
Citation: Zheng, X.; Gao, D.; Zhu, Z.;

Yang, Q. An Early Warning Protection

Method for Electric Vehicle Charging

Based on the Hybrid Neural Network

Model. World Electr. Veh. J. 2022, 13,

128. https://doi.org/10.3390/

wevj13070128

Academic Editor: Vladimir Katic

Received: 7 June 2022

Accepted: 12 July 2022

Published: 15 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

An Early Warning Protection Method for Electric Vehicle
Charging Based on the Hybrid Neural Network Model
Xiaoyu Zheng 1, Dexin Gao 1,*, Zhenyu Zhu 1 and Qing Yang 2

1 College of Automation and Electronic Engineering, Qingdao University of Science & Technology,
Qingdao 266061, China; 4020040050@mails.qust.edu.cn (X.Z.); 2020040030@mails.qust.edu.cn (Z.Z.)

2 College of Information Science and Technology, Qingdao University of Science & Technology,
Qingdao 266061, China; 03390@qust.edu.cn

* Correspondence: gaodexin@qust.edu.cn; Tel.: +86-138-6480-2293

Abstract: During the charging process of the electric vehicle (EV), a spontaneous combustion accident
may occur due to overheating of the battery, causing personal danger and property damage. To
address the charging safety of EVs, this paper proposes a new hybrid EV charging process early
warning protection method by combining Convolutional Long-Short Term Memory (ConvLSTM),
the sliding window method, and the residual analysis method. The method is fully trained by
extracting the deep features of EV charging data through ConvLSTM, eliminating the influence of
erroneous transmission data through the sliding window method, and setting a reasonable warning
threshold through the residual analysis method. The cross-validation results showed that among the
four training sets, the ConvLSTM model of training, set three, had the highest prediction accuracy
compared with the CNN, LSTM, BiLSTM and CNN-LSTM models, with RMSE reaching 0.029, MAPE
reaching 11.37, and r2 reaching 0.89. Training set one had the worst prediction in the four training
sets, and after using it to set the warning threshold, the alarm task was completed five sampling
points earlier. Therefore, the hybrid model can quickly complete the safety warning task, thereby
ensuring the safety of EV charging.

Keywords: electric vehicle; charging process; convolutional long-short term memory; safety early warning

1. Introduction

Compared with traditional vehicles, EVs have great advantages in energy conservation
and emission reduction [1–3]. With the development of the industry, the safety of EVs has
become one of the hot issues, which is not only the key to ensuring the safety of life and
property, but also an important guarantee for the rapid development of the EV market.
Realizing the safety early warning of the power battery of EVs and establishing a perfect
mechanism have become the focus [4,5]. It has been found that the thermal runaway of
the battery is an important cause of the spontaneous combustion of the EV charging [6,7].
Therefore, it is important to build an early warning model to protect the safety of
EV charging.

At present, there are few research studies in the field of safety warnings for the entire
EV charging process. Therefore, the early warning method of a single battery can be
used for reference. Shah et al. [8] derived a dimensionless parameter thermal runaway
number (TRN), whose value determines whether a lithium-ion battery will undergo the
thermal runaway or not. This work laid the foundation for subsequent safety warning
efforts. Lyu et al. [9] designed an online dynamic impedance measurement device for real-
time overcharge warning and early thermal runaway prediction of lithium-ion batteries,
which can effectively reduce the failure rate of thermal runaway. Jiang et al. [10] proposed
a fault diagnosis and thermal runaway warning method of the lithium-ion battery pack
with standard voltage as the identification object, which can achieve not only accurate
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identification of faulty cells, but also the early detection of faults and early warning of
thermal runaway.

Based on the research and analysis of thermal runaway for a single battery, a suitable
early warning method was selected and applied to the entire battery of an EV to solve its
combustion problem. As an emerging method in the field of machine learning, the neural
network has successful practical cases in the fields of computer vision, early warning, and
fault diagnosis. Therefore, the application of the neural network to early warning of the EV
charging process has practical technical support. Since there are few applied cases of neural
networks in the field of EV early warning at this stage, we can learn from other fields such as
CNN [11–13], LSTM [14–16], BiLSTM [17–19], CNN-LSTM [20–22], and ConvLSTM [23–25]
methods for research. In [11], a framework of automatically designed classifiers is proposed
for the early detection of COVID-19 from chest X-ray images, minimizing redundant layers
and improving prediction accuracy, which verifies the feasibility of CNN in the field of
medication safety. In [14], based on the LSTM model, an early warning method for on-site
earthquakes was proposed. Experiments show that this method can generate a highly
nonlinear neural network and derive the alarm probability at each time step. This method
can also effectively conduct an earthquake early warning, which verifies the reliability of
LSTM in the field of geological safety. In [17], based on the BiLSTM model, a model for crop
classification is proposed; it can fill in missing data and completes the classification task,
which validates the accuracy of BiLSTM in the field of agricultural classification. In [20],
a new data-driven method is proposed to use a hybrid deep neural network combining
CNN, LSTM, and the classical neural network for RUL estimation, which verifies the
validity of CNN-LSTM in the field of battery health status. In [23], the ConvLSTM model
is used in traffic prediction, and the evaluation is based on the actual traffic data and the
traffic flow data of the performance evaluation system, which verifies the applicability of
ConvLSTM in the field of transportation convenience.

