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Abstract: Autonomous driving has been a topic of great interest in several areas, of which motor
racing is no exception. The aim of this work is the autonomous control of the future Formula Student
Lisboa vehicle, by implementing different strategies for control and path planning, with the purpose
of minimising race lap times. These strategies are tested in simulation, using a realistic model of the
prototype. The approach followed involves the decoupling of the lateral and longitudinal subsystems
and obtaining the reference path using artificial potential fields, combined with a two-pass algorithm
developed to generate a speed profile. In this way, a sub-optimal solution is reached that adequately
portrays the expected behaviour of a human driver while respecting traction conditions. The process
of generating the speed reference requires prior knowledge of the track layout. This assumption is
then eased for obstacle avoidance, i.e., for a scenario where, in addition to the track limits, unknown
static obstacles are present. A decoupled control approach is followed controlling each of the two
subsystems individually.

Keywords: electric vehicle; autonomous driving; path planning; obstacle avoidance; guidance laws;
automotive control; Formula Student

1. Introduction

Autonomous electric vehicles have been a topic of growing research and investment
in recent decades. They can have a wide range of applications, covering different types of
systems (such as small unguided robots or unmanned vehicles) and environments, which
can be extended from indoors to outdoors or even to planetary exploration. This autonomy
is not just “all or nothing”, but rather a spectrum with six development stages defined by
the Society of Automotive Engineers (SAE), where the core competencies needed can be
broadly divided into three categories: perception, planning, and control [1]. Whatever the
stage and irrespective of the vehicle having a conventional, a hybrid, or an electric engine,
its control ought to be designed to improve energy efficiency [2–4], which is jeopardised if
controllers are poorly conceived.

Perception algorithms allow the vehicle to detect and process the environment and usu-
ally make use of the Global Positioning System (GPS), computer vision, and a wide range
of sensors [5], which, to compensate for individual shortcomings and achieve a positive
redundancy, can be coupled via sensor fusion. From the received data, planning derives
instructions for the system, which will act in accordance with the available data; planning
is usually categorised as global, behavioural, or local [1,6,7]. Local planning may concern
obstacle avoidance [8–10], trajectory planning [6,8,11], or path planning [6,12]; the latter
frequently involves a decoupled approach regarding the steering and the velocity (see,
e.g., ref. [13] for an application to a Formula 1 circuit or [14] for a review of algorithms).
Finally, control competency executes the planned actions that have been generated by the
previous process. There are usually a lateral controller and a longitudinal controller that
handle each of these two movements decoupled from each other; these controllers provide
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two different input signals: a steering command and an acceleration or a braking signal,
respectively.

This paper applies these concepts to an electric Formula Student (FS) car. FS is
one of the better-known competitions in an academic-oriented environment: students
are challenged to design, build, and test a race car according to a specific set of rules.
With the intent of competing in the driverless category introduced in 2017, the Formula
Student team from Instituto Superior Técnico—Universidade de Lisboa (FST) is currently
developing its first hybrid prototype, in the sense that allows both person-driven and
driverless configurations. The methods and results shown in this paper are not limited
to the FS car used to illustrate them; they can all be used with a vehicle in a structured
environment. While the first Formula Student Driverless competition was won by a car
that sought to keep the middle of the track [15], this trivial path planning can be smoothed
and improved to achieve shorter distances (as done already by the first robot to win the
DARPA Grand Challenge in 2005 [16]). By improving obstacle avoidance, accelerations
and decelerations become softer when negotiating narrow passages; consequently, these
improvements are expected to help the vehicle travel farther with a full battery charge.

However, the complexity of the underlying algorithms is highly influenced by the
scenario into which the vehicle will be inserted. Comparing autonomous city driving
with autonomous racing, the degree of unpredictability of the surroundings in the latter
is distinctly lower, and this, combined with the highly controlled and regulated environ-
ment, allows for simpler approaches regarding perception, which frequently rely on the
combination of light detection and ranging (LiDAR) sensors, cameras, and computer vi-
sion [17,18]. Planning is usually based on a minimum lap time problem, which accounts
for the vehicle dynamics and track boundaries. Finally, the control strategies used in a
racing scenario frequently require more data than provided by perception (acquired, e.g.,
from motor encoders, GPS, or accelerometers) or from estimation [18]. The longitudinal
control problem is frequently simplified by assuming that many of the dynamics of the
drivetrain, motors, and transmission are regulated by low-level controllers, resulting in a
fairly simple system to control [19], or combined with the lateral control for an appropriate
model predictive control (MPC) formulation [12]. On the other hand, lateral control tends
to include the inertia of the car and tire forces, ranging from models based on the path,
which may or may not involve MPC formulation, to models based on vehicle dynamics
such as the single-track [20] or four-wheeled [21] models.

As this work mainly focused on improving the planning and the lateral control of the
autonomous vehicle pipeline, the objectives are threefold:

• Develop an algorithm for path planning under the assumptions that there is an a
priori knowledge of the track layout and an algorithm for online obstacle avoidance
considering static obstacles;

• Design different control strategies to effectively steer the vehicle, as well as a low-level
controller, in order to obtain more accurate results, ensure vehicle stability, and avoid
wheel lock or spin;

• Test, evaluate, and compare the different algorithms, using a developed, realistic
model of the vehicle.

This led to the development of path planning and control strategies that are new in FS
and suggests the following autonomous racing principles:

1. Use the centerline to place the attractive force, to cut the corners while keeping
within track;

2. Implement decoupled planning (not just decoupled control);
3. Deal with obstacle avoidance using transverse forces, to ensure that they are overcome

without unduly decelerating the movement and, thus, wasting energy;
4. Values for the observation, warning, and danger radius should vary continuously

with velocity (using a spline).
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The remainder of this work is structured as follows: Section 2 describes the vehicle
modelling, Section 3 the planning algorithms, and Section 4 the control strategies; the
simulation results are presented and discussed in Section 5, and the conclusions, as well as
suggestions for future research on this topic are covered in Section 6. The list of abbrevia-
tions is given at the end.

2. Vehicle Modelling

Since in this paper, controller design, tuning, and validation are made resorting to
simulation, it is important to have models that emulate the vehicle behaviour. In this
section, two categories of vehicle models are detailed: the first, designated as realistic, has a
high degree of complexity, being used for simulation; the second, designated as simplified,
includes the models used for control and observer design, as well as for preliminary
validation. The parameters of the vehicle are given in Table 1.

