battery. Further, the PE value in each time period can be calculated
according to the PE function. Finally, the maximum PE value in the 0-t time is selected as
the CPE value in the whole travel.

CPE(Pbat_limit)=max{Fi(Pbat_limit)} (4)

where Fi(Pbat_limit) is the PE value of the ith time period.
According to CPE (Continuous Power Energy) function, the influence of different

power thresholds on the coverage ratio of required power under the WLTC (World Light
Vehicle Test Cycle) condition is calculated and determined. The power threshold of the
lithium battery shall be selected to cover most of the required power of the whole vehicle. If
the lithium battery power threshold is too small, the workload of the flywheel battery will
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be overloaded. If the lithium battery power threshold is too large, the flywheel battery will
not be able to “cut the peak and supplement the valley” of the lithium battery output power.
As shown in Figure 3, when the power threshold is 20 kW, the power of lithium battery
can cover 78.2 % of the vehicle demand power, and the flywheel battery can also be fully
utilized. In summary, the power threshold of the lithium battery in this paper is 20 kW,
and the CPE function value is 300 Wh. Considering the flywheel’s energy release depth
and average working efficiency, the maximum energy storage Efb_max of the flywheel
battery can be determined as 370 Wh.
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2.2. Design of Flywheel Rotor Power Parameters

The flywheel battery power is calculated according to the difference between the
peak demand power of the whole vehicle and the lithium battery power threshold; that is,
Pfb_max should satisfy:

Pfb_max≥Prep_max−Pbat_limit (5)

Under the WLTC working condition, the peak demand power of the whole vehicle
Prep_max is 59.3 kW, and the lithium battery power threshold Pbat_limit is 20 kW. Therefore,
the maximum power of the flywheel battery Pfb_max ≥ 39.3 kW, and take the maximum
power of the flywheel battery as 40 kW.

3. Design of Flywheel Rotor Structure and Material

The flywheel rotor is the core energy storage component of the flywheel battery. The
maximum energy stored by the flywheel Efb_max, the moment of inertia j of the flywheel
rotor, the maximum working speed of the flywheel ωmax, the depth of discharge λ and the
minimum working speed ωmin satisfy:

Efb_max=
jω2

max
2

(6)

Γ=
ω2

max−ω2
min

ω2
max

(7)

where Γ is the energy release depth of the flywheel.
The moment of inertia of the annular flywheel is:

j=
πρhR4

0(1−α4)
2

(8)

where h is the height of the flywheel, R0 is the external diameter of the flywheel, α is the
ratio of internal and external diameters, ρ is the material density.
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For the flywheel rotor, the energy storage density e is an important index to measure its
performance, closely related to the maximum velocity speed of the flywheel wheel flange.

e=
Efb_max

m
=

(1+α2)v2
Rmax

4
(9)

where vRmax is the maximum linear velocity of the flywheel rim.
The energy storage density of the flywheel rotor is a direct ratio to the square of the

linear velocity of the flywheel rotor wheel flange. The linear velocity of the flywheel rotor
wheel flange is restricted by the strength of materials. The limit linear velocity of the
common metal materials flywheel rotor wheel flange is generally 300~500 m/s, while the
linear velocity of the flywheel rotor wheel flange of high strength composite materials can
reach 600~1200 m/s. In order to improve the energy storage density of the flywheel rotor,
this paper selects high-strength composite materials to make the flywheel rotor. Owing
to the flywheel rotor and the rotation shaft needing precise fit, the machinability of the
composite materials is poor, and it is easy to cause delamination damage. Therefore, this
paper selects the metal hub to connect the flywheel rotor wheel flange and the rotation
shaft. The flywheel rotor structure designed in this paper is shown in Figure 4.
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As a new type of fiber material, carbon fiber has the advantages of high strength,
high modulus and low density. As a binder, epoxy resin has good adhesion to metals and
non-metals and low density. Therefore, epoxy resin is used as the matrix to bond carbon
fiber T700 to make the composite wheel flange. The properties of the composite materials
are shown in Table 1.

Table 1. Mechanical properties of carbon fiber T700/epoxy resin.

