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Abstract: Electric vehicles (EVs) are an attractive alternative to conventional vehicles powered by
internal combustion engines due to their low carbon footprint, low running cost, and higher energy
efficiency. However, currently, they suffer from a lower range than conventional vehicles, which
induces range anxiety for consumers. This work explores the EV parameters that strongly impact
range using data-driven techniques. A detailed dataset of the technical specifications of commercial
EV models manufactured from 2008 to 2021 was collected through web mining. Strong correlations
were observed between range and battery capacity, top speed, curb weight, and acceleration (with
Pearson coefficients of 0.90, 0.79, 0.70, and −0.84, respectively). Furthermore, regression algorithms
were trained and tested on this dataset, with the lowest root-mean-squared error (RMSE) of 31.4 km
obtained from support vector machine regression. With a mean EV range in the test set of 364.5 km,
an RMSE of 31.4 km equates to around 8.6% accuracy. Additionally, simple linear relationships
between EV range and EV model, battery, and performance parameters were determined that may be
useful to EV consumers in calculating range.

Keywords: electric vehicles; linear regression; lithium-ion batteries

1. Introduction

Recent years have seen a governmental and industrial push toward the mass adop-
tion of electric vehicles (EVs) due to their various benefits, including lower reliance on
unsustainable and non-renewable fossil fuels [1–3]. Reduced global reliance on fossil fuels
for transportation could mitigate some of their disastrous effects, including greenhouse
gas emissions (GHG) and geopolitical tensions [4]. However, it is important to note that
GHG reduction from EV mass adoption is only possible when these electrified means of
transport are incorporated into a renewable and sustainable energy grid [2,3,5].

However, despite their numerous benefits and the improvements in lithium-ion bat-
tery (LIB) technology, EVs still generally suffer from a lower range than conventional
internal combustion engines, long charging times, and limited fast-charging infrastructure
in some geographical areas [6]. In combination, these limitations can induce “range anxiety”
for EV users; hence, EV range estimations are an ongoing academic and industrial research
area [7]. EV range is described as the distance an EV can travel before recharging or battery
swapping [8]. The manufacturer-reported vehicle range is measured by subjecting the
vehicle to a controlled drive cycle. Commonly used drive cycles for EV range estimation
include multiple cycles of the urban dynamometer driving schedule (UDDS), the highway
fuel economy test driving schedule (HWFET), the new European drive cycle (NEDC), and
the worldwide harmonized light vehicle test procedure (WLTP) [9,10]. Since drive cycle
protocols for multiple cycles of UDDS and HWFET are recommended by the U.S. Environ-
mental Protection Agency (EPA), this drive cycle is referred to as EPA range throughout
this work. EV design and performance specifications, external climate and road conditions,
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and consumer driving habits are critical parameters affecting EV range [11,12]. EV design
and performance specifications can include battery specifications, motor efficiency, curb
weight, and vehicular body aerodynamics.

Many relevant works on EV range estimation focus on determining the remaining
EV range during a driving trip using physical or empirical models [13–18]. These models
calculate the energy consumption of an EV based on the external conditions (e.g., road
elevation and wind velocity) and EV parameters (e.g., weight, motor, braking efficiencies,
etc.) and then determine the remaining EV range [13,19]. Moreover, for more accurate
EV range estimations, if the velocity–time series of an EV is known (based on the drive
cycle), the required EV energy is then obtained for each time point during the EV trip. In
2011, Hayes et al. used the simplified drive train model for the range estimation of a Tesla
roadster and a Nissan Leaf subjected to the EPA-based drive cycle. Their model calculates
fuel economy to estimate the EV range for a given drive cycle. The authors used the
published vehicle parameters for unknown parameters, while assumptions and estimations
were made for the rest of the model parameters [13]. Shibata et al. developed an EV power
consumption model that included the energy consumption of HVAC and other auxiliary
systems during an EV trip. Furthermore, coulomb counting with the Kalman filter was
used to estimate the remaining battery capacity at any point in the drive cycle. The authors
of this work explored the effects of different drive cycles on EV power consumption [17].
Abousleiman et al. used a similar model to compare model predictions with the energy
consumption of a 2013 Fiat 500c driven on different routes. Depending on the route, the
authors reported model discrepancies in the range of 0.66–2.9% [18]. While previously
reported works assumed constant braking power regeneration, Fiori et al. improved on
the power consumption model by incorporating the effects of EV deceleration on the
braking power regeneration. In all the above works, the velocity–time characteristics
and extensive vehicle parameters were required, and several model assumptions, such as
constant external wind and road-related resistances, were made [16].