Table 1. Vehicle model parameters.

Notation Description Value Units

m Mass 256 kg
Ixx Moment of inertia around x 39.00 kg·m2

Iyy Moment of inertia around y 141.61 kg·m2

Izz Moment of inertia around z 160.62 kg·m2

R Wheels radius 0.228 m
LF Distance of front axis to the CG 0.816 m
LR Distance of rear axis to the CG 0.724 m

L Wheelbase 1.54 m
LW Track width 1.20 m
LH CG height 0.265 m
AP Projected frontal area 1.05 m2

Jw Wheels’ rotational inertia 0.24 kg·m2

aw Half-length of contact patch 0.06 m

For the realistic model only
Ct CG translation coefficient 0.8 kg/m
Cd CG downforce coefficient 1.96 kg/m
Cr CG rotation coefficient 0.001 kg·s2

Crω Wheels’ rotation coefficient 0.003 kg·s2

c Damping coefficient for each suspension quarter 2000 N·s/m
kF Spring constant for front suspension quarter 52490 N/m
kR Spring constant for rear suspension quarter 45000 N/m

rmotionF Front suspension quarter motion ratio 1.11 –
rmotionR Rear suspension quarter motion ratio 1.14 –

2.1. Realistic Model

The vehicle model used for simulation has six degrees of freedom (DOF), modelling
the vehicle as a rigid body with a simplified vertical suspension system for each wheel [19].
The car is four-wheel driven (4WD) by independent electric motors and front-wheel steered.

To formally describe the vehicle motion, six reference frames are used, namely the
global frame—which follows the north-east-down (NED) convention, where X points north,
Y east, and Z down—the local reference frame—which coincides with the car’s centre of
gravity (CG) with a forwards-right-down alignment—and four additional reference frames
attached to the tire contact patches. They are represented in Figure 1.
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Figure 1. Reference frames.

The model formulation resorts to a state-space representation where the sixteen
states are:

• The linear v and angular Ω velocities of the centre of gravity (CG) expressed in the
local frame (6 variables);

• The CG position pCG expressed in the global frame (3 variables);
• The Euler angles Φ associated with the rotations from global to local frame (3 variables);
• The angular speeds of each of the four wheels ω (4 variables).

The inputs are:

• The four wheel torques tw;
• The steering angle δ.

The model returns the sixteen state derivatives and generates as output vectors with
four elements (one for each of the four wheels):

• The suspension deformations ∆z;
• The slip ratios κ;
• The slip angles α;
• The forces fx, fy, fz and moments mz resulting from the tire–ground interaction.

Regarding the kinematics, the linear and angular velocities of the body frame can be
expressed in the global frame as

ṗCG = S> v (1)

Φ̇ = R−1 Ω (2)

where R stands for the transformation matrix from the Euler angles’ rate of change to the
CG angular velocities and S is the rotation matrix that converts global frame coordinates
into local frame coordinates. The expressions for both matrices can be found in [22].

Lastly, with respect to the dynamics, from the Newton–Euler equations, it follows that

mv̇ = −m(Ω× v) + m S g + fCG (3)

J Ω̇ = −(Ω× J Ω) + tCG (4)

Jw ω̇ = Tw − FxR− Tdisw (5)

where m is the vehicle mass, g the gravity vector, J and Jw the vehicle’s inertia tensor
and wheel rotational inertia, respectively, and R the tire radius. In the above equations,
the terms with the subscript CG represent the resultant force and torque acting on the CG,
which includes tire, dissipation, and aerodynamic forces in (3) and energy dissipation in (4).
There are four equations given by (5), one per wheel; Tdisw stands for dissipation torque,
and vector tw collects the values of Tw for each wheel:

tw = [Tw1 Tw2 Tw3 Tw4 ] (6)
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All dissipations and aerodynamics forces were modelled in a quadratic form, i.e.,

fCG = fw + [−Ct 0 Cd]
>||v||v (7)

tCG = [0 0 − Cr]
>||Ω||Ω (8)

Tdisw = −Crω ||ω||ω (9)

Powertrain
Due to the complexity of modelling the full powertrain system, a simplification was

made in which the motor losses are dynamically modelled, resorting to the implementation
of an efficiency map, and all the remaining losses were considered as constant. Additionally,
to approximate the torque response dynamics, the first-order system [23]:

T =
ηPT

τPTs + 1
Tcmd (10)

was implemented, where ηPT is an efficiency to account for the remaining losses and τPT is
the time constant for the torque dynamics that accounts for the electrical time constant and
mechanical response.

Steering
Considering a low-speed or low-curvature cornering manoeuvre, as the vehicle travels

along the curved path, all tires follow unique trajectories around a shared turn centre, each
one with a specific curvature radius. Hence, to avoid sliding and maintain a pure rolling
condition, the angle described by the inside front tire angle must be larger than the one
described by the outside front tire, as represented in Figure 2.

Figure 2. Ackermann steering (δFL < δFR).

The geometry that allows obtaining such configuration, known as Ackermann steering,
computes the steering angles as

δFR = arctan

(
L tan(δ)

L− LW
2 tan(δ)

)
(11)

δFL = arctan

(
L tan(δ)

L + LW
2 tan(δ)

)
(12)

in which L = LF + LR and LW are the wheelbase (sum of the distances from the CG to the
front axle LF and from the CG to the rear axle LR) and the track width (distance between
the two wheels of the same axle), respectively. This geometry was the one considered since
low-speed or low-curvature cornering manoeuvres are typically found in FS race tracks.
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Similar to the powertrain modelling, a first-order system given by

δ =
1

τSAs + 1
δcmd (13)

used in order to model the relation between the real and command steering angles. Here,
τSA stands for the steering actuation time constant. Lastly, a slew rate limitation is also
implemented to model the physical limit in the actuator speed.

Suspension
A simplified suspension model was used, where each suspension quarter has an

equivalent linear spring–damper system that is directly actuated, normal to the ground
plane and with punctual contact with the driving surface. For this suspension model,
the vertical force is given by

Fz =
k

r2
motion

∆z +
c

r2
motion

∆̇z (14)

where k and c are the elastic and damping coefficients of the linear spring–damper systems,
respectively, and rmotion stands for the motion ratio, defined as the ratio between wheel
and equivalent spring–damper system displacements (which can be obtained through
kinematics relations). This ratio is introduced to correct the fact that the real suspension
mechanism is not directly actuated, but through pushrods and bellcranks.