Parameter Value Parameter Value

Circumferential
modulus/GPa 150.7 Circumferential shear

strength/GPa 5.5

Radial modulus/GPa 7 Radial shear
strength/GPa 4.9

Circumferential
Poisson’s ratio 0.3 Density/kg m−3 1590

Radial Poisson’s ratio 0.33 Circumferential
strength/MPa 3206

Aluminum alloy materials have the advantages of low density, good plasticity and
high strength. Aluminum alloy 7075 is selected as the wheel hub material, and its specific
mechanical properties are shown in Table 2.

Table 2. Mechanical properties of aluminum alloy 7075.

Ultimate
Strength/MPa

Elastic
Modulus/MPa Density/kg·m−3 Yield Strength/MPa

588 2800 2760 455



World Electr. Veh. J. 2022, 13, 147 6 of 16

After comprehensively considering the material strength, the energy storage density
of the flywheel rotor and the laboratory protection conditions, the dimensions of the
flywheel rotor are designed according to the flywheel dynamic performance formula and
the maximum wheel flange linear velocity vRmax. The dimensions of the flywheel rotor are
shown in Table 3.

Table 3. Geometric parameters of flywheel rotors.

Component Moment of
Inertia/kg m2

External
Diame-
ter/mm

Internal
Diame-
ter/mm

Height/mm Quality/kg

Wheel flange 0.093 300 228 114 5.28
Wheel hub 0.027 228 212 114 2.85

4. Modeling of Flywheel Rotor Stress with Interference Fit
4.1. Modeling Analysis of Single Layer Composite Wheel Flange Stress

When the flywheel rotor rotates around its central axis, it can be simplified as an
orthotropic ring of plane stress state only under the action of radial inertial force, and its
equilibrium equation is:

dσr

dr
+

σr−σθ

r
+ρω2r=0 (10)

where σr is the radial stress, σθ is the hoop stress, ρ is the material density, ω is the rotational
angular speed, r is the radius.

For anisotropic materials, the relationship between stress and strain is shown in
Equation (11).  σr=

Eθ

λ2−v2
θr
(εr+vθrεθ)

σθ= Eθ

λ2−v2
θr
(λ2εr+vθrεθ)

(11)

where εr is the radial strain, εθ is the hoop strain, λ=
√

Eθ/Er is the elastic modulus ratio, Eθ

is the hoop elastic modulus, Er is the radial elastic modulus, vθr is Poisson’s ratio.
The relationship between wheel flange strain and displacement ur is:{

εr= dur
dr

εθ= ur
r

(12)

When the wheel flange boundary is free, the expressions of the radial stress and hoop
stress of the flywheel rotor can be obtained as follows [16].{

σθ=ρω2r2
0

3+vθr
9−λ2 [λl(r/r0)

λ−1+λ(l−1)(r/r0)
−λ−1−λ2+3vθr

3+vθr
(r/r0)

2]

σr=ρω2r2
0

3+vθr
9−λ2 [l(r/r0)

λ−1−(l−1)(r/r0)
−λ−1−(r/r0)

2]
(13)

where l=(β−λ+1−β2)/(β−λ−1−βλ−1), β=ri/r0 is the ratio of inner radius and outer radius.

4.2. Modeling of Composite Wheel Flange Stress in Multilayer Interference Assembly

Carbon fiber composites are anisotropic materials with high strength along the fiber
direction but very low strength perpendicular to the fiber direction. The strength perpen-
dicular to the fiber direction restricts the increase of the flywheel linear velocity. The radial
strength of the flywheel can be effectively improved by using a multi-layers interference
assembly wheel flange. For the wheel flange of multi-layer interference assembly, it is gen-
erally necessary to assemble layer by layer from the inside to the outside, firstly assemble
the innermost two layers, then assemble the third layer, and finally to the Nth layer, a total
of N − 1 times of assembly are required. Figure 5 is a schematic diagram of the assembly
of a three layers composite wheel flange. After assembly, the first and second layers of the
wheel flange are regarded as a whole without initial stress. The inner radius and outer
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radius are ri1, Ro2, and the inner radius and outer radius ratio is β’
2=ri1/Ro2. Consider the

first layer and the second layer as the inner layer and the third layer wheel flange as the
outer layer to assemble it.
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The interference δ2 is:

δ2=Ro2−r3=R2+
2P1R2λβλ+1

2

Eθ(1−β2λ
2 )
−r3 (14)

where P1 is the pressure at the contact surface of the first layer wheel flange and the second
layer wheel flange.