This research proposes a method for the EV charging safety warnings based on the
ConvLSTM model. This hybrid neural network model uses the CNN model as the input of
the LSTM model, which can solve the timing problem at the same time, train the model in
more dimensions, and fully extract the deep features of the charging data [26,27]. It uses
residual analysis to determine the EV charging status after obtaining the model residuals
through the sliding window. Therefore, in theory, the model has the potential to predict
charging faults. In the next part, the model is trained through the training set, and it is
verified by comparing the predicted data with the true values in the test set. The main
contributions can be summarized as follows:

(1) In terms of model structure; firstly, the Batch Normalization layer is added to speed
up the convergence and prevent the gradient explosion; secondly, deep data features
are extracted by overlaying two ConvLSTM cells; then the array is flattened with
the Flatten layer; finally, a Dense layer is used to extract the correlation between the
features after the nonlinear variation and map them to the output space.

(2) In terms of performance comparison, set the same parameters and compare the
accuracy of the trained CNN, LSTM, BiLSTM, CNN-LSTM, and ConvLSTM models
to verify the feasibility of the proposed ConvLSTM prediction model.

(3) In terms of practical applications, after the trained model meets the model accuracy,
setting the thresholds can realize the model early warning and alarm tasks to predict
the occurrence of faults and to effectively avoid charging accidents in EVs.

The rest of this research is organized as follows. Section 2 describes the EV charging
system and communication information. Section 3 focuses on the model design and the
specific process. Section 4 verifies the model feasibility through experimental analysis. We
summarize the research in Section 5.
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2. Problem Statement
2.1. Electric Vehicle Charging System Analysis

The EV charging platform system includes two parts: front end and backstage. The
two parts cooperate to complete resource allocation and safety early warning work, which
well guarantees the safety performance of the EV charging process. As shown in Figure 1,
the direction of the arrow in the figure indicates the direction of data flow. The composition
and functions of these two parts are as follows:
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Front End: This part is mainly composed of charging equipment and EVs. The
charging pile uses the constant current and constant voltage stage charging method to
supply power for different types of EVs [28]. It transmits the real-time charging data to the
database and executes various control commands of the judgment platform. The Controller
Area Network (CAN) communication protocol is adopted between the EV and the charging
pile to ensure the real-time interaction of information. The battery management system
provides real-time monitoring of single and overall battery status. When the battery
temperature is abnormal, the judgment platform sends out corresponding commands to
control the charging and stopping of the EV.

Backstage: This part is responsible for judging the charging operation state of the EV.
The main charging data in the EV database is normalized and the data set is divided on
this basis. The training set is used for the training of the ConvLSTM prediction model,
and the test set is used for the judgment of the three states of the EV safety, early warning,
and alarm.

2.2. Reference Basis for the Electric Vehicle Charging Process

In the global EV charging industry, there are many charging standards. Standards
include interface standards, which relate to the fit of the connector, and current commu-
nication standards, which affect whether the plug can be energized when inserted. This
section focuses on communication standards for EVs. The European Union mostly uses
the European Norm (EN) standard; the charging standard is mainly IEC 61851-1 [29]. The
United States uses the Society of Automotive Engineers (SAE) as the standard; the charging
standard is mainly SAE J2293/2 [30]. In China’s EV charging industry, the charging stan-
dard is mainly GB/T 27930 [31]. In the paper, the communication standard presented is
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the Chinese standard GB/T 27930. As shown in Table 1, information such as the charging
voltage, charging current and temperature of the EV can be obtained before the EV is
charged. As shown in the battery management system part and the constant current and
constant voltage charging method part in Figure 1, the main status information of the
EV power battery before charging is sent to the charging pile through the CAN bus, and
the charging pile will be adopted according to the rated current and rated voltage of the
EV. The constant current and constant voltage charging method is used to charge the EV.
From the starting point to the time T, the high-power constant current charging method
is adopted, and the charging current is the rated charging current of the EV; at the time T,
the rated voltage value is reached, so it is transferred to the next stage. At this time, the
charging current gradually decreases. During the charging process, the EV sends the main
status information of this phase to the charging pile in real-time and the information is
shown in Table 2. If no abnormal condition occurs during the charging process, the EV
battery pack will stop charging when it reaches 99.8% of the rated capacity to prevent the
vehicle from burning due to overcharging.