Tires
The tires, as the only element interacting with the driving surface, are responsible for

the generation of the forces and moments that allow the acceleration, braking, and turning
of the vehicle, as represented in Figure 3. Due to the inherent complexity of measuring such
mechanical quantities in real time, tire models are commonly used to provide estimations.

Figure 3. Schematics of a tire and generated forces and moments.

For this work, the Pacejka tire model [24] was considered to be suitable as it is the
one used by the FST Lisboa tire supplier. However, to be able to employ the provided tire
model and compute the friction loads, several concepts must be defined first.

When a vehicle is in contact with the ground, part of the energy delivered by the motor
torque is consumed by friction, generating a longitudinal force Fx, which, opposing the
wheel rotation, is responsible for the acceleration and braking of the vehicle. This force is
influenced by the slip phenomenon, which can be quantified by the slip ratio [24]:

κ =
ωR− vwx

vwx

(15)

in which vwx represents the longitudinal component of the linear wheel velocity vw in the
wheel coordinate system. However, it is important to note that, if the vehicle is turning,
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a lateral force Fy is also generated, which is influenced not by the longitudinal slip, but by
the side slip, quantified by the angle presented in (16) [24].

α = arctan
( vwy

vwx

)
(16)

Given the non-uniform tire deformation that occurs in the surface originated by the
tire–ground interaction, not only forces, but also moments are generated, such as the self-
alignment moment Mz, which depends on the same parameters as the lateral force since it
is generated by it.

With these concepts associated with tire mechanics defined, it is now possible to state
the formula inherent to the chosen model. Commonly known as the Magic Formula, this
model resorts to a semi-empirical formulation [24], to mathematically describe not only
both longitudinal and lateral forces, but also the self-alignment moment:

YMF − SV = D sin

(
C arctan

(
(1− E)B(XMF + SH) + E arctan

(
B(XMF + SH)

)))
(17)

B, C, D, and E are the stiffness factor, shape factor, peak value, and curvature factor,
respectively, which are empirically obtained and must respect the relations presented in [24];
SV and SH are the vertical and horizontal shifts, and lastly, XMF and YMF are the input
(which can be either κ or α) and output (which can be Fx, Fy, or Mz) variables, respectively.

2.2. Simplified Models

As can be seen from the previous subsection, the systems of equations of motion are
complex and highly nonlinear, which would lead to a complex deduction of the appro-
priate controllers or estimators. As such, two simplified models were used, which will be
presented next. These simplified models were also used to obtain a first insight into the
eventual problems, an understanding about the influence of some of the controllers’ gains
in the system response—allowing making an initial tuning and steering such tuning in
the right direction—and, of course, to verify if a given solution—related to planning or
control—works.

Lateral bicycle dynamic model
In order to develop a model and understand the dynamics involved, the balance of

forces and moments plays an important role. Assuming that the vehicle can be seen as a
rigid body with planar motion, is rear-wheel driven (RWD) and front steered only, from the
lumping of the two wheels belonging to the same axis (inherent to the bicycle model
formulation, which has the free-body diagram represented in Figure 4), the dynamics can
be described by [23]

v̇x =
1
m

(
− FF

y sin(δ) + FR
x

)
+ vyψ̇ (18)

v̇y =
1
m

(
FF

y cos(δ) + FR
y

)
− vxψ̇ (19)

ψ̈ =
1

Izz

(
LFFF

y cos(δ)− LRFR
y

)
(20)

where the tire forces Fx and Fy were modelled resorting to the Magic Formula (17), with E =
SH = SV = 0 [18].
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Figure 4. Free-body diagram for the bicycle model.

For control and estimator design, (19) and (20) were linearised. Let CαF and CαR be the
cornering stiffness of the front and rear tires, and let (X, Y) be the position of the vehicle
reference point, in the fixed frame, obtained from the integration of

Ẋ = vx cos(ψ)− vy sin(ψ) (21)

Ẏ = vx sin(ψ) + vy cos(ψ) (22)

Then, a state-space model can be formulated [21] for the lateral subsystem where the
states are [Y ψ vy ψ̇]>, and the dynamic matrix A and the input vector B are

A =


0 vx 1 0
0 0 0 1

0 0 − 2(CαF+CαR )
mvx

− 2(CαR LR−CαF LF)
mvx

− vx

0 0 − 2(CαR LR−CαF LF)
Izzvx

− 2(CαF L2
F+CαR L2

R)
Izzvx

 (23)

B =
[
0 0

2CαF
m

2LFCαF
Izz

]>
(24)

Bicycle dynamic model in terms of tracking errors
A dynamic model with the lateral position and the yaw angle as the degrees of freedom

was presented in the previous section. However, it can be useful to define a dynamic
model in terms of position and heading errors with respect to the road. These errors are
represented in Figure 5 and will be properly defined in Section 4. To formulate such a
model, it is only necessary to redefine the linear equations obtained from the previous
state-space model in terms of the mentioned errors.

The inertial acceleration of the vehicle ay results from two effects: the acceleration
v̇y due to motion along the y axis and the centripetal acceleration vxψ̇. Thus, assuming
steady-state conditions, the desired acceleration (25) is obtained [21], where ψ̇d can be
obtained from the under-steering gradient Ku and wheelbase L through (26) [25]:

ayd = vxψ̇d (25)

ψ̇d =
v

L + Kuv2 δ (26)
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Figure 5. Position error ey and heading error eψ in a path-following vehicle. The vehicle reference
point is represented as the CG, but another location could also be considered.

With these variables defined, the errors in the lateral and yaw accelerations can be
computed as [21]

ëy = ay − ayd = v̇y + vx(ψ̇− ψ̇d) (27)

ëψ = ψ̈− ψ̈d (28)

Substituting (26)–(28) into the equations of the previous model (neglecting both Ku
and vy, and thus further simplifying (26)), a linear state-space can be finally obtained [21],
where the state vector is [ey ėy eψ ėψ]> and the dynamic matrix and the input vector are

A =


0 1 0 0

0 − 2(CαF+CαR )
mvx

2(CαF+CαR )
m

2(CαR LR−CαF LF)
mvx

0 0 0 1

0 − 2(CαF LF+CαR LR)
Izzvx

2(CαF LF−CαR LR)
Izz

2(CαR L2
R−CαF L2

F)
Izzvx

 (29)

B =
[
0

2CαF
m − 2(CαF LF−CαR LR)

mL − v2
x

L 0
2CαF LF

Izz
− 2(CαF L2

F+CαR L2
R)

Izz L

]>
(30)

3. Planning Algorithms

In this section, the algorithms developed for path planning and obstacle avoidance,
focused on local planning, are presented.