When assembling the third layer wheel flange, the pressure at the contact surface of
the second layer wheel flange and the third layer wheel flange is as follows [17].

P2=
Eθδ2

Ro2
1−β’2λ

2
[(λ−vθr)+β’2λ

2 (λ+vθr)]+
r3

1−β2λ
3

[β2λ
3 (λ−vθr)+(λ+vθr)]

(15)

Under the action of P2, the radial stress and hoop stress of the inner layer are: σ2’
r = −P2

1−β’2λ
2

[(r/r0)
λ−1−β’2λ

2 (r/r0)
−λ−1]

σ2’

θ = −P2λ

1−β’2λ
2

[(r/r0)
λ−1−β’2λ

2 (r/r0)
−λ−1]

(16)

Under the action of P2, the radial stress and hoop stress of the outer layer are:
σ31

r = P2βλ+1
3

1−β2λ
3

[(r/r0)
λ−1−(r/r0)

−λ−1]

σ31
θ = P2λβλ+1

3
1−β2λ

3
[(r/r0)

λ−1−(r/r0)
−λ−1]

(17)

Then the wheel flange size can be obtained as:
Ri2=ri1−

2P2Ro2λβ’λ
2

Eθ(1−β’2λ
2 )

Rm2=Ro2− P2Ro2
Eθ(1−β’2λ

2 )
[(λ−vθr)+β’2λ

2 (λ+vθr)]

R03=R3+ 2P2R3λβλ+1
3

Eθ(1−β2λ
3 )

(18)

By analogy, the actual interference amount when assembling the Nth layer wheel
flange is as follows [17].

δN−1=R0(N−1)−rN=RN−1−rN+
2PN−2RN−1λβ’λ+1

N−1

Eθ(1−β’2λ
N−1)

(19)
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where R0(N−1) is the outer radius of the wheel flange after N − 1 times of assembly,
β’

N−1 is the ratio of the inner radius and outer radius of the wheel flange after N − 1
times of assembly.

When performing N − 1 assembly, the pressure PN−1 of the contact surface is:

PN−1=
EθδN−1

R0(N−1)

1−β’2λ
N−1

[(λ−vθr)+β’2λ
N−1(λ+vθr)]+

rN
1−β2λ

N
[β2λ

N (λ−vθr)+(λ+vθr)]
(20)

Adding the initial stress of the N − 1th assembly to the total initial stress of the first N
− 2 assembly, the initial stress of the N-th layer of interference assembly composite wheel
flange can be obtained as follows [17].



σ1
r

σ2
r

σ3
r
...

σN−1
r
σN

r


=



σ11
r

σ21
r

σ31
r
...

σ
(N−1)1
r
σ(N)1

r

1
0
0
...
0
0

1
1
0
...
0
0

· · ·
· · ·
· · ·
. . .
· · ·
· · ·

1
1
1
...
0
0

1
1
1
...
1
0


N×(N−1)



1
σ1’

r

σ2’
r
...

σN−2’
r

σN−1’
r


1×(N−1)

(21)



σ1
θ

σ2
θ

σ3
θ
...

σN−1
θ
σN

θ


=



σ11
θ

σ21
θ

σ31
θ
...

σ
(N−1)1
θ

σ
(N)1
θ

1
0
0
...
0
0

1
1
0
...
0
0

· · ·
· · ·
· · ·
. . .
· · ·
· · ·

1
1
1
...
0
0

1
1
1
...
1
0


N×(N−1)



1
σ1’

θ

σ2’

θ
...