These EV energy consumption models can be improved by simulating EV battery
pack voltage and capacity characteristics using various battery models, such as equivalent
circuit models (ECM) [19,20]. These battery models require their own model parameters.
For instance, ECMs, which simulate the voltage and SOC characteristics of the battery from
the drive current using an electric circuit, require parameters pertaining to the values of
the circuit components [20]. For instance, Barcellona et al. used an ECM to simulate the
remaining battery capacity and battery pack voltage during an EV trip while using the EV
power consumption model.

While these models can be implemented for real-time EV range estimation during a
trip, these models are not easy to implement for consumers and manufacturers. EV driving
range is an important decision factor for consumers when purchasing an EV [21]. This
work attempts to find the relationships between the most relevant EV design parameters
and marketed vehicle range using simple regression models [21].

This paper focuses on data-driven regression modeling of the impacts of EV char-
acteristics, battery, and performance specifications on vehicle range. The data used for
regression model training and testing included the specifications of commercial EVs; these
data were collected using web-scraping and text-mining techniques. The first objective
of this study was to ascertain significant parameters that affect EV range. To this end,
correlations between range and other parameters were used. The second objective was to
train the regression model to predict EV range from significant parameters. The correlations
and the simple equation obtained from the regression-trained model can be used by EV
consumers, designers, and manufacturers to ascertain how different options available (such
as an EV’s top speed, body style, etc.) can impact its overall range.
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2. Methodology
2.1. Data Collection and Preprocessing

Figure 1 below outlines the flowchart of the range estimation workflow used in
this work.
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Figure 1. Flowchart of regression process.

The electric vehicle (EV) specification data were collected from a relevant website (EV
Specifications) [22] through web mining (using custom web-mining code in Python). The
model year of the EVs ranged from 2008 to 2021. Data collected included the EV model,
battery, dimensions, and performance specifications. At the time of analysis, the website
(mentioned above) was missing information on Volkswagen’s e-Gold 2018 model and,
hence, the information for this EV was extracted from another website (Edmunds) [23]. At
that point, there were 317 EVs in the extracted dataset. Some of the information contained
in the dataset (column names in the dataset are referred to as the features in this work)
is outlined in Table S1. For simplicity in further analysis, only the features in the dataset
that have a maximal effect on EV range and that were not sparse were considered. These
features pertained to EV model information, battery characteristics, and performance
metrics (Figure 2). The range estimated by multiple UDDS and HWFET range drive cycles
is referred to as the EPA range in this article.

For many vehicles, EV range was expressed with reference to EPA, NEDC, or WLTP
standards, with several vehicles missing EPA range values. Therefore, the EPA ranges of
these vehicles were estimated using the WLTP and NEDC ranges by means of normal linear
regression along with bootstrapping (Section S2). Bootstrapping is a resampling technique;
within the linear regression application, it can be used for more realistic linear regression
parameter estimation in cases of missing data.

Once the missing EPA ranges were estimated, the correlations between the features and
the EPA range were determined by the Pearson correlation coefficient using the following
equation [24]:

rxy =
∑ (xi − x)∑ (yi − y)√

∑ (xi − x)2
√

∑ (yi − y)2
(1)

In our case, x and y refer to the relevant independent variable and EV range, respec-
tively. xi and yi denote the individual data points, while x and y denote their mean values.