There are approaches capable of simultaneously optimising both the path and the
speed profile [26–28]. However, the procedure chosen aims instead to find a speed profile
that results in completing a given fixed path in the minimum time [29,30], respecting
traction conditions and powertrain constraints.

3.1. Path Planning

For path planning, the employed strategy consists of a decoupled approach, in the
sense that one algorithm obtains the path, accounting for the boundaries of the track,
and another one regulates its speed. Both algorithms will be described next.

Reference path
The potential field concept, resorting to virtual forces, was used, with the aim of

obtaining a reference path more optimised than the centerline, which is the common
baseline solution, The main idea behind this approach consists of considering the vehicle
as a charged particle moving under the influence of repulsive and attractive potentials.
Since the objective is to maintain the vehicle within the track, the repulsive forces will
be associated with the track boundaries, the attractive force with a target ahead, and the
desired heading (or guidance) with the result of the combination of both effects.
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The computation of the attractive force is quite simple, as it only requires the knowl-
edge of the actual position of the car p and the selection of a target point lying on the
centerline ptarget. This force can be mathematically described as [31]

fatt = Katt(ptarget − p) (31)

where Katt is a gain, simulating a proportional controller.
The repulsive force, on the other hand, requires more attention since it depends on

the danger level U, which is influenced by the danger of the boundary γ and the distance
between the vehicle’s position and the limits of the track d(X, Y). The danger level U can
be given by [31]

U = max
k

lim
γ→γk

d1−γ
k (X, Y)− d1−γ

max

d1−γ
min − d1−γ

max
(32)

where dmin is the distance below which U will be always 1 and dmax the distance above
which U will be always 0. Since the value of γ influences the potential shape—as shown
in Figure 6—a positive value was chosen as it allows for a better representation of the
expected danger evolution.

Figure 6. Evolution of U with d for several values of γ: the higher the value of γ, the lower the
danger of the boundary. In this figure, two different potential fields are represented, one for each
limit. As such, U increases from bottom to top (↑) for both limits, but d increases from left to right
(→) for the left limit and from right to left (←) for the right limit.

From all the boundary points in the proximity of the vehicle, it is the one with the
minimum distance that was selected, since it will present the higher danger level. From this
point pdanger, the repulsive force can be calculated from [31]

frep = Krep U
p− pdanger

‖ p− pdanger ‖
(33)

where Krep is a gain, just as in the attractive force.
The direction of the virtual resultant force f is taken as a desired heading (inasmuch as

it minimises the potential). The current heading of the vehicle ψ is known; so, a heading
error eψ can be defined as shown in Figure 7. The steering command intends to drive this
error to 0, meaning that this is a regulator problem; thus, the steering command was set
equal to the error. In this way, the vehicle is steered in the direction of the resultant force.
This simple control law can also be described as a unitary proportional controller. However,
it should be kept in mind that the reasoning behind the heading error used to obtain this
control action involves highly nonlinear calculations.
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Figure 7. Schematic of the forces felt by the vehicle.

Having in mind that an optimal solution cannot be guaranteed, in the sense of guar-
anteeing the completion of ensuring the completion of a course with the minimum time,
this method was further combined with the speed algorithm, which will be presented next,
in order to obtain the set of parameters that will result in a solution close to the optimal.
These parameters are the distance to the target (which will be referenced as offset), gain
Krep, and γ. The attractive gain was left out and set to a unitary value since, although it
can be seen as parameter, it is related to the offset. The procedure adopted in the search of
these parameters was a sweeping of the possible range of values, in which, for each of the
resultant paths obtained for a constant longitudinal speed of vx = 5 m/s, the speed profile
was found. Its variation with the parameters was mostly convex, but with local minima
and oscillations, thus demanding a numerical optimisation. Each parameter’s value with
the lowest time was chosen as the final one.

Reference speed
Considering an isotropic tire, the maximum transferable force between the road and

the vehicle is limited by the tire force, which, using the friction circle model, can be
computed from [32]

F2
x + F2

y 6 (µFz)
2 (34)

Neglecting the aerodynamic downforce, the forces in (34) are given by

Fx = max +
1
2

ρApCDv2
x = max + Fdis (35)

Fy = mv2
x K (36)

Fz = mg (37)

where K stands for the path curvature, obtained through

K =
X′Y′′ −Y′X′′

((X′)2 + (Y′)2)
3
2

(38)

In (38), the prime and double prime denote the first and second derivatives, respec-
tively, of the waypoints’ coordinates (X, Y) expressed in the global frame. These derivatives
are calculated with respect to the (integer) indexes of the points and can be found using
forward, backward, and central differences in the starting, finishing, and remaining points,
respectively. As an example, in point 4, X′ = x5−x3

5−3 .
Discretising the path at N steps, using a fixed step ∆s in arc length s, and performing

algebraic manipulation of the equations for uniformly accelerated motion:

vx(k + 1) = vx(k) + a(k)∆t (39)

s(k + 1) = s(k) + vx(k)∆t +
1
2

a(k)(∆t)2 = s(k) + ∆s (40)
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it is possible to obtain the following equations:

∆s =
v2

x(k + 1)− v2
x(k)

2a(k)
(41)

vx(k + 1) =
√

v2
x(k) + 2a(k)∆s (42)

t(k + 1) = t(k) +
2∆s

vx(k + 1) + vx(k)
(43)

These were the expressions used in the optimisation process. This optimisation is split
into two passes, a backward and a forward one, both explained below:

→ Backward pass

In the first pass, the backward algorithm determines the maximum speed in turns
and the necessary braking distance before each turn. Starting from the finishing point
and iterating the sampled curve in the reverse order, the maximum speed at each step is
obtained from the minimum between:

• A user-defined limit vxlim ;
• The maximum speed for the previous sample (k− 1), which corresponds to the real

positive solution of (34), combined with (35)–(37), solved for K(k− 1) and ax = 0.