Table 1. Main status information before charging of the electric vehicle battery.

Start
Byte

Word
Length/B Parameter Unit Precision

1 2 Vehicle power battery rated capacity A·h 0.1
3 2 Vehicle power battery rated voltage V 0.1
5 2 Vehicle power battery rated current A 0.1
7 2 Vehicle power battery demand voltage V 0.1
9 2 Vehicle power battery demand current A 0.1

11 2 The maximum allowable voltage of the
vehicle power battery V 0.1

13 2 The maximum allowable current of the
vehicle power battery A 0.1

15 2 The maximum allowable temperature
of the vehicle power battery

◦C 1

17 2

Charging method:
(the first stage: constant

current charging;
the second stage: constant

voltage charging)

First stage: A
Second
stage:V

0.1

Table 2. Main status information during charging of the electric vehicle battery.

Start Byte Word Length/B Parameter Unit Precision

1 2 Charge voltage measurement V 0.1
3 2 Charge current measurement A 0.1

5 2 Charge temperature
measurement

◦C 0.1

7 2 Cumulative charging time min 1
9 2 Estimate remaining charging time min 1

In Tables 1 and 2, the “Start byte” indicates the storage location for the data transfer
process of the EV CAN communication protocol, and the “Word length/B” is the data
storage range of the EV CAN communication protocol.

2.3. Analysis of the Model Selection Process

After reviewing the applications of neural network algorithms in different fields, the
advantages and disadvantages of CNN, LSTM, BiLSTM, CNN-LSTM, and ConvLSTM were
objectively evaluated, and the ConvLSTM model was finally chosen according to the actual
EV charging application. In the actual working condition, the method proposed in this
paper is different training models for different types of EV models, so the speed of model
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training in the prenormal charging state of EVs should be considered when selecting the
model. Since the ConvLSTM model can handle spatio-temporal features simultaneously
and has a simple structure and fast training speed, the model is suitable for application to
the field of real-time EV warning. After charging is completed, the work of the platform
is to keep its model on file and update it in real time to facilitate rapid prediction and
evaluation of the EV at that charging point next time. The comparison of the advantages
and disadvantages of different models is shown in Table 3.

Table 3. Comparison of the advantages and disadvantages of different models.

Methodology Model Advantage Model Disadvantage Application Field References

CNN

1. Feature extraction
can be automated;

1. Training results do not easily
converge to a global minimum; Charging safety [12]

2. Shared convolution
kernel, can handle
high-dimensional data.

2. Model improvement is more
difficult due to encapsulation
of feature extraction.

Fault
Diagnosis [13]

LSTM

1. Long time memory
function to solve sequence
modeling problems;

1. Disadvantages in
parallel processing;

Video
Recognition [15]

2. Resolved the problem of
gradient disappearance and
gradient explosion.

2. Average prediction
compared to some of
the latest networks.

Economic forecasts [16]

BiLSTM

1. Information dependency can
be captured in both directions;

1. Inability to transmit
start-point information for
overly long sequences well;

Power
Dispatch [18]

2. More effective
where two-way
forecasting is required.

2. Inability to calculate the
result of the next moment
across the previous moment.

Wind speed forecast [19]

CNN-LSTM

1. Has the advantages of
CNN and is widely used
in feature engineering;

1. Unable to solve the
prediction problem for
bi-directional transmission;

Battery
Prognostics [21]

2. Has the advantages of
LSTM and is widely used
in time series.

2. Prediction effect limited
by sequence length.

Genetic
Prediction [22]

ConvLSTM

1. Not only can temporal
relationships be established,
but also spatial features
can be portrayed;

1. Single time series problem,
prediction results may not be
as good as LSTM;

Video
Detection [24]

2. State-to-state switching
can be converted into
a convolutional calculation.

2. Single space series problem,
prediction results may not be
as good as CNN.

Fatigue
Monitoring [25]

3. Design of Early Warning Hybrid Model for Charging Process
3.1. Introduction to the Components of the Early Warning Hybrid Model

The early warning protection method of the EV charging process is divided into four
modules: charging data selection and processing, model building, sliding window, and
state discrimination.