σN−2’

θ

σN−1’

θ


1×(N−1)

(22)

where σi
r, σi

θ(i = 1,2, . . . , N) are the initial radial stress and hoop stress of the wheel flange
of the i-th layer, σi1

r ,σi1
θ (i = 1,2, . . . , N) is the initial radial stress and hoop stress of the i-th

layer wheel flange when assembled to the i-th layer rim, σi’

θ , σi’
r (i = 1,2, . . . , N − 1) is the

radial and hoop stress of the inner layer I − 1 wheel flange when assembled to the wheel
flange of the i-th layer.

After the N-layers of the wheel flange are assembled, the inner radius and outer radius
dimensions of the overall wheel flange are:

Ri(N−1)=r1−
N−1
∑
i=1

2PiR0iλβ’2λ
i

Eθ(1−β’2λ
i )

R0N=RN+ 2PN−1RNλβλ+1
N

Eθ(1−β2λ
N )

(23)

4.3. Flywheel Rotor Stress Analysis
4.3.1. Analysis of Factors Influencing Stress of Flywheel Rotor

(1) Analysis of the influence of the number of wheel flange layers on the stress of the
flywheel rotor

Single layer, double layer and three layers wheel flange layers are selected for analysis
by commercial simulation software Ansys. The thickness of each layer of wheel flange
under the same scheme is the same. Scheme I, II and III correspond to the layer thickness
of 36 mm, 18 mm and 12 mm, respectively. The interference between all contact surfaces
is set to 0.5 mm. The three-dimensional models corresponding to the three schemes are
shown in Figure 6.
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4.3. Flywheel Rotor Stress Analysis 
4.3.1. Analysis of Factors Influencing Stress of Flywheel Rotor 

(1) Analysis of the influence of the number of wheel flange layers on the stress of the 
flywheel rotor 

Single layer, double layer and three layers wheel flange layers are selected for analy-
sis by commercial simulation software Ansys. The thickness of each layer of wheel flange 
under the same scheme is the same. Scheme I, II and III correspond to the layer thickness 
of 36 mm, 18 mm and 12 mm, respectively. The interference between all contact surfaces 
is set to 0.5 mm. The three-dimensional models corresponding to the three schemes are 
shown in Figure 6. 

   
(a) (b) (c) 

Figure 6. Three-dimensional model of flywheel rotor under different schemes. (a) Scheme I; (b) 
scheme II; (c) scheme III. 

Because there are spokes in the middle of the wheel hub axis, when the flywheel rotor 
rotates at high speed, the radial displacement at both ends of the wheel hub under the 
action of centrifugal force must be greater than the middle of the wheel hub. Hence, the 

Figure 6. Three-dimensional model of flywheel rotor under different schemes. (a) Scheme I;
(b) scheme II; (c) scheme III.

Because there are spokes in the middle of the wheel hub axis, when the flywheel rotor
rotates at high speed, the radial displacement at both ends of the wheel hub under the action
of centrifugal force must be greater than the middle of the wheel hub. Hence, the middle of
the wheel hub is most likely to be disengaged, resulting in the failure of the flywheel rotor.
Select the wheel hub tangent as the analysis path. The obtained stress distribution curve is
shown in Figure 7. It can be seen that the radial compressive stress on the flywheel rotor
is proportional to the number of flange layers under the condition of the same interlayer
interference, and the radial compressive stress on the wheel hub increases most obviously
with the increase of the number of flange layers. For the circumferential stress, with the
increase of the number of wheel flange layers, the maximum circumferential stress on the
wheel flange will increase significantly, and a sudden change will occur at the junction of
the two layers, showing a step jump increase and gradual decrease from inside to outside
in the layer. The radial compressive stress can be generated in the flywheel rotor by using
the interference assembly method to improve the radial strength of the flywheel rotor. Still,
the increase of the radial strength will sacrifice some of the circumferential strength.
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The stress distribution curve of the flywheel rotor under the maximum speed of each
scheme is shown in Figure 8. Due to the centrifugal force, most of the radial compressive
stress on the wheel hub is converted into tensile stress. The maximum tensile stress is
inversely proportional to the number of the wheel flange layers, and the compressive
stress on the wheel flange is also significantly reduced compared to when the flywheel is
stationary. In scheme I, the radial stress at the junction of the wheel flange and the wheel
hub is 3.77 Mpa, indicating that the interference assembly pressure between the wheel
flange and the wheel hub has been completely released, and the flywheel rotor has failed.
However, there is still radial compressive stress between the layers of the flywheel rotor
in scheme II and scheme III, which can meet the use requirements. The changing trend of
hoop stress is similar to that in the static state, but the stress value increases greatly.
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The flywheel rotor assembled with single ring wheel flange interference cannot meet
the use requirements when the interference is 0.5 mm. Theoretically, increasing the interfer-
ence will further improve the strength of the flywheel rotor, but it is difficult to assemble
when the interference exceeds 0.5 mm. Multi-layer interference assembly can improve
the flywheel rotor’s stress level, improve the flywheel rotor’s strength, and reduce the
machining difficulty of the flywheel rotor. However, the wheel flange cannot be infinitely
layered. When there are too many layers, material failure occurs due to excessive radial
compressive stress. In this paper, three layers interference assembly scheme III is selected
as the structural design scheme.

