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Abstract: The growing oil demand and serious environmental concerns have promoted the concept
of the usage of electric vehicles (EVs) across the globe. EVs can be integrated into the grid for power
transaction and to support the grid requirements, thereby drawing the attention of researchers, policy
makers and industries. EVs are not only a transportation tool but also act as a distributed source
or load. The EV battery plays a prominent role in grid integration and sustainable transportation.
The monitoring and control aspect of the battery management system (BMS) plays a vital role in
the successful deployment and usage of EVs. In this paper, an equivalent circuit model (ECM)
of battery is proposed and analyzed that describes the battery behavior at various temperatures,
considering the internal resistance of the battery. A stochastic model was developed for the battery
ageing and replacement to ensure that systematic replacement of batteries based on the calendar
ageing was performed. A reliability assessment of EV accessibility and availability was carried out by
using Markov chain. A case study of a Diesel-renewable powered Electric Vehicle Charging Station
(EVCS) in a micro-grid was carried out that suits the requirement of large-scale EV fleet integration
to the grid for power transaction. The holistic approach of BMS was considered for the sustainable
transportation and grid integration

Keywords: electric vehicle; battery management system; equivalent circuit model; battery ageing;
stochastic model; reliability

1. Introduction

The global transportation sector is looking toward cleaner means of mobility and
electric vehicle support in this aspect. Cleaner transportation accounts for the use of
battery-powered vehicles, often termed as electric vehicles (EVs). Batteries are the heart of
the system that powers these vehicles. The advancement in battery technology drives the
development of EVs. Almost all automakers have launched EVs, and the sales have been
increasing steadily over the last decade. However, in order to popularize EVs as compared
to internal combustion engines, EVs have to overcome many barriers, particularly in
battery technology. The development of the battery management system (BMS) has made a
significant contribution in the development of EVs. The BMS looks after all the criteria of
batteries, including the charging and discharging process and battery life estimation and
performance prediction. In this regard, various aspects of the battery are to be considered
right from battery modeling to its reliability assessment. Battery parameters, such as its
internal resistance, its capacity to hold the charge and time duration of its discharge, vary
with aspects such as time, number of charge and discharge cycles, depth of discharge
and temperature of operation. In this regard, batteries are to be carefully understood,
especially during its lifetime. Battery modeling is a crucial aspect in understanding the
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behavior of the battery. The lifetime of the battery is dependent upon its physical and
chemical characteristics [1]. Battery modeling has its significance in developing efficient
charging and discharging schemes thereby protecting the battery from overcharging and
undercharging conditions. Finding the safe operating limits enhances the lifetime of
the battery. Different modeling schemes are developed in the literature with different
complexities suitable for different applications [2–4]. Electro-chemical models consisting of
complex differential equations have been developed. Solving the equations provides details
of battery parameters. The computation complexity is the major aspect in employing these
models [5,6]. Analytical models have been developed over the years that model only the
major properties of the batteries, often neglecting important parameters, such as internal
resistance of the battery, thereby reducing the complexity. Peukert’s law and Rakmatov
and Vardhula are notable model analytical battery models [7]. Stochastic models have also
been developed that have defined discharging and recovery effects as stochastic processes.
As these models consider only relative number of lifetimes, it is unclear if they perform
quantitatively [8–11]. A detailed review on modeling techniques and parameter extraction
is presented in Reference [12]. However, there is a need to find an easy and efficient model
to understand the behavior of the battery, and that model should also be validated by
using experimental data. Electric circuit models were proposed which include a capacitor,
representing the capacity of the battery; the discharge rate, which determines the lost
capacity; a circuit to discharge the battery; a lookup table consisting of voltage versus state
of charge (SOC); and a resistor, representing internal resistance of the battery. With minor
modifications suitable to the application and chemistry of the battery, the models are reliable
and accurate. In this study, a 3 R-C model was developed and validated to determine the
behavior of the battery. The understanding of battery ageing is of paramount importance,
as it has a direct impact on the performance of the battery. Diagnosing the battery age and
acting on it not only ensures the safety of the battery-powered system but also enhances
the lifetime and profitability of EVs [13–15]. In the literature, calendar ageing is often
neglected, and random policies are employed to replace the batteries. However, replacing
the batteries happens in a structured scheme [16]. The Markov chain-based battery ageing
model is proposed, keeping in view the replacement of worn-out batteries which would
be due for their replacement much earlier than the specified time of replacement. On the
other side, the successful deployment of electric vehicles is possible only when they are
reliable, safe and easy to maintain, as compared to the much popular and vastly deployed
internal combustion engine [17,18]. The work concentrates on a mathematical model of
EVs’ reliability aspect and maintainability aspect and its analysis of all significant electrical
and electronic components of EVs.