(1) Data selection and preprocessing: The charging data such as charging voltage, charg-
ing current, charging temperature, and charging time of the EV are transmitted to the
charging pile through the CAN bus, and the charging pile transmits it to the backstage
database. The backstage platform normalizes the charging data. The structure is
shown in the data selection and preprocessing part of Figure 2.
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Among them, the input features of the charging data are normalized and the data
set is mapped between [−1, 1] in order to prevent errors caused by data variation and to
improve the accuracy of the ConvLSTM model. The calculation formula is:

Xout =
xi − ximin

ximax − ximin
(1)

where xi represents the actual value of the EV at the moment of charging i; ximax, ximin rep-
resents the maximum and minimum values at time i before normalization; Xout represents
xi normalized output charge value.

(2) Model construction: CNN is a neural network consisting of a convolutional layer,
a pooling layer, and an output layer. It can share the weights of the convolutional
kernel, reduce the free parameters, reduce the complexity of the network, and reduce
overfitting, which has great advantages. It also has a powerful time series feature and
extraction capability. Its calculation formula is:

ct = f (WCNN ∗ nt + bCNN) (2)

where WCNN represents the weight coefficient of the filter in the convolutional layer of the
EV charging data; nt represents the EV charging data at time t; ∗ represents a convolution
operation; bCNN represents the deviation coefficient of the convolution operation of EV
charging data; f represents the activation function of the EV convolution operation; ct
represents the EV charging data sequence extracted after convolution.

The LSTM network consists of three main gate structures, i.e., the input gate, the
output gate, and the forget gate. These three gates and activation function work together
to filter information from historical data, retain useful information, and discard useless
information. It has a strong learning ability. The structure is shown in the model building
part of Figure 3. Its calculation formula is:
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it = σ(Wi × [xt, ht−1, ct−1] + bi)
ft = σ(W f × [xt, ht−1, ct−1] + b f )
ct = ft × ct−1 + it × tan h(Wc × [xt, ht−1] + bc)
ot = σ(Wo × [xt, ht−1, ct] + bo)
ht = ot × tan h(ct)

(3)

where ft, it and ot represent the forget gate, the input gate, and the output gate, respectively;
xt represents the input data at t time step; ct represents the status of the memory cell at t
time step; ht represents the output data at the previous time step; σ represents the sigmoid
function; tan h is the activation function; W represents the weight matrices; and b represents
the bias vectors.
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The ConvLSTM uses CNN as part of the input of LSTM, different from the LSTM, the
ConvLSTM uses convolutional operations, and the model is better able to extract deeper
features of EV charging data. The structure is shown in the model building part of Figure 2.
The updated formula is:

it = σ(Wxi � xt + Whi � ht−1 + Wci ◦ ct−1 + bi)
ft = σ(Wx f � xt + Wh f � ht−1 + Wc f ◦ ct−1 + b f )
ct = ft ◦ ct−1 + it ◦ tan h(Wxc � xt + Whc � ht−1 + bc)
ot = σ(Wxo � xt + Who � ht−1 + Wco ◦ ct + bo)
ht = ot ◦ tan h(ct)

(4)

where � represents the convolution operations and ◦ represents the multiplication of the
corresponding elements of the matrix, known as the Hadamard product.

(3) Sliding window: Using the sliding window analysis method, a sliding window of
length N is specified, and the data is processed through it. After the window slides
forward one point, the predicted value is added to this window to generate a new
window of the same sequence length. This process is repeated until the window is
covered by the true value. Through the obtained several continuous sub-time series
data, the prediction residual is continuously processed and analyzed to eliminate the
influence of wrong charging data on the residual change during the transmission
process, thereby avoiding false alarms effectively. The structure is shown in the Sliding
window part of Figure 2.

When the width of the sliding window is N, the calculation formulas of the mean and
standard deviation of the residuals under this window are:

X = 1
N

N
∑

i=1
ei

S =

√
1

N−1

N
∑

i=1
(ei − X)

(5)
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where X indicates the mean value of the residual of the charging temperature; S is the
standard deviation of the residual of the charging temperature; ei denotes the residual of
the ith sampling point in the sliding window.