Once the speed is computed, the negative acceleration required to achieve such a
value can be determined with (41), and the minimum between this value and the available
negative acceleration by the powertrain (which is given by function h, which will be
described latter) is applied. Then, the next iteration continues by moving backward along
the curve.

→ Forward pass

In the second pass, the forward algorithm maximises the speed and determines
the optimal times of transition between acceleration and braking. This is performed
reparametrising the original profile using time steps, instead of distance steps, forming a
trajectory parametrised in time. Beginning at the starting point and iterating in the forward
order, when the velocity is below the velocity profile of the backward pass, the maximum
available positive acceleration is applied to increase the speed, and once such velocity is
reached, the optimal braking is applied as in the previous pass. As a result, the optimal
transition times between acceleration and braking are determined to execute the track
in the minimum time and under the acceleration constraints resulting from the traction
and/or powertrain.

→ Powertrain constraint

From the description provided, it can be seen that both passes use a function h to
determine the maximum available longitudinal acceleration in direction d = ±1, with for-
ward represented as positive. Using K and vx, such acceleration can be determined from
(34) based on the maximum available tire force in the longitudinal direction. However, this
value is further limited by the vehicle powertrain.

Assuming that the available torque T can be approximated as constant, but differs
depending on the axle and on whether the vehicle is braking or accelerating, the wheel
tractive force Ftrc can be computed from

Ftrc =
1
R

Nmtr

∑
i=1

(ηi,trans · rgear · Ti) (44)

where ηi,trans is the transmission efficiency and rgear the gear ratio. Thus, the maximum
available longitudinal acceleration can then be given by

h =
1
m

[
− Fdis + d min

(√
µ2F2

z − F2
y , |Ftrc|

)]
(45)
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3.2. Obstacle Avoidance

The algorithm above can be improved, to allow for obstacle avoidance with a priori
unknown locations. Static obstacles are presumed given the nature of an FS competition.
For obstacle avoidance, a decoupling between the guidance and acceleration was followed
once again, as described next. In this scenario, static obstacles are intended to represent
other vehicles, which, for simplicity, were modelled as rectangles.

Reference path
An intuitive way of bypassing a given obstacle is to do so through the widest passage-

way. Resorting again to potential field methods, the algorithm presented in the previous
section is again used, considering four main scenarios: the wider passage is free; the wider
passage is obstructed; no wider passage is available; no passage at all is possible.

From the definition of the repulsive potential field, given by (32), and knowing that
the repulsive force will have a direction perpendicular to the potential field that orig-
inated it, some problems can be anticipated, which led to the implementation of four
modifications, namely:

1. Track limits and obstacles are differentiated, meaning that they are defined by different
repulsive fields;

2. The obstacles’ repulsive force is forced to have the direction of the vehicle’s clos-
est edge, instead of being perpendicular to the contour lines from the different
danger levels;

3. The ability to check if a given obstacle was already overtaken is included (when the
CG is ahead of all the edges of the rectangle representing that same obstacle);

4. The ability to change the repulsive and attractive gains if a collision is predicted (by
projecting the current trajectory a fixed distance ahead) is incorporated.

Reference speed
Since the approach followed for path planning requires a priori knowledge about the

track to obtain the speed profile, for obstacle avoidance, this reference needs to be obtained
with a different method: resorting to the concept of safety zones [33]. However, it should be
noted that this method could also be used for path planning if there is no prior knowledge
of the track layout.

This approach takes into account that any electromechanical system has an inherent
response time, so the ability of a system to respond to a sudden obstacle can be derived
from the concept of vehicle safety [33] and translated into the definition of multiple zones
within the system observable environment. Such zones are four, as represented in Figure 8,
and are responsible for the velocity adjustment needed to avoid obstacle collision.

Figure 8. Schematic of the detection zones.

Similar to what was done for the reference path, some modifications were implemented
relative to the concept typically found in the literature [33]:

1. Since a negative velocity is not allowed in FS competitions, the profile is changed to
take this constraint into account;

2. If no possible passage is detected, the reference speed is set to zero;
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3. Due to possible chattering caused by a linear piecewise profile, a cubic spline in-
terpolation is performed between the different radii, allowing a smooth transition
between regions;

4. To avoid an “overshoot” in the observation zone, the velocity associated with this
outer radius is slightly decreased from the maximum velocity;

5. RO, RW and RD are parameterised as a function of the velocity, with a linear relation,
and not established as fixed values. RC is fixed, encompassing the vehicle with an
extra safety distance.

4. Decoupled Control Approach

We are now in the position to detail the decoupled control already mentioned in
Section 3. From the models presented in Section 2, it is possible to observe a coupling
between the longitudinal and lateral subsystems. However, considering the torque T and
the steering angle δ as inputs, the linearisation of the bicycle dynamics model, presented in
(18)–(20), allows obtaining the following state-space representation:v̇x(t)

v̇y(t)
ψ̈(t)

 =

A11 0 0
0 A22 A23
0 A32 A33

vx(t)
vy(t)
ψ̇(t)

+

0 0
0 B22
0 B32

[T(t)
δ(t)

]
(46)

In this model, the non-null terms of sub-matrices A and B are not necessary since
it suffices to notice that this expression shows clearly a division between two decoupled
subsystems: a longitudinal subsystem and a lateral subsystem. The tire slip ratio κ can be in-
cluded as an additional state of the longitudinal subsystem; this does not couple it with the
other subsystem. Thus, for control purposes, a decoupled approach is followed, developing
the lateral and longitudinal controllers independently, as presented in this section.

4.1. Available Sensors and Required Estimations

Control requires information—which can be obtained either through measurement or
estimation—about some of the states of the realistic model from Section 2. With respect to
guidance, control relies mainly on the detection of the plastic cones defining the limits of
the race track (then used to generate the path to follow), usually achieved through cameras,
LiDAR sensors, or a combination of both to compensate for individual shortcomings and
achieve a positive redundancy.