Section 2 deals with battery modeling, while Section 3 deals with a battery ageing and
replacement model. The electric vehicle’s architecture is framed, modeled for its operating
and fault conditions; the reliability and maintainability aspects are developed and analyzed
in Section 5. The results are discussed in Section 6. The significant contributions of this
paper are as follows:

(i) Analysis of battery equivalent circuit model is carried out and substantiates that the 3
R-C model provides the best behavior of battery subjected to variations in temperature;

(ii) Development of stochastic model of battery ageing and replacement scheme, provid-
ing a systematic approach for replacing the aged batteries and, thus, avoiding system
failure and exorbitant investment in replacing the battery pack at once;

(iii) Reliability assessment of electric vehicle is carried out which states that, with the
required maintainability aspect, the life of the electric vehicle can be extended;

(iv) Diesel-renewable-based electric vehicle charging system assessment is carried out for
techno-economic and environmental issues on raising carbon emissions.

2. Battery Modeling

Battery modeling is significant, as it is the key factor in developing improved charging
and discharging schemes. This also helps in preventing the battery from overcharging
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and undercharging, thereby preventing potential damage to the batteries. Overall, battery
modeling provides operating limits that guide the best usage of batteries. Amongst different
types of battery models, the equivalent circuit model is the most suitable to represent the
features of the battery [19,20]. The run-time-based equivalent circuit model pairs electrical
network with lookup tables to determine the parameters of the battery. Thevenin’s models
provide models based on R-C networks, which give steady-state and transient behavior
to the battery. Circuit parameters are also obtained by an approach that compares the
battery model simulation to the actual battery response. The work proposes the lithium-ion
battery model under dynamic loading conditions, as per defined standard drive cycles. The
literature proposes equivalent circuit models with n number of R-C branches to represent
the behavior of the battery. However, the complexity and computational ability of the
circuit increases with the increase in the number of R-C components. The work proposes
that the 3 R-C model is best suited to represent the behavior of the battery based on
experimental validation.

An equivalent circuit model was developed to estimate the behavior of the lithium
battery. The model selected for the work is INR18650-20R. This model was further validated
by using the dynamic current profile test, which has the advantage of regenerative breaking.
An equivalent circuit model consists of an ideal voltage source, the R-C network, which
represents the characteristics of the cell, including the internal resistance that plays a major
role in defining the cell behavior. Each element of the circuit is a function of SOC and
temperature. In Figure 1a–e, 1 R-C to 5 R-C models are represented.
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3. Stochastic Model of Battery Ageing and Replacement

Problems associated with the battery can be categorized into two groups, as shown
in Figure 3. The energy demand for higher energy densities, especially in lithium-based
batteries, is increasing. Various chemistries are proposed in meeting the higher power
levels, but these advantages come with the caveat of having considerable change in volumes
of silicon particles during lithiation and de-lithiation, causing the instability of the solid
electrolyte interphase (SEI) formed on electrodes [21–23]. Battery degradation refers mainly
to the loss of the charge-holding capacity of the battery and increase in its internal resistance.
Degradation prediction can be well classified into two groups: based on calendar ageing
and based on charge–discharge cycles. The paper is based on the former concept.
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As the batteries contribute significantly to the cost of the EV, the manufacturers are
compelled to ensure that the battery life is maximized, so as to reduce the operational
cost and replacement cost. As a result, identifying aging and malfunctioning batteries
and developing analytical models for their replacement is important [24]. Leading battery
manufacturers devise policies to replace the battery based on calendar ageing, while the
industries will set its own timelines to replace the batteries. In the case of electric vehicles,
the possible replacement will be set by the manufacturer. Some of the policies are mentioned
in References [25–27].