(4) Status discrimination: The structure is shown in the status discrimination part of
Figure 2. Using the sliding window to analyze and process the residual of the normal
charging data and set the appropriate warning threshold. The formula for calculating
the early warning threshold is:


XE1 = k1

∣∣Xmax
∣∣

XE2 = −k1
∣∣Xmax

∣∣
SE = k2Smax

(6)

where
∣∣Xmax

∣∣ is the maximum absolute value of the residual mean for charge temperature;
Smax is the maximum value of the residual standard deviation for the charging temperature;
k1 represents the early warning coefficient of the residual mean; k2 represents the early
warning coefficient of the residual standard deviation; XE1 and XE2 represents the upper
and lower early warning limits of the residual mean, respectively; SE is the upper early
warning limit of the residual standard deviation.

The formula for calculating the alarm threshold is:
XW1 = k3

∣∣Xmax
∣∣

XW2 = −k3
∣∣Xmax

∣∣
SW = k4Smax

(7)

where k3 represents the alarm coefficient of the residual mean; k4 represents the alarm
coefficient of the residual standard deviation; XW1 and XW2 represents the upper and lower
alarm limits of the residual mean, respectively; SW is the upper alarm limit of the residual
standard deviation.

The specific EV charging status judgement criteria in this paper are shown in Table 4:

Table 4. Criteria for judging the charging status of electric vehicles.

Electric Vehicle Charging Status Discriminatory Criteria

Early warning status (1) Tr > XE1 and Tr > SE
(2) Tr < XE2 and Tr > SE

Alarm status
(1) Tr > XW1
(2) Tr < XW2
(3) Tr > SW

In Table 4, Tr represents the temperature residuals, XE1 represents the upper early
warning limits of the residual mean, XE2 represents the lower early warning limits of the
residual mean, SE is the upper early warning limit of the residual standard deviation, XW1
represents the upper alarm limits of the residual mean, XW2 represents the lower alarm
limits of the residual mean, SW is the upper alarm limit of the residual standard deviation.
The criteria set in this paper are that when the temperature residual Tr is above the upper
limit of SE and at the same time above XE1 or below XE2, the state is judged to be an early
warning state; and when Tr exceeds any of the set alarm values, the state is judged to be
an alarm state.

3.2. Introduction to the Early Warning Hybrid Model Process

The safety monitoring of EV charging systems needs to be realized by enhancing the
dynamic monitoring and real-time early warning of EV charging equipment. The early
warning hybrid model constructed by the ConvLSTM method can predict the potential
risks during the battery charging process, so it can well guarantee the safety of the EV
during the charging process. The security early warning process is mainly divided into
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four stages: Data Processing, Model Training, Status Judgment, and Status Processing. The
flow chart is shown in Figure 4.

Figure 4. Safe pre-warning flow chart for the electric vehicle charging.

The specific implementation process is as follows:

(a) Data Processing: Collect the front end EV charging data and transmit it to the back-
stage database. Filter the charging data with reference significance, normalize and
preprocess it, then divide the data set into a 25% training set and a 75% test set.

(b) Model Training: Use training set to determine LSTM and BiLSTM model parameters,
train the corresponding model and output its evaluation standard values; determine
CNN model parameters, train CNN, CNN-LSTM, and ConvLSTM models and output
their evaluation standard values. If the model meets the model accuracy requirements,
enter the next stage to set the EV temperature warning threshold; if not, return to
retrain the corresponding model.

(c) Status Judgment: Set the EV temperature early warning and alarm thresholds. If its
temperature is within the early warning threshold, this state indicates that the EV is
charged normally and is the most ideal charging state. If its temperature is greater
than the early warning threshold and less than the alarm threshold, the EV is in
an early warning state at this time. If its temperature is greater than the alarm
threshold, the EV is in an alarm state at this time.

(d) Status Processing: If the EV is in a normal charging state, no processing is required; if
the EV is in an early warning charging state, the charging current will be reduced by
10% after an early warning signal is issued. If the EV is in an alarming state, the alarm
signal will be issued, and then the charging power will be cut off to stop charging.

The whole process of judging can obtain the real-time capacity of the EV battery. If the
real-time capacity is greater than 99.8% of the rated capacity, the charging will be stopped.
The system is in high-speed closed-loop operation, which can complete the safety early
warning task in time.

In Figure 4, X is the residual mean, r2 is the decision factor, C is the rated capacity,
T1 is the early warning thresholds, T2 is the alarm thresholds, S is the residual standard
deviation, C1 is the real-time capacity, RMSE is the Root-Mean-Square Error, MAPE is the
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Mean Absolute Percentage Error, Tr is charging temperature residuals, k1 and k2 are early
warning threshold factors, k3 and k4 is the alarm threshold factor.