In what follows, when the reference is found online to provide obstacle avoidance, it
is assumed that cameras and LiDAR sensors provide the information needed to navigate
in the track outlined by the cones. On the other hand, when the reference is found offline,
in advance, information about some states in a fixed coordinate system is needed. Thus, it
is assumed that the position of the vehicle in the global frame (XP, YP) could be accessed
with the fusion of a GPS system with other sensors (since the GPS alone lacks the necessary
accuracy) and its orientation ψ resorting to an appropriate compass or gyroscope. Some of
the control strategies used in this scenario will require additional information, such as the
rate of change of the lateral error ėy, the lateral velocity vy, and the yaw rate ψ̇. The latter
could be obtained with an inertial measurement unit (IMU); it was assumed that this sensor
was not available, and all these three states need to be estimated.

Since we are not here concerned with sensor modelling, sensors were emulated convert-
ing the variables in the global frame, obtained from the simulator, into the local frame—the
ones provided by the sensors. Considering (X, Y) and (x, y) the coordinates of a given set
of points (which could represent, for example, plastic cones) in the global and local frames,
respectively, their relation is[

X
Y

]
=

[
XP
YP

]
+

[
cos (ψ) − sin (ψ)
sin (ψ) cos (ψ)

][
x
y

]
[m] (47)
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where (XP, YP) stands for the coordinates of the local frame origin expressed in the global
frame. Thus, from the knowledge of the vehicle’s position (XP, YP) and orientation ψ,
obtained from simulation, the required transformation to obtain a given point in the
local reference frame can be obtained by inverting the rotation matrix in (47) and solving
for (x, y).

Speed control will require the feedback of the yaw rate ψ̇, longitudinal speed vx,
and slip ratio κ, not available from sensors. Although an accelerometer or a speedometer
could provide useful information, the accelerometer is sensitive and noisy, so obtaining
vx through integration is inaccurate; due to the presence of longitudinal slip, the angular
speed obtained from the speedometer will not correspond directly to the longitudinal speed
of the vehicle. Hence, as no sensor could provide information about the slip ratio, both vx
and κ are not available and should be estimated; it was simply assumed that they were
available for feedback.

4.2. Longitudinal Control

As was proposed in [23], a cascade control architecture with proportional gains was
used. Such a structure was chosen as it allows controlling the slip ratio and the longitudinal
speed (chained variables) separately and performing a direct saturation of the physical
quantities that must be limited. In this structure, the inner and outer loops’ variables are the
slip ratio κ and the longitudinal speed vx, respectively, since the former has faster dynamics.

To take into account the load transfer occurring while the vehicle is describing a turn,
a left/right motor torque asymmetry was created, assisting the control of the slip ratios
generated in each tire, which is possible due to the use of independent wheel-hub motors.
With this in mind, the control law implemented can be mathematically described by [23]

Ti = Ki
κ

(
κref − κi − (−1)iκdiff

)
(48)

where κref and κdiff can be computed as [23]

κref = Kvx (vxref − vx) (49)

κdiff = Kψ̇(ψ̇ref − ψ̇) (50)

and the wheels are numbered as follows: 1, front left; 2, front right; 3, rear left; 4, rear right.
The parameters were tuned from the innermost to the outermost loop, in the same manner
described in Section 3.1, with values KF

κ = 250, KR
κ = 350, Kvx = 0.1, and Kψ̇ = 0.03.

4.3. Lateral Control

Lateral control, related to the ability of steering the vehicle to a different lateral position,
frequently relies on the knowledge of the vehicle’s pose regarding the track, or in relation
to a given referenced path, resorting to variables typically called path-following errors.
As such, in this subsection, these variables will be introduced first and then the control
strategies will be presented.

Cross-track and heading errors
In autonomous driving, it is essential to know the vehicle pose in relation to the track

in order to allow the control algorithm to correct eventual errors. These can be related
to a distance (such as the cross-track error) or an angle (of which the heading error is an
example). While it is possible to define such errors in different manners, in this paper, it
was assumed that the vehicle has the waypoints in its front, provided by the perception
and planning algorithms, and would then curve-fit them with a second-order polynomial
in order to obtain a reference path.

The computation of the path-following errors under this assumption must be done
both in the absence and presence of a look-ahead distance Llad, since such a concept is
frequently used for control: indeed, it allows for a timely correction of the errors, providing
an anticipation capability. Let pRP be the reference point to the car expressed in the local
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frame and tRP the tangent at that point. The only difference between using or not a look-
ahead distance is the location of this point and, consequently, the tangent (as can be seen
from Figure 9). Thus, the mathematical expression for the cross-track error ey and the
heading error eψ is the same regardless of the situation. These errors are given by

ey =
pRP × tRP

‖ tRP ‖
(51)

eψ = arcsin
(

tRP × v
‖ tRP ‖ · ‖ v ‖

)
(52)

where the heading error eψ was defined as the angle between the referenced tangent and
the vehicle’s velocity vector v to take into account eventual sideslip. Because both errors
are a cross-product of vectors in the xy plane, only the z component of ey and eψ will be
different from zero.

(a) Without a look-ahead (b) With a look-ahead

Figure 9. Cross-track and heading errors.

An additional error parameter η that will be used in one of the controllers can also
be defined. η is the angle between the look-ahead vector (which can be obtained once the
reference point has been established, since its elements will be equal to the coordinates of
such point in the local frame) and the velocity vector, as shown in Figure 9b. This variable
can be computed as

η = arcsin
(

v× pRP

‖ v ‖ · ‖ pRP ‖

)
(53)

and is scalar, for the same reason why errors (51) and (52) are, in practice, scalar as well.

Control strategies:

→ Pure pursuit (PP)

The pure pursuit controller [34] consists of a nonlinear control strategy, where only
one parameter is utilised as the error: the angle η, represented in Figure 9b.

Assuming a kinematic vehicle model and using a circular arc to connect the rear axle of
the vehicle to an imaginary point moving along the desired path, this controller calculates
the required steering angle from the curvature of such an arc (obtained geometrically, as
shown in [34]) through

δcmd = arctan
(

2L sin(η)
Llad

)
(54)

→ Linear quadratic Gaussian (LQG)

The linear quadratic Regulator (LQR) approach is a linear control strategy. It consists
of minimising a given quadratic performance index [35], which penalises how far the final
state of the system is from zero at the end of a finite time horizon and also penalises the
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state and control authority evolution during the same time horizon. For this minimisation,
a significantly good approximation of the optimal solution can be obtained by solving the
algebraic Riccati equation (ARE) [35], which requires establishing two tuning parameters: the
state weighting matrix Q, which penalises the state error, and the control weighting matrix
R, which penalises the actuation.