Next, a randomized train-test split of 80–20% was performed on the dataset. After
further data analysis using visualizations, the independent variables that did not show
much effect on EV range were discarded. Furthermore, features containing qualitative
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information (type of battery, EV body type, and battery cooling system) were plotted for
distribution, and categories within a column were merged for simplicity. In addition,
hot-code encoding was also performed on these qualitative features.
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2.2. Regression Techniques

Regression analysis is a simple yet versatile tool for exploring and mapping relation-
ships between variables. In this work, a multiple linear regression model was used to
model the EPA range from multiple factors that affect it. Furthermore, regularized linear
regression models were utilized and explored to prevent data over-fitting, namely ridge
regression, lasso regression, and elastic net [25].

Support vector machines (SVMs), another popular machine learning (ML) technique,
can perform classification, regression, and outlier detection. Moreover, they are applicable
to small and medium datasets. When used for classification problems, the objective of
an SVM is to separate different classes with the highest possible difference between them.
However, when SVMs are used for regression problems, the objective changes to achieving
the lowest possible difference between different classes [26]. In this work, linear regression
and SVMs were explored mainly due to their suitability for small datasets. Below, a
mathematical overview of linear regression and SVMs is presented.

2.2.1. Linear Regression

A linear regression model was trained to predict the EV EPA range from independent
variables and can be concisely represented as [27]:

ŷ = θ·x (2)

where ŷ denotes the model predicted value, while θ and x denote the model’s parameter
vector and instance’s feature vector, respectively. The normal equation used to solve for θ
is given by [27]:

θ̂ =
(

xTx
)

xTy (3)
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The mean squared error was used as the cost function for the linear regression and is
expressed as [27]:

MSE =
1
m

m

∑
i=1

(
θTxi − yi

)2
(4)

where m is the total number of data points. In order to prevent the possibility of over-
fitting the model, regularized forms of linear regression were also trained. These forms
included ridge, lasso, and elastic regressions. The cost functions for ridge, lasso, and elastic
regressions are presented below, in the order listed [25]:

J(θ) = MSE(θ) + α

(
1
2

)
∑n

i=1 θ2
i (5)

J(θ) = MSE(θ) + α ∑n
i=1|θi| (6)

J(θ) = MSE(θ) + r α ∑n
i=1|θi|+ α

(
1− r

2

)
∑n

i=1 θ2
i (7)

where α is the regularization parameter used for ridge, lasso, and elastic net regressions,
and r is the additional mix-ratio parameter used in elastic net regression.

2.2.2. Support Vector Machine

Support vector machines (SVMs) can be used for regression problems and are suitable
for small sample sizes [26]. The mapping function of a dataset {(x1,y1), (x2,y2), . . . , (xn,yn)}
is expressed as [28,29]:

f (x) =
n

∑
i=1

wiφ(xi) + b (8)

where wi and b are the weight vector and a constant, respectively, and are found by first
defining the following optimization problem. Also, the function φ(xi) denotes the mapping
(can be non-linear for generality) in the feature space. This optimization problem ensures
that the function above, f(x), is as flat as possible [28,30].

Min
1
2
||w ||2, (9)

s.t.
{

yi − φ(w, xi)− b ≤ ε
φ(w, xi) + bi − y ≤ ε

(10)

By adding slack variables (ξi and ξ∗i ), the optimization problem becomes [28,31]:

Min
1
2
||w ||2 +

n

∑
i=1

Ci(ξi + ξ∗i ) (11)

s.t.


yi − φ(w, xi)− b ≤ ε + ξi
φ(w, xi) + bi − y ≤ ε + ξ∗i

ξiξ
∗
i ≥ 0

(12)

The solution to this problem is expressed as [28,31]:

f (x) =
n

∑
i=1

(αi − α∗i )K(xi, x) + b (13)

where the variables αi and α∗i are the Lagrange multipliers, and the function K is the
so-called kernel function. The radial basis function is used for the kernel function in
this work.
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2.2.3. Model Training

The models were trained using the LinearRegression and SVC classes in Python’s
SciKit Learn package [30]. A randomized train-test split of 20–80% was performed on
the dataset, and hot-code encoding was also performed on qualitative features (battery
cooling mechanisms, type of lithium-ion battery, and body style). Due to the small size of
the dataset, the hyperparameters of the regression learning techniques were kept constant;
hence, the dataset was not split for validation.