4. Experimental Verification and Analysis
4.1. Data Selection

This paper collects EV charging data through actual charging stations. The following
is the introduction of the charging station: it adopts high-power IGBT type charging
device, adopts IGBT super charging group technology, and has an output voltage range of
50~800 V, with high integration, high efficiency, low power consumption and high reliability,
as shown in the Figure 5.
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In order to obtain reliable continuous charging data in the training model, after
normalizing the actual charging data, the battery module in the Simulink library of Matlab
R2020a software is used to simulate the battery model of the EV. The main parameters of
the model are shown in Table 5:

Table 5. Parameters of simulated electric vehicle.

Simulation Model Parameters Numerical Values

Battery type Lithium iron phosphate battery
Battery capacity/kA·h 150

Rated charging voltage/V 412
Rated charging current/A 220

Maximum allowable temperature/◦C 41
Minimum allowable temperature/◦C −18

The EV adopts the high-power DC constant current and constant voltage charging
method. On the charging side, based on the national standard communication standard
GB/T 27930, the charging data of the interaction between the charging equipment and the
EV BMS is dynamically collected and the transmission speed is 250 ms/sampling sites.
After collecting the charging data, Simulink is used to simulate the model. Finally, the
simulation data of 69,300 sampling sites are obtained.

To verify the effectiveness of the proposed method in predicting the charging tempera-
ture of EV batteries, the dataset was divided into a 25% training set and a 75% test set, and
different parts of the dataset were used in turn to train the model in different iterations,
with the training set selected as shown in Figure 6:

4.2. Model Construction and Evaluation Criteria

The simulation results for this part are performed in Python 3.8 and the Keras library.
All model training runs on Windows 10 operating system, Intel® Core™ i5-1035G1 CPU @
1.00 GHz 1.19 GHz (Manufacturer: Portland, OR, USA) processor. The platform version is
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TensorFlow 2.4.1 and the program version is Python 3.8.1. The depth learning framework
is Keras 2.4.3.
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The model in this paper is mainly composed of CNN and LSTM, and the predic-
tion performance is further improved by using CNN as the input of LSTM. The model
parameters involved are shown in Table 6:

Table 6. Specific parameters of ConvLSTM model.

CNN Category Parameters LSTM Category Parameters

Number of kernels 32 Cycle layers 2

Window size 4 Loop layer
activation function Tanh

Stride 1 Optimizer Adam
Activation function SELU Neurons number 90

Pooling type Global max pooling

In Table 6, SELU is the activation function of the CNN model, and its main role is
to map the input of the neuron to the output. Tanh is the activation function of the Loop
layer of the LSTM model, and its role is to increase the nonlinearity of the neural network
model. Adam acts as an optimizer for the LSTM, where a learning rate is maintained in
each network circle and adaptively adjusted as the learning unfolds.

The internal structure of the model is shown in Figure 7, which consists of the Con-
vLSTM layer, Batch Normalization layer, Flatten layer, and Dense layer. Firstly, a Batch
Normalization layer is added to speed up the convergence and prevent the gradient ex-
plosion. Secondly, deep data features are extracted by overlaying two ConvLSTM cells;
then the array is flattened with the Flatten layer. Finally, a Dense layer is used to extract
the correlation between the features after the nonlinear variation and map them to the
output space.

The evaluation criteria in this research uses three common metrics for neural network
regression prediction models: Root-Mean-Square Error (RMSE), Mean Absolute Percentage
Error (MAPE), and R Squared (r2) to verify the accuracy of the prediction model. Its
calculation formula is:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (8)
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MAPE =
1
n

n

∑
i=1

∣∣∣∣ ŷi − yi
ŷi

∣∣∣∣× 100 (9)

r2 = 1 −

n
∑

i=1
(ŷi − yi)

2

n
∑

i=1
(yi − yi)

2
(10)

where yi represents the actual measured value of the charging temperature; ŷi represents
the predicted value corresponding to the charging temperature; yi represents the average
value of the output charging temperature. According to the above equation, the following
conclusions can be drawn: The smaller the RMSE and MAPE while the larger the r2, the
better the model fitting effect.
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4.3. Analysis of Prediction Experiment Results

The complete experimental process of this paper is as follows: Firstly, the actual
charging data is normalized, and the Simulink module is used to simulate the EV battery
to obtain continuous simulated charging data. Secondly, on this basis, the training set
and the test set are divided. Then, the training set with the worst prediction result is
selected for temperature residual analysis, and the corresponding early warning and alarm
thresholds are calculated. Finally, the fault charging data is used to verify the EV charging
warning method proposed in this paper. The following are the specific experimental process
and results:

The normal charging data of the EV is selected to train the ConvLSTM model. When
the EV is charged normally, the charging data is relatively stable, and the prediction error
of the ConvLSTM model is relatively small. When a potential fault occurs in the charging
of an EV, the degree of the fault will increase as the charging progresses, and the charging
data of the EV will deviate from the normal charging range, resulting in a larger prediction
error of the ConvLSTM model. To verify the accuracy and stability of the ConvLSTM model
for predicting EV charging data, a cross-validation method was used after dividing the
dataset. A graph of the predicted results of the cross-validation of this simulated EV model
is shown in Figure 8:

As shown in Figure 8, by analyzing the graph of predicted results, the following
conclusions are drawn:

(a) In the early stage of temperature prediction, the CNN-LSTM model in training set
one gives predictions similar to the actual temperature values, and with more training
data, the ConvLSTM model gives the best predictions in the middle and late stages
of prediction.
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(b) In the early stage of temperature prediction, the ConvLSTM model in training set
two was poorly predicted. The closest to the actual value was the LSTM model.
However, in the middle and late stage, the ConvLSTM model and the BiLSTM model
were the closest to the actual value.

(c) The model prediction results of training set three are more satisfactory, and the
ConvLSTM model proposed in this paper has the best prediction results in all
three stages of prediction, which are closest to the actual values.

(d) In the early and late stages of prediction, the ConvLSTM model and the BiLSTM model
in training set four were closer to each other and had better predictions. However, the
ConvLSTM model outperformed the BiLSTM model in the midterm prediction.
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The predictions from the cross-validation of this simulated EV model are shown
in Table 7:

Table 7 summarizes the prediction errors of the simulation model and the experi-
mental results are shown below:

(1) Training set one: Using the top 25% of the data as training set one, the prediction
accuracy of the different models was evaluated. The experimental results showed that
the ConvLSTM models all outperformed the other four types of models in terms of
prediction accuracy, with a 0.007 reduction in RMSE, a 1.66 reduction in MAPE, and
a 0.18 improvement in r2 compared to the CNN-LSTM models.

(2) Training set two: The prediction accuracy of the different models was evaluated by
training set two. The experimental results showed that the prediction accuracy of the
models in training set two were all better than that in training set one. Regarding the
ConvLSTM model in training set two, RMSE of was reduced by 0.003, MAPE was



World Electr. Veh. J. 2022, 13, 128 14 of 18

reduced by 0.07, and r2 was improved by 0.05 compared with that of the ConvLSTM
in training set one.

(3) Training set three: Among the four training sets identified, training set three had the
best prediction, with RMSE and MAPE reaching the lowest and r2 the highest, where
RMSE, MAPE, and r2 were 0.029, 11.37 and 0.89, respectively.

(4) Training set four: In the four-part training set, training set four only predicted better
than training set one. Compared with the ConvLSTM model in training set one, RMSE
decreased by 0.01, MAPE decreased by 0.04, and r2 improved by 0.04.

Table 7. Prediction results of cross-validation from simulation model.

Data Sets Algorithm Type
Evaluation Indicators

RMSE/◦C MAPE/% r2

Training set 1

CNN 0.073 29.78 0.39
LSTM 0.056 20.44 0.41

BiLSTM 0.048 17.59 0.51
CNN-LSTM 0.039 13.29 0.63
ConvLSTM 0.032 11.63 0.81

Training set 2

CNN 0.069 29.63 0.39
LSTM 0.061 20.52 0.46

BiLSTM 0.046 17.32 0.57
CNN-LSTM 0.039 13.11 0.68
ConvLSTM 0.029 11.56 0.86

Training set 3

CNN 0.064 29.43 0.41
LSTM 0.048 20.23 0.49

BiLSTM 0.043 17.36 0.56
CNN-LSTM 0.035 12.91 0.67
ConvLSTM 0.029 11.37 0.89

Training set 4

CNN 0.071 29.74 0.39
LSTM 0.054 20.36 0.43

BiLSTM 0.046 17.53 0.53
CNN-LSTM 0.036 13.09 0.64
ConvLSTM 0.031 11.59 0.85

The experimental results show that the ConvLSTM model has excellent performance
in all four training sets using different evaluation metrics. RMSE, MAPE, and r2 metrics out-
performed the CNN, LSTM, BILSTM and CNN-LSTM network models. It is demonstrated
that the ConvLSTM network model proposed in this paper improves the temperature
prediction accuracy of the whole EV battery. Among them, training set three has the best
prediction accuracy and training set one has the worst prediction accuracy. The following
experiments all use the prediction results of training set one to validate the EV temperature
warning model proposed in this paper.