(2) Influence of Interlayer Interference on Stress of Flywheel Rotor
In order to study the influence of interlayer interference on flywheel rotor stress, the

flywheel rotor assembled with three layers of interference is taken as the research object,
and the influence of interlayer interference loading on flywheel rotor stress is analyzed
under the same overall interference. The setting of interlayer interference under different
schemes is shown in Table 4.

Table 4. Interference between contact layers.

Scheme Scheme I Scheme II Scheme III

Interference between the inner layer
and the wheel hub/mm 0.3 0.4 0.5

Interference between the middle layer
and the inner layer/mm 0.4 0.4 0.4

Interference between the outer layer
and the middle layer/mm 0.5 0.4 0.3

The stress distribution curve of the flywheel rotor under the static state of each scheme
is shown in Figure 9. The maximum radial compressive stress under the three schemes
occurs at the contact surface between the inner layer of the wheel flange and the wheel
hub. The maximum radial compressive stress on the wheel hub is greatly affected by the
interference between the inner wheel flange and the wheel hub. The radial compressive
stress on the wheel hub increases significantly with the increase of the interference. The
radial compressive stress on the wheel flange has poor transmissibility between the rims of
each layer and can only affect the adjacent rims. The hoop stress will jump at the junction
of the two layers, and the jump amplitude is proportional to the interference at the junction.
The interference between the outer layer and the middle layer will have a great impact
on the peak hoop stress. Since the interference at the junction of the wheel hub and inner
rim will significantly affect the radial stress on the wheel hub. Therefore, it is necessary to
decrease the interference at the junction to avoid fatigue failure caused by the long-term
stress of the wheel hub.
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The stress curve of the flywheel rotor at the highest speed is shown in Figure 10. The
wheel hub’s radial compressive stress has been transformed into tensile stress. The stress
value is inversely proportional to the interference between the inner layer of the wheel hub
and the rim. The maximum compressive stress on the wheel flange occurs in the inner
layer, and the maximum tensile stress occurs in the outer layer of the wheel flange. When a
small interference is used between the inner layer of the wheel flange and the wheel hub,
and a large interference is used between the outer layer and the middle layer, the overall
radial stress level on the wheel flange is low, and the radial stress level in each layer is
basically the same, which can effectively prevent fatigue damage of a layer in advance due
to high-stress level. In terms of hoop stress, when a small amount of interference is used
between the outer layer and the middle layer, the hoop stress level on the whole flywheel
wheel flange is low.
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To sum up, from the perspective of improving the stress level of the flywheel rotor,
when selecting the interference between flange layers of the flywheel rotor, the smaller
interference should be selected in the inner layer of the flange, and the larger interference
should be selected in the outer layer. Scheme I is selected as the final design scheme in
this paper.

4.3.2. Flywheel Rotor Stress Check

Through the analysis in the previous section, the number of layers of flywheel rotor
flange and the interference between layers is determined. This section checks the stress of
the designed flywheel rotor to ensure its safety in the working process.