Considering the bicycle dynamics model from Section 2, the control law is given by

δcmd = −(KLQG
y ey + KLQG

ψ eψ + KLQG
vy vy + KLQG

ψ̇
ψ̇) (55)

where the gains are obtained from the ARE. Since the model used is parameterised as a
function of longitudinal velocity, these gains will be velocity dependent, making it necessary
to update them accordingly. This is done resorting to a gain scheduling, where the gains are
calculated offline for the speed operating range and then obtained from a neighbourhood
table containing these values.

Since variables vy and ψ̇ are not accessible directly from sensors, the design of a
Kalman filter to estimate them is necessary (hence, the designation of LQG). To obtain the
gains related to this filter, two additional parameters are needed, namely the process Q0
and sensor R0 noise covariances. This estimator uses the same model as the one used for
the LQR and resorts, once again, to a gain scheduling to update the gains.

The weighting matrices for the LQR and Kalman filter are

QLQG = diag{7, 15, 1, 1}, RLQG = 5 (56)

QLQG
0 = diag{0.5, 0.1, 0.1, 1}, RLQG

0 = diag{0.01, 0.01} (57)

→ Kinematics lateral speed (KLS)

The kinematics lateral speed controller [34] is based on the distance between the
vehicle and the reference path and on how such a distance should influence the desired rate
of change of the cross-track error ėyd : if the car is far from the reference line, it is required to
get closer faster than it would get if it were not that far [34]. As such, ėyd can be defined as
proportional to the cross-track error ey, with a negative sign. In order to reduce the error
between the desired and actual rates of change, the controller must steer the car according
to [34]

δcmd = arctan
(

L
(
− KKLS

ψ sin
(
eψ

)
−

KKLS
ψ KKLS

ey ey

vx
+

kRP cos
(
eψ

)
1− kRPey

))
(58)

where KKLS
ψ and KKLS

ey are positive constants and kRP denotes the curvature of the path at
the reference point pRP, which can be computed by a different definition from the one
presented in (38), since a polynomial was used to curve-fit a given set of waypoints. Let
xi and yi be the coordinates expressed in the local frame of the n points curve fitted for
the reference path generation and f (x) = y = ax2 + bx + c the function describing the
second-order polynomial used. Then, kRP can be computed as

kRP =
2a

(1 + (2axRP + b)2)
3
2

(59)

The lowercase letter k was used, since kRP is computed with respect to the local frame
(while in (38), the uppercase K denotes a curvature with respect to the global frame).

The gains used, found with the procedure described above, are KKLS
ψ = 1 and

KKLS
ey = 2.5.

This controller (just as MSM below) resorts to a bicycle vehicle model formulated with
respect to the path to obtain, from linearisation, a general expression (as in [34]) for the
steering angle, which is then used to obtained the control laws.

→ Modified sliding mode (MSM)
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The sliding mode control strategy is a simple and robust control law, which does not
require a precise model of the system [34]. However, due to the discontinuous nature of its
control action, this type of control usually leads to oscillations that are commonly designated
as chattering, which can then be be weakened or eliminated. As such, as suggested in [34],
the sliding surface is defined as (60) and the sliding controller as (61) in order to ensure
stability without chattering.

σ = Key ey + Keψ eψ (60)

σ̇ = −Kσσ (61)

The resulting modified sliding mode control law can be obtained from [34]

δcmd = arctan
(

L
(

C1

vx
+ kRP

cos
(
eψ

)
1− kRPey

))
(62)

where Key and Keψ are weighting coefficients, kRP is the curvature at the reference point
computed from (59), and C1 is given by

C1 = −
KMSM

σ KMSM
ey ey + KMSM

σ KMSM
eψ

eψ + KMSM
ey ėy

KMSM
eψ

(63)

Since variable ėy is not directly accessible from sensors, a Kalman filter was designed
to estimate it. The model used in this estimator is the bicycle dynamics, written in terms of
road errors and, similar to what was done in the LQG controller, resorts to gain scheduling
to update the gains.

The weighting matrices for the Kalman filter and the remaining gains used are

QMSM
0 = diag{0.8, 0.5, 0.8, 0.5}, RMSM

0 = diag{0.01, 0.01} (64)

KMSM
σ = 7, KMSM

eψ
= 0.1, KMSM

ey = 1 (65)

5. Results and Discussion

Now that the planning algorithms and the multiple control strategies have been pre-
sented, both will be evaluated resorting to simulation. The implementation and simulation
were performed through the use of Matlab 2020b and Simulink, which are not open-source
software. They are widely used to model different types of systems and have plenty of
documentation available and community support, these being the reasons why they were
chosen. However, alternative open-source options could be used, such as SciLab e Xcos.

For evaluation purposes, two tracks from the trackdrive event of a Formula Student
competition held in Germany (FSG) and Italy (FSI) were used, beginning with path plan-
ning. They are shown in Figure 10, along with the corresponding reference trajectories
sketched with various colours, which have a correspondence with the values presented in
the colour bar.

From the trajectories shown in Figure 10, it can be seen that the vehicle cuts corners
while driving slower in corners and faster on straights; so, the final solution captures this
reasonable, expected behaviour of a human driver. The parameters tuned to obtain this
solution are presented in Table 2.
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Figure 10. FSG (left) and FSI (right) reference trajectory.

Table 2. Planning parameters.

Notation Value for FSG Value for FSI Units

Katt 1 1 N/m
Krep 2 1 N

γ 10 2.5 -
offset 4 6 -
doffset 6.16 6.54 m

dmin 0.75 0.75 m
∆s 1.50 1.04 m

ηtrans 0.70 0.70 -
vxlim 26.5 26.5 m/s

Since the use of the centerline is a typical baseline solution for the reference path,
a comparison with this solution is presented in Table 3. From this table, it is possible to
conclude that the centerline solution results in a larger total time lap, since saving time
from cutting corners is not an option.

Table 3. Comparison between centerline and the potential field solution.