The sliding window residual statistics method can continuously detect changes in the
residual statistics characteristics in real-time. When abnormal conditions occur in tempera-
ture, its operating characteristics will change so that the new observation vector deviates
from the normal operating state space; the charging status of EVs can be determined by
calculating the warning and alarm thresholds of EVs [32–34]. The width N was chosen
to be 100. The mean value and the standard deviation of the temperature residuals for
training set one of the simulation model are shown in Figure 9.

As shown in Figure 9a,b, the residual mean and the residual standard deviation can
be obtained. According to many analyses of actual EV charging spontaneous combustion
accidents, this paper takes k1 and k2 as 2, and calculates their early warning thresholds
using Equation (6); when it exceeds the early warning threshold by 40%, an alarm signal
is issued, this paper takes k3 and k4 as 2.8, and the alarm threshold is calculated using
Equation (7). The specific values are shown in Table 8:
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Table 8. Calculated values for detailed pre-alarm thresholds.

Residual Category Parameters Numerical Values/◦C

Residual mean (X)
Figure 9a

Minimum value (Xmin) −0.0468
Maximum value (Xmax) 0.1004

Maximum absolute value (
∣∣Xmax

∣∣) 0.1004
The upper of early warning

thresholds (XE1)
Equation (6)

0.2008

The lower of early warning
thresholds (XE2)

Equation (6)
−0.2008

The upper of alarm thresholds (Xw1)
Equation (7) 0.2811

The lower of alarm thresholds (Xw2)
Equation (7) −0.2811

Residual standard
deviation (S)

Figure 9b

Maximum value (Smax) 0.0111
Early warning thresholds (SE)

Equation (6) 0.0222

Alarm thresholds (SW )
Equation (7) 0.0311

Input the EV fault data into the ConvLSTM safety pre-alarm model, and the obtained
charging safety pre-alarm results are shown in Figure 10.

As shown in Figure 10a, the residual mean exceeds the early warning threshold at the
54,250th sampling point and exceeds the alarm threshold at the 57,630th sampling point. As
shown in Figure 10b, the residual standard deviation exceeds both the early warning and
alarm threshold at the 39,998th sampling point. According to the safety pre-alarm method
set in this research, the method sends an alarm signal at the 39,998th sampling point, and
then stops charging. During the actual charging of the EV, the charging temperature at the
40,003rd sampling point was abnormal, and the on-board battery pack was burned at the
58,007th sampling point. Compared with the actual situation, the safety warning model
proposed in this study stops charging 5 sampling points earlier than the earliest abnormal
temperature point.
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5. Conclusions

In this study, the ConvLSTM model is migrated to the field of EV warning for the
problem of spontaneous combustion during EV charging, which is the first application of
the model in this field.

Our experimental conclusions are as follows: The results showed that the model
proposed in this study produced the lowest RMSE and MAPE while it obtained the highest
r2 compared to other models with the same parameters. Among the four training sets, the
ConvLSTM model of training set three had the highest prediction, with RMSE reaching
0.029, MAPE reaching 11.37, and r2 reaching 0.89. Training set one had the worst prediction
and after using it to set the warning threshold, the simulation model completed the alarm
task five sampling points ahead of schedule. Therefore, the early warning and alarm
method proposed in this paper can detect abnormal charging conditions in advance and
take corresponding protective measures such as reducing the current or stopping charging,
effectively reducing the risk of spontaneous combustion in EVs.

In addition, the poorer prediction results for training set one is attributed to the larger
charging voltage difference, higher charging current and more pronounced temperature
variation at the early stage of EV charging; in training set four, it is because in the later stages
of EV charging, the voltage difference kept narrowing, the charging current decreased and
the temperature changes were not significant, training the model with these two parts of
data reduced the prediction accuracy. Training set two and training set three were in the
smoother charging stage, so the training model had better results.

In future work, the following two directions can be taken. Firstly, the early warning
method proposed in this paper can be applied to the prediction of voltage, current and
SOC of EVs, and the early warning indicators can collaborate with each other to make
the EV early warning system more perfect. Secondly, the temperature prediction model
can be replaced by a temperature rise prediction model, because the temperature rise is
in the form of derivatives, which are more obvious and can capture abnormal charging
conditions in a more timely manner. In summary, the method proposed in this paper has
a more promising future in the field of EV early warning and hopefully will provide a new
idea for researchers. There are, of course, shortcomings in our research. For example, our
limited EV data allows only limited simulations to be performed to verify the accuracy of
this hybrid model. In practical applications, consideration should also be given to data
transmission delays, which are key to training the model in a timely manner, and this type
of problem should be left to the collaboration of the relevant authorities.
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