Considering the inherent irregularities associated with the battery, the replacement
process has to be carefully designed so as to replace only those batteries that are underper-
forming, while retaining the other batteries, thus avoiding one-shot exorbitant reinvestment
at the end of the specified time period. As per the Per Green Car Reports, 2011–2014 model
Nissan make Leafs having 24 kWh battery pack costs 5500 USD for replacement, while
2017 make Chevrolet Bolt having 60 kWh battery pack costs around 15,000 USD for re-
placement [28,29]. This exorbitant one-shot battery replacement cost can be avoided by
predicting the battery behavior and replacing only that malfunctioning battery. The predic-
tion of the battery life and its longevity is essential for any system dependent on the battery
bank. The prediction and assessment are challenging tasks, as they require a complex and
expensive experimental setup and rigorous calculations. The development of degradation
models helps in predicting the degradation of the battery. The literature provides several
ageing models. However, most of the models consume high amounts of data and involve
a high number of iterations to compute the result. Some of the models require rigorous
training [30–32].

In the literature, calendar ageing models for Li-ion batteries using transfer learning
methods were discussed and presented. Characterization test data of the battery, storage
temperature, SOC and estimated previous time step were fed as input to the neural network,
resulting in the lost capacity of the battery. Due to the overfit, the model prediction was
found to be poor.

3.1. Importance of Battery Calendar Ageing

The development of the Solid Electrolyte Interface (SEI) on the negative electrode is
the major contributor for calendar ageing. Cycling ageing is mainly due to lithium plating
of the negative electrode. As EVs spend most of the time at rest having lower current
levels around 3C [33], calendar ageing of the battery also becomes a vital factor in the
development of the battery ageing and replacement model. SEI formation on the negative
electrode results in the consumption of cyclable lithium content, leading to an increase in
the value of electrode impedance. In the acceleration stage, capacity fade is faster, due to
SEI formation on the anode surface. With the increase in SEI interface, there is an isolation
effect on the electrode, thus resulting in decrement in chemical reaction rate. This results
in the stabilization mode of the battery, as shown in Figure 4. At this stage, the battery
performance gradually drops down and eventually leads to early cutoff voltage for the
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battery. In the saturation stage, the poor capacity on the cathode makes the cathode quickly
saturate during discharge, and also quickly deplete during charge. The capacity fade in
the discharged curves of an aged battery is shown in Figure 5, which indicates a high rate
of capacity fade in the initial cycles, due to SEI. Moreover, the cycling aging affects the
concentration and volume of the battery. The battery aging is path-dependent, especially
when the battery is subjected to power cycles and calendar periods [33].
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3.2. Markov Model for Battery Ageing and Replacement

As Markov models are being used to characterize the EV behaviors in various mobility
scenarios, we provide Markov chain analysis where it can be integrated with a battery man-
agement system. Considering the activity of EVs, the operation of EV can be categorized
into three main cases, namely EVs at rest, EVs in drive mode and EVs in charge period only.
These models are represented by Figures 6–8 respectively.
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In the first case where EVs are at rest, the EVs are parked and are not connected to any
charger. This condition provides only one scenario where the battery remains in its present
state. Referring to the model below, if the battery is in State A (e.g., State A corresponding to
100% SOC), it remains in the same state. Similarly, the battery can be any state represented
as State B (e.g., State B corresponding to 50% SOC) and State C (e.g., State C corresponding
to 20% SOC). Also, when the battery is in this state, it is possible to analyze the effect of
charge leakage, self-discharge and other effects inside the battery. However, considering
the effect of charge and discharge on the battery, the effect of the above said parameters
could be neglected.

The second case is where EVs’ mode can be further subdivided into two categories,
namely (i) EVs in the discharge cycle and (ii) EVs in discharge-and-charge cycle. EVs in the
discharge cycle are EVs that are in use, with the batteries being drained continuously to
power the vehicle. It is inherent that the battery is discharged in this mode. The EV can
be assumed to return back to its own charging station (starting point of the drive cycle or
pavilion) or any intermittent station after it reaches the predefined depleted state which
corresponds to the point where the EV must be charged. The model can be represented
by n states. However, the model represented consists of eight states, beginning from 100%
SOC of the battery, represented by State 0, down to 30% SOC, represented by State 7, which
is assumed to be the depleted state.