FSG FSI

Reference Path t (s) Improvement t (s) Improvement

Centerline 30.86 s – – 24.43 s – –
Potential Field 27.00 s 3.86 s 12.50% 21.59 s 2.84 s 11.63%

After obtaining both reference path and speed profiles, the controllers’ performance
in the trackdrive event can be evaluated resorting to suitable metrics. Considering that
the reference path is intended to represent a solution close to an optimal one, the root
mean square (RMS) of the cross-track error was used as an evaluation parameter. This
error was computed separately from the one used for path-following, in order to guarantee
an independent method to measure the distance to the reference path to be tracked. The
distinction between a line from an arc of circumference was arbitrated to be when the
curvature of the path between two waypoints has an absolute value below 0.002 m−1, i.e., a
radius above 500 m. Once the curvature of the track is known, error ey can be computed as

ey =

{∣∣∣ di,i+1×di,P
‖di,i+1‖

∣∣∣, if |Ki,i+1| < 0.002

sign(Ri,i+1) ·
(

PC− |Ri,i+1|
)
, otherwise

(66)

where C and Ri,i+1 are the centre and radius of the circumference arc, respectively, di,i+1 de-
notes the displacement vector from waypoint i to waypoint i + 1, and di,P the displacement
between a waypoint i and the reference point in the car P.

Lastly, noting that some of the implemented control strategies require or could benefit
from the use of a look-ahead distance and keeping in mind that such a distance should
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change with the longitudinal speed, the controllers’ performance was evaluated for two
types of look-ahead profiles, namely a linear and a parabolic one:

Llad1 = dref + treactvx (67)

Llad2 =

(
vx

vxref

)2

(68)

The parameters in (67) are given realistic values as if the vehicle were human-driven [36].
Therefore, dref = 1 m is the minimum value of the look-ahead distance, treact = 0.25 s is the
estimated human pilot minimum reaction time, and vxref = 5 m/s is a reference velocity.

The results for this event are presented in Table 4, where a column was added to
provide additional information. This column qualitatively informs if, in the path actually
described, the vehicle touched the cones, but still managed to remain in the track (in which,
case a penalty is signalled) or if the vehicle did not finish the course (which will be shown
as DNF).

Table 4. Trackdrive results.

FSG Track FSI Track

Controller Llad
RMS(ey)

(m) Time (s) Penalty RMS(ey)
(m) Time (s) Penalty

PP 1 0.05 27.62 – 0.07 22.15 –
2 0.07 27.59 – 0.12 22.19 –

LQG 1 27.69 0.04 – 0.05 22.26 –
2 – – DNF – – DNF

KLS – 0.05 27.67 – 0.05 22.13 –
MSM – 0.10 27.62 – 0.11 22.13 –

Beginning the analysis with the cross-track error, it can be highlighted that the PP, LQG,
and KLS controllers have a similar performance; the difference between the MSM and these
controllers is not significant (and possibly even lower with further fine tuning). Some tests
(not shown for lack of space and reduced relevance) were performed using the centerline
as reference path, and it was noted that the cross-track error, in these cases, increased. This
can be explained by the general increase of the curvature, making it harder to track with
the same precision as in the path used. Regarding the look-ahead analysis, the linear profile
enables both controllers to finish the track and allows for a better performance, with respect
to the cross-track error. This can be explained due to the influence of the vehicle speed in
this predictive distance: the values obtained with the parabolic profile are higher, leading
the controllers to correct the vehicle position prematurely and, consequently, losing part of
the benefit associated with the look-ahead concept. This is in accordance with the usual
intuitive behaviour of a human driver: as the predictive distance depends not only on
speed, but also on curvature, it is usually smaller for larger curvatures. This can be better
achieved with the linear profile since, in general, this results in lower predictive distances.

Analysing now the obstacle avoidance scenario, the breakpoints used are presented in
Table 5, and the results can be found in Figure 11.

Table 5. Points used for cubic spline interpolation where vxmax = 15 m/s.

RO RW RD RC

Distance (m) 1.5 vx 1.2 vx 0.9 vx 1.5 L
Velocity (m/s) vxmax vxmax − 3 vxmax /2− 1 0
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Figure 11. Described vehicle trajectory in a race track with obstacles.

Regarding steering, the vehicle is still able to portray what can be considered as an
expected path, even though some “clumsy” movements can be detected. However, these
occur mostly in tight curves and the vehicle still manages to perform well and remain within
the track. On the other hand, the behaviour regarding speed presents less flaws, since
the speed decreases in the vicinity of an obstacle or in a curve, but increases in straights,
as expected. The minimum distances to track limits and obstacles were also computed,
and it was found that the vehicle completes the track without touching boundaries or
obstacles. However, difficulty in guaranteeing a collision-free trajectory was verified
(using other track and obstacle layouts), meaning that the developed algorithm is not
straightforwardly generalised.

Concluding, the different control strategies implemented correspond to adequate
solutions for vehicle guidance and the planning algorithms are able to provide a satisfac-
tory solution.

6. Conclusions

The results showed that, while the adopted approaches did not guarantee optimality,
they were able to portray the expected behaviour of a human driver, and the controllers and
path-following strategies provided enabled an FS vehicle to follow a given path, shortening
the travelled distance and thus improving energy efficiency.

Some improvements could be implemented in future work. Models for the sensors and
the perception algorithms could be included in simulations. A mechanism for the online
update should be present since the actual conditions may not match those expected when
the reference was generated. A systematic study of the options taken by good FS drivers
in the past can give additional clues to the expert decisions embedded in the algorithms.
Lastly, for obstacle avoidance, approaches that allow a coupling between the lateral and
longitudinal subsystems should be analysed and dynamic obstacles should be considered.
A comparison with other strategies that can be applied in an FS competition must include
combinations of methods that treat separately path planning (such as the A∗ [37] or the
D∗ [38] algorithms) and velocity control. Experimental results are then needed to confirm
the correctness of parameter tuning.
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Abbreviations
The following abbreviations are used in this manuscript:

SAE Society of Automotive Engineers
GPS Global Positioning System
FS Formula Student
FST Formula Student team from Instituto Superior Técnico—Universidade de Lisboa
LiDAR Light detection and ranging
MPC Model predictive control
DOF Degree of freedom
4WD Four-wheel driven
CG Centre of gravity
RWD Rear-wheel driven
PP Pure pursuit
LQG Linear quadratic Gaussian
LQR Linear quadratic regulator
ARE Algebraic Riccati equation
KLS Kinematics lateral speed
MSM Modified sliding mode
FSG Formula Student Germany
FSI Formula Student Italy
RMS Root-mean-square
DNF Did not finish
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