(1) Stress check of flywheel rotor in a static state
Figure 11 shows the cloud diagram of an equivalent force of the flywheel rotor under

a static state. The maximum equivalent stress on the flywheel rotor appears on the outer
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wheel flange, and the maximum value is 630.16 Mpa, which does not exceed the strength
of the wheel flange material. Because the strength of the hub material is much lower than
that of the wheel flange, the maximum equivalent stress on the wheel hub appears at
the junction of the spoke and the inner edge of the wheel hub. This is because when the
pressure generated by the interference assembly is transferred here, the wheel hub structure
becomes uneven, resulting in stress concentration at the junction. The maximum value of
the equivalent stress is 432.71 Mpa. Within the yield strength of the wheel hub, the flywheel
rotor does not fail in terms of the equivalent stress.
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inside to the outside. The maximum equivalent stress on the wheel hub appears at the 
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material. The flywheel rotor is safe at the highest speed. 

Figure 11. Equivalent stress nephogram of flywheel rotor in a static state. (a) Overall equivalent
stress cloud diagram of flywheel rotor; (b) Equivalent stress cloud map of the wheel hub.

The stress nephogram of wheel flange under a static state is shown in Figure 12. The
outer wheel flange’s outer side bears radial tensile stress, the rest of the wheel flange
bears radial compressive stress, and the flywheel is under pressure. The maximum radial
compressive stress borne by the rim is located in the middle of the inner layer along the
axial direction. The maximum compressive stress is 99.92 Mpa, which is less than the radial
compressive strength of the wheel flange material. The maximum radial tensile stress borne
by the rim is 1.44 Mpa, which is less than the radial tensile strength of the wheel flange
material. The hoop stress increases from the inner layer to the outer layer and jumps at the
junction of the two layers. The maximum hoop stress appears at the outer wheel flange,
with a maximum value of 604.91 Mpa, less than the hoop tensile strength of the wheel
flange material.

World Electr. Veh. J. 2022, 13, x FOR PEER REVIEW 13 of 16 
 

  
(a) (b) 

Figure 11. Equivalent stress nephogram of flywheel rotor in a static state. (a) Overall equivalent 
stress cloud diagram of flywheel rotor; (b) Equivalent stress cloud map of the wheel hub. 

The stress nephogram of wheel flange under a static state is shown in Figure 12. The 
outer wheel flange's outer side bears radial tensile stress, the rest of the wheel flange bears 
radial compressive stress, and the flywheel is under pressure. The maximum radial com-
pressive stress borne by the rim is located in the middle of the inner layer along the axial 
direction. The maximum compressive stress is 99.92 Mpa, which is less than the radial 
compressive strength of the wheel flange material. The maximum radial tensile stress 
borne by the rim is 1.44 Mpa, which is less than the radial tensile strength of the wheel 
flange material. The hoop stress increases from the inner layer to the outer layer and jumps 
at the junction of the two layers. The maximum hoop stress appears at the outer wheel 
flange, with a maximum value of 604.91 Mpa, less than the hoop tensile strength of the 
wheel flange material. 

  
(a) (b) 

Figure 12. Wheel flange direction stress cloud in a static state. (a) Radial stress contour of wheel 
flange; (b) Hoop stress contour of wheel flange. 

(2) Stress analysis of flywheel rotor at maximum speed 
The equivalent stress nephogram of the flywheel rotor at the highest speed is shown 

in Figure 13. The maximum equivalent stress on the flywheel rotor appears on the inner 
side of the outermost rim. The maximum value is 1087.6 MPa, and the equivalent stress 
on the wheel flange changes in a regular layered manner, increasing in steps from the 
inside to the outside. The maximum equivalent stress on the wheel hub appears at the 
junction of the spoke and the axle hole, which is caused by the sudden change of the hub 
structure when the centrifugal force is transmitted from outside to inside. The maximum 
equivalent stress is 419.57 MPa, which is less than the yield strength of the wheel hub 
material. The flywheel rotor is safe at the highest speed. 