2.2.4. Model Evaluation

The root-mean-squared error (RMSE) was used to evaluate the model and is expressed
by [32]:

RMSE =

√
∑m

i=1 ŷi − yi

m
(14)

where ŷi and yi denote the model predicted and actual values, respectively, and m is the
total number of observations/data points.

3. Results and Discussion

The missing values for EPA range (EPA range refers to the range estimated from
multiple cycles of UDDS and HWFET drive cycles) were estimated using the WLTP and
NEDC range values. Figure 3 shows EPA range values plotted against WLTP and NEDC
range values. The Pearson correlation coefficient between EPA and WLTP ranges is 0.96,
while it is 0.98 between EPA and NEDC ranges. In the dataset, out of 317 entries, only
176 entries had an EPA range. In order to obtain estimates for the missing EPA range
values, the bootstrapped linear regression parameters (Figure 3A,B) between EPA and
WLTP ranges and between EPA and NEDC ranges were used (see Supporting Information
Section S2). The bootstrap method was performed for 2000 iterations until the bootstrapped
linear regression parameters (coefficient and the y-intercept) stabilized (Figure 3C,D). The
relationships between the ranges are outlined in Section S4.

Next, the independent variables that were considered to have the highest impact on
EPA range were retained (see the Methodology section for the specific variables considered),
while other variables were removed for further consideration.

This reduction was made to simplify the analysis. Table 1 summarizes the correlations
between the independent variables and the dependent variable (EPA range). Battery
capacity, top speed, and curb weight seem to show strong positive correlations to EPA
range, while acceleration shows a strong negative correlation. This negative correlation
can be explained by the physics-based energy consumption models of an EV. When all
operating conditions and vehicle parameters are held constant, higher acceleration requires
higher power output from the battery pack; this drains the battery state-of-charge more
quickly [16,33].

Figure 4 shows the plots for all the independent variables against EPA range. While
model year seems to have a low impact on EPA range according to the correlation (Table 1)
and plot (Figure 4A), it was kept for further analysis because it is well known that the range
of EVs has been steadily increasing over the years [34]. This low correlation and unclear
linear trend may arise from differences in EPA range between different EV body shapes
(Figure 5A). Since batteries provide the energy source for the EV propulsion system and
other auxiliary systems, the positive linear relationship between battery capacity and range
is expected and demonstrated by the high correlation in Table 1 and Figure 4B.
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1 
 

 
Figure 3. A plot, along with the lines of best fit and Pearson correlation coefficients between (A) EPA
and WLTP ranges and (B) EPA and NEDC ranges. All units are in km. Furthermore, the bootstrapped
linear regression parameters for each iteration are presented for (C) EPA and WLTP ranges and
(D) EPA and NEDC ranges.
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Figure 4. Plots of independent variables against EPA range, where the independent variables are
(A) model year, (B) battery capacity (in KWh), (C) number of battery cells in an EV, (D) number of
battery modules, (E) EV battery pack voltage, (F) EV top speed (in km/h), (G) EV acceleration from 0
to 100 km/h (in s), (H) EV curb weight (in kg), and (I) gross vehicle weight rating (in kg).
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(C) top speed, (D) acceleration from 0 to 100 km/h (in s), and (E) EV curb weight (in kg), with EPA
range, with scatter points colored differently based on EV body style.

Table 1. Correlations between independent variables and EPA.