The probability matrix ‘m’ of the battery discharge model is represented in (2). The
probability with which there is change in the states is represented by λn, where n is from 0
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to 6, representing transition numbers. Various state equations are represented in Equations
(3) and (4), where S1 represents State 1, S2 represents State 2 and so on.

m =



0 λ0 0 0 0 0 0 0
0 0 λ1 0 0 0 0 0
0 0 0 λ2 0 0 0 0
0 0 0 0 λ3 0 0 0
0 0 0 0 0 λ4 0 0
0 0 0 0 0 0 λ5 0
0 0 0 0 0 0 0 λ6
0 0 0 0 0 0 0 0


(2)

λ0S0 = S1 (3)

λ1S1 = S2 and so on, till λ6S6 = S7 (4)

The second subdivision, which corresponds to EVs in charge and discharge mode,
suggests that the batteries are discharged to power the vehicle and also that EVs are parked
with an available charging slot that charges the battery. In this scenario, the battery can
be discharged to any state and is charged from that particular state to any state. It is
neither that battery is to be discharged to a depleted state only nor charged to the complete
level only. In either case, any intermittent values are acceptable, and the model can be
represented accordingly. Here, the model in Figure 8 represents 100% SOC to be the
completely charged level and 30% SOC as the depleted state. The probability matrix ‘n’ of
the battery discharge model is represented in (5), where µ represents the probability with
which the battery is restored to its previous state.

n =



0 λ0 0 0 0 0 0 0
µ0 0 λ1 0 0 0 0 0
0 µ1 0 λ2 0 0 0 0
0 0 µ2 0 λ3 0 0 0
0 0 0 µ3 0 λ4 0 0
0 0 0 0 µ4 0 λ5 0
0 0 0 0 0 µ5 0 λ6
0 0 0 0 0 0 µ6 0


(5)

It is clear that, in the last division, when the battery is in the charge period, the battery
gets charged form the level it is discharged to. Considering that the battery is being charged
from the empty state, i.e., State 7, the model can be represented as in Figure 9.
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Considering the manufacturers’ advice on the replacing of the batteries at the end
of the specified duration, it can well be accounted that systematic replacement is a must
for replacing worn-out battery immediately after a year. Likewise, an approximate life
estimate of the batteries can be devised, as mentioned in Table 1, considering a whole
sum replacement period of 8 years or 96 months. After 96 months, all the batteries are
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replaced. Thus, in the specified the time interval of 96 months, an approximate life estimate
of batteries is devised such that it adheres to the condition mentioned in (6).

8

∑
i=1

mi = 100% (6)

Table 1. Battery replacement indicator.

Sl No. Months Percentage of Replacement (%)

1 12 1
2 24 3
3 36 5
4 48 10
5 60 15
6 72 20
7 84 26
8 96 20

If a battery is in the nth year, then it can either become 0 years old if replaced or can
be a (n + 1)-year-old battery; this is a clear indication that the present age of the battery is
dependent on its previous age. This scenario was accounted for, and a systematic model
was developed by using Markov chain.

According to the Markov model, the initial computation matrix, P(0), is represented
in Equation (7). Transition probability matrix, mn, for n step is represented in Equation (8).
Using the theorem of total probability, we see that the consecutive transition of the states is
given by Equation (9). The probability of the state of the system, pj, after first transition can
be represented by Equation (10).

P(0) =
[

p1(0) p2(0) . . . pm(0)
]

(7)

mn =
1

m0.1 + m1.0

[
m1.0 m0.1
m1.0 m0.1

]
+

(1−m0.1 − m1.0)
n

m0.1 + m1.0

[
m0.1 −m0.1
−m1.0 m1.0

]
(8)

m(0) =
[

β, 1− β
]

(9)

pj(1) = P(X1 = j) = ∑
1

P(X1 = j)|X0 = i)P(X0 = i) (10)

As the number of states considered is finite in number, the Markov chain is said to be
ergodic, and the values of pj must be unique.