Figure 12. Wheel flange direction stress cloud in a static state. (a) Radial stress contour of wheel
flange; (b) Hoop stress contour of wheel flange.



World Electr. Veh. J. 2022, 13, 147 13 of 16

(2) Stress analysis of flywheel rotor at maximum speed
The equivalent stress nephogram of the flywheel rotor at the highest speed is shown

in Figure 13. The maximum equivalent stress on the flywheel rotor appears on the inner
side of the outermost rim. The maximum value is 1087.6 MPa, and the equivalent stress on
the wheel flange changes in a regular layered manner, increasing in steps from the inside to
the outside. The maximum equivalent stress on the wheel hub appears at the junction of
the spoke and the axle hole, which is caused by the sudden change of the hub structure
when the centrifugal force is transmitted from outside to inside. The maximum equivalent
stress is 419.57 MPa, which is less than the yield strength of the wheel hub material. The
flywheel rotor is safe at the highest speed.
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flange, as shown in Figure 15a. It can be seen that the outer layer and the middle layer of 
the wheel flange are in good contact without separation. As shown in Figure 15b, the con-
tact pressure nephogram between the outer and middle layers of the wheel flange is ex-
tracted. It can be seen that the pressure between the wheel flange and the wheel hub is 
lower in the middle and higher on both sides along the axial direction. That is, the middle 
direction is the most prone to loosening, and the minimum pressure is 13.74 Mpa, which 
indicates that there is always pressure between the wheel flange layers at the highest 
speed, and the flywheel rotor is safe. 

Figure 13. Equivalent stress nephogram of flywheel rotor at maximum speed. (a) Overall equivalent
stress cloud diagram of flywheel rotor; (b) Equivalent stress cloud map of the wheel hub.

The radial and hoop stress contours of the flywheel rotor wheel flange at the highest
speed are shown in Figure 14. Under the action of centrifugal force, the compressive stress
on the wheel flange of the flywheel is greatly reduced. The maximum compressive stress
on the wheel flange appears at the junction of the inner wheel flange and the wheel hub,
and the maximum value is about 38.50 MPa, which is smaller than the radial compressive
strength of the wheel flange material. The maximum radial tensile stress on the wheel
flange appears on the outer wheel flange, and the maximum value is 0.62 MPa, less than
the radial tensile strength of the wheel flange material, and no failure occurs. At the highest
speed, the hoop stress decreases in steps from the inside to the outside. The maximum
hoop stress on the wheel flange is 1079.8 MPa, which is much smaller than the hoop tensile
strength of the wheel flange material, and no failure occurs.

World Electr. Veh. J. 2022, 13, x FOR PEER REVIEW 14 of 16 
 

  
(a) (b) 

Figure 13. Equivalent stress nephogram of flywheel rotor at maximum speed. (a) Overall equivalent 
stress cloud diagram of flywheel rotor; (b) Equivalent stress cloud map of the wheel hub. 

The radial and hoop stress contours of the flywheel rotor wheel flange at the highest 
speed are shown in Figure 14. Under the action of centrifugal force, the compressive stress 
on the wheel flange of the flywheel is greatly reduced. The maximum compressive stress 
on the wheel flange appears at the junction of the inner wheel flange and the wheel hub, 
and the maximum value is about 38.50 MPa, which is smaller than the radial compressive 
strength of the wheel flange material. The maximum radial tensile stress on the wheel 
flange appears on the outer wheel flange, and the maximum value is 0.62 MPa, less than 
the radial tensile strength of the wheel flange material, and no failure occurs. At the high-
est speed, the hoop stress decreases in steps from the inside to the outside. The maximum 
hoop stress on the wheel flange is 1079.8 MPa, which is much smaller than the hoop tensile 
strength of the wheel flange material, and no failure occurs. 

  
(a) (b) 

Figure 14. Flywheel rotor stress nephogram at maximum speed. (a) Radial stress cloud diagram of 
flywheel rotor; (b) Hoop stress cloud diagram of flywheel rotor. 