Variables Correlations

Battery Capacity (kWh) 0.903860
Top Speed (mph) 0.794916
Curb Weight (lb) 0.700247

Number of Battery Cells 0.689241
GVWR (lb) 0.660293
Model Year 0.262226
Voltage (V) 0.187742

Number of Battery Modules 0.041696
Acceleration from 0 to 100 km/h (s) −0.839825

Usually, parameters for battery design, e.g., the number of battery cells and modules,
correlate with single-cell capacity and voltage to obtain battery pack capacity (kilowatt-
hours) for EV powertrain requirements. In this work, instead of single-cell specifications
for each EV model, battery capacity is provided as an entire battery pack kilowatt-hour
in EV level. Therefore, the number of cells, number of modules, and voltage show an
uncertain correlation to battery capacity and have a low correlation to EPA range and an
uneven distribution, as Table 1 and Figure 4C–E show separately. These parameters were
not considered in further calculations or analyses.
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Generally, higher battery capacity delivers higher energy. It is reasonable to expect that
EVs with an increased battery capacity will have a higher top speed and acceleration, as
Figure S1A,B shows; this is further supported by a higher EPA range, as indicated in Table 1
and Figure 4F,G. Moreover, EVs with higher battery capacity also have higher curb weights
and GVWRs, as Figure S1C,D shows. This explains the positive correlations between the
EPA range and both curb weight and GVWR (Table 1 and Figure 4H,I).

In order to understand the impact of EV body shape on EPA range, plots of various
independent variables against EPA range with data points colored differently based on
body shape are provided (Figure 5). A general trend, where sedans have the highest
and hatchbacks have the lowest EPA range, is observed. Sedans generally have higher
battery capacities than hatchbacks (Figure S1B–D and Figure 6B), which might explain
the EPA range difference. Furthermore, hatchbacks experience more drag forces from
their increased weight compared to sedans (the weight difference between hatchbacks
and sedans is shown in Figure 6E) when external conditions are held constant [35]; thus,
additional battery capacity is utilized to overcome this drag.

Figure 6 presents the distributions (histogram) and the impact on EPA range (box plot)
for qualitative information. It should be noted that some categories within these features
were merged to even out the distributions. For example, there were nine categories of
battery cooling mechanisms, eight of which were merged into a category ‘Other’. Similarly,
eight categories of EV body types were condensed into four categories. From the box plot,
it can be seen that each category has a noticeable difference in mean and range of EPA
range values. Consistent with previous observations in Figure 5 above, the median and
interquartile range (IQC) for EV range with respect to body style follows the following
order: IQC(Sedan) > IQC(SUV) > IQC(Other) > IQC(Hatchback), as observed in Figure 6A.
EVs with water-based cooling mechanisms have higher medians and IQCs than other
circulation mechanisms, which consist mainly of air-based cooling systems. This thermal
observation is consistent with the literature [36]. Furthermore, given that the IQC for
EVs using lithium-ion and lithium-polymer batteries is roughly the same, and the data
are unbalanced (i.e., there are many more data points for lithium-ion batteries than for
lithium-polymer), it is difficult to ascertain the effect of different lithium-ion battery types
on the EV range from Figure 6C alone. However, based on the linear regression equation
(Equation (S6)), using lithium-ion batteries has a detrimental effect on EV range compared
to lithium-polymer batteries.

Based on the findings from data exploration, the independent variables, such as
battery capacity, model year, top speed, acceleration, curb weight, GVWR, body style,
battery cooling mechanism, and type of lithium battery, were used for model training and
evaluation. The models were trained on the training set, and the features were preprocessed
as outlined in the methods section. Table 2 shows the model parameters used in this work.