The outer layer and the middle layer of the flywheel rotor are most easily separated. 
In order to further confirm the safety of the flywheel rotor, extract the cloud diagram of 
the contact state between the outer layer and the middle layer of the flywheel rotor wheel 
flange, as shown in Figure 15a. It can be seen that the outer layer and the middle layer of 
the wheel flange are in good contact without separation. As shown in Figure 15b, the con-
tact pressure nephogram between the outer and middle layers of the wheel flange is ex-
tracted. It can be seen that the pressure between the wheel flange and the wheel hub is 
lower in the middle and higher on both sides along the axial direction. That is, the middle 
direction is the most prone to loosening, and the minimum pressure is 13.74 Mpa, which 
indicates that there is always pressure between the wheel flange layers at the highest 
speed, and the flywheel rotor is safe. 

Figure 14. Flywheel rotor stress nephogram at maximum speed. (a) Radial stress cloud diagram of
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The outer layer and the middle layer of the flywheel rotor are most easily separated.
In order to further confirm the safety of the flywheel rotor, extract the cloud diagram of
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the contact state between the outer layer and the middle layer of the flywheel rotor wheel
flange, as shown in Figure 15a. It can be seen that the outer layer and the middle layer
of the wheel flange are in good contact without separation. As shown in Figure 15b, the
contact pressure nephogram between the outer and middle layers of the wheel flange is
extracted. It can be seen that the pressure between the wheel flange and the wheel hub is
lower in the middle and higher on both sides along the axial direction. That is, the middle
direction is the most prone to loosening, and the minimum pressure is 13.74 Mpa, which
indicates that there is always pressure between the wheel flange layers at the highest speed,
and the flywheel rotor is safe.
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5. Conclusions

In this paper, the design and analysis of the flywheel system used in an electric
vehicle are taken as the research object. Based on the vehicle dynamics characteristics,
the energy storage and power requirements of the whole vehicle for the flywheel are
analyzed and determined. The mathematical model of the flywheel rotor stress in a multi-
layer interference assembly is established. The size design of the flywheel battery rotor is
completed, and the stress analysis of the flywheel rotor with multi-layer flange interference
assembly is carried out. Based on the finite element software Ansys, the influence of
the number of layers of the flywheel rotor wheel flange and the amount of interference
between layers on the flywheel rotor stress distribution are analyzed emphatically and the
reasonable flange structure is selected. The stress check is carried out under two extreme
conditions to ensure its strength meets the use requirements. The research conclusions are
as follows:

(1) The selection of the power threshold should try to make the power cover most of
the required power of the whole vehicle. If the power threshold is too small, the
workload of the flywheel battery will be too heavy. If the threshold value is too high,
the flywheel battery will not be able to “cut peaks and make up valleys” for the output
power of the lithium battery.

(2) The radial compressive stress can be generated in the flywheel rotor by using the
interference assembly method to improve the radial strength of the flywheel rotor.
Still, the increase of the radial strength will sacrifice some of the circumferential
strength. Multi-layer interference assembly can improve the flywheel rotor’s stress
level, improve the flywheel rotor’s strength, and reduce the machining difficulty of the
flywheel rotor. However, the wheel flange cannot be infinitely layered. When there
are too many layers, material failure occurs due to excessive radial compressive stress.
The three layers interference assembly with a layer thickness of 12 mm is adopted,
which can meet the assembly stress requirements of a super highspeed flywheel rotor.

(3) The hoop stress will jump at the junction of the two layers, and the jump amplitude is
proportional to the interference at the junction. The interference between the outer
layer and the middle layer will have a great impact on the peak hoop stress. Therefore,
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it is necessary to decrease the interference at the junction to avoid fatigue failure
caused by the long-term stress of the wheel hub.

(4) From the point of view of improving the stress level of the flywheel rotor, when
selecting the interference between wheel flange layers of the flywheel rotor, the
smaller interference should be selected in the inner layer of the wheel flange, and the
larger interference should be selected in the outer layer. The interference between
inner layer and wheel hub, middle layer and inner layer, and outer layer and middle
layer are designed to be 0.3, 0.4 and 0.5 mm, respectively, which can meet the design
requirements.
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