Table 3 shows the RMSE values obtained by model evaluation on the test set. It can
be seen that SVM regression demonstrates the lowest RMSE of 31.428 km. The mean EPA
range on the test set was around 364.5 km, and an error of 31.428 km equates to around 8.6%
accuracy. Interestingly, the RMSE increases to 32.13 km when regularization in the SVM
model increases (C = 100). While RMSE was considered as the evaluation metric in this
work, other metrics (i.e., mean absolute error (MAE), mean absolute percent error (MAPE),
and R-squared (R2) error) were also calculated and are presented in Section S7. Similar to
the trend observed in the RMSE model evaluations, SVM regression outperforms other
regression methods in MAE and MAPE evaluations (Table S2). The R2 error is a measure
of the portion of variability in the dependent variable predicted from the independent
variable, and when its value is close to 1, it indicates a good fit between the model and the
data [37,38]. The R2 value was almost 0.9 (Table S2), suggesting that the models can predict
the variability of EV range from the independent variables.
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the EPA range against the qualitative independent variables.

The equation for estimating the EPA range of an EV using linear regression (without
standardization with an RMSE of 33.20 km) is given in Section S6. It should be noted that
while the proposed linear regression equation yields a higher error rate than estimating
the EV range using a power consumption model in the literature (8.6% vs. approximately
1%), it requires significantly fewer parameters. This regression equation requires eight
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EV parameters that can be easily found in the literature or EV manuals, while the energy
consumption model requires more than 20 EV model-specific parameters [16–18].

Table 2. The ML model parameters.

Model Parameters

Normal Linear Regression -
Ridge Regression α = 1
Lasso Regression α = 0.1

Elastic Net
α = 0.1
r = 0.5

SVM Regression ε = 0.1
C = 1

Table 3. RMSEs from model evaluations.

Model RMSE

Normal Linear Regression 33.200
Ridge Regression 33.540
Lasso Regression 33.084

Elastic Net 37.423
SVM Regression 31.428

4. Conclusions

EVs have several potential merits, such as low- environmental impact and low op-
erating cost, but they suffer from a lower range than conventional vehicles. This work
attempted to explore the EV design specifications that influence range using data-driven
techniques. A detailed dataset for commercial EV models manufactured from 2008 to 2021
was generated by extracting information from the internet using web-scraping techniques.
This dataset contained information about EV model, battery, dimensions, performance
specifications, and range. EPA range was considered in this study; in cases with missing
EPA ranges, a line of best fit was utilized to estimate it from NEDC and WLTP ranges.

Parameters (such as battery capacity, battery voltage, top speed, and curb weight) that
seem to have the most significant effect on range were retained (refer to Table 2). Battery
capacity, top speed, and curb weight showed strong positive correlations with range, while
acceleration showed a strong negative correlation. Furthermore, other parameters were
dropped from further analysis and calculations based on low correlations, outliers, and
poor apparent relationship with range. Moreover, categories within parameters (body style,
EV battery cooling mechanism, and LIB type) were merged to distribute the categories and
prevent over-fitting on one category evenly. Next, linear regression and SVR machine learn-
ing techniques were employed for model training and testing. Normal linear regression
models seem to have the lowest RMSE of 31.428 km.

Furthermore, the multi-linear regression model equation, without a standardization
step, can estimate an EV’s EPA range from its battery, design, and performance specifi-
cations. Newer EV model year and higher battery capacity seem to impact EPA range
positively. From this equation, EVs with water-based cooling mechanisms have higher
EPA ranges than those with other cooling mechanisms. Furthermore, EVs with sedan and
SUV body styles have higher EPA ranges when all other design, battery, and performance
specifications are kept constant.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/wevj13060105/s1, Table S1: Information about the dataset used
in this work; Figure S1: Scatter plots exploring different relations in the dataset. (A) top speed against
its EPA range with different battery capacities, (B) acceleration against battery capacity with different
body styles, (C) curb weight against battery capacity with different body styles, and (D) GVWR

https://www.mdpi.com/article/10.3390/wevj13060105/s1
https://www.mdpi.com/article/10.3390/wevj13060105/s1
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against battery capacity with different body styles; Table S2: Model evaluation from MAE, MAPE,
and R2.
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