4. Maintainability and Reliability Model of Electric Vehicle

The life cycle of a battery can contain a decreasing failure rate in early life, a sustained
failure rate in its utility period and increasing failure rate during the end of its life cycle.
The probability that a failure might not occur in the specified time interval is termed
reliability [34]. There are several factors that contribute to the failure of a system. Indigent
design and erroneous manufacturing techniques would contribute mainly to the failure,
while incorrect operation methods, lack of system understanding and lack of skill set would
add significantly to the failure of the system. Despite the best efforts, no system can be
100% reliable, and any system is bound to fail during its operation, which proves costly in
terms of money, time and safety. This leads to substantial maintainability of the system,
which becomes an essential consideration in regard to the long-term performance of the
system. The system needs proper maintenance to avoid failures. Maintainability thus refers
to restoring a faulty system back to its operational state in a specified time interval. The
reliability and maintainability of the system forms the basis for the assessment of system
availability which in turn integrates the system operation time, system fault identification
time and its restoration time [35–37] Most of the analytical system considers only the failure
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characteristics, while the repair process is considered to be negligible. However, it is an
important metric to be considered to design the system. The Markov framework takes the
edge off this and provides a substantial model. The basic framework is shown in Figure 10.
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As shown in Figure 10, the parameter α represents the probability of change in the
system from state of operation to fault state, and β represents the probability of change
in the system from state of fault to state of operation, which can be represented as ratios
mentioned in Equations (11) and (12). The fault rate and repair rate can be termed as mean
operating time and mean down time. The transition probabilities from State A to State B
for the system shown in Figure 10 can be represented in a probability transition matrix, as
given in Equation (13).

α =
numbero f f aultsinspeci f iedtime

durationo f operatingconditiono f thesystem
(11)

β =
numbero f repairsinspeci f iedtime

durationo f repairmechanismo f thesystem
(12)

x =

[
1− α α

β 1− β

]
(13)

For the system with continuous faults and repairs, the probability density function
is always exponential. The reliability, r(t), and maintainability, m(t), of the system at any
time, ‘t’, is defined by Equations (14) and (15). For a system such as the electric vehicle
(EV), as shown in Figure 11, the entire unit can be divided into two major units categorized
as the Energy Unit (EU) and Propulsion Unit (PU). The EU comprises the Battery Unit
(BU), Charge Control Unit (CCU) and Energy Management Unit (EMU), while the PU
consists of the power converter (PC), propulsion motor (PM) and vehicle controller (VC).
The reliability of the EV depends on the reliability of the EU and PU, as discussed in the
sections below.

r(t) = e−αt (14)

m(t) = 1− e−βt (15)
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Figure 11. Electric-vehicle unit division.

4.1. Modeling and Analysis of Energy Unit (EU)

The reliability of the electric vehicle depends mainly on the Battery Unit (BU), which
can be considered an essential part of the Energy Unit (EU) of the vehicle. At any given
time, the BU may be in either the ‘system in operation state’ or ‘system in fault state’, which,
in turn, represents the state of the electric vehicle. The faulty condition of the EU may
occur due to two reasons. First, the battery might have lost all of its energy in powering
up the vehicle—discharged state; and second, the battery would have lost its ability to
store charge—broken state. Along with BU fault, the units such as the Charge Control Unit
(CCU), which regulates the rate at which the battery is supplied with current for charging,
and the Energy Management Unit (EMU), which prevents the battery from overcharging
and undercharging, also play an important role in maintaining the operating condition
of an electric vehicle. As discussed in the case of the BU, the CCU and EMU also have
two states which can be in either the ‘system in operation state’ or ‘system in fault state’.
Therefore, the three different systems in two conditions result in a total of eight transitional
combinations. Figure 12 shows the state space diagram of the EU, illustrating various
transitions of different states. Moreover, αCCU , αBU and αEMU represent the fault rates and
βCCU , βBU and βEMU represent the restoration rate of the CCC, BU and EU, respectively.
The state space transition matrix (SSTM) of the EU is represented in Equation (16), where
αx, αy, and αz represent αCCU , αBU and αEMU , respectively, and βx, βy, and βz represent
βCCU , βBU and βEMU , respectively.

SSPM =



1− αx − αy − αz αx αy αz 0 0 0 0
βx 1− βx − αy − αz 0 0 αy 0 αz 0
βy 0 1− αx − βy − αz 0 αx αz 0 0
βz 0 0 1− αx − αy − βz 0 αy αx 0
0 βy βx 0 1− βx − βy − αz 0 0 αz
0 0 βz βy 0 1− αx − βy − βz 0 αx
0 βz 0 βx 0 0 1− βx − αy − βz αy
0 0 0 0 βz βx βy 1− βx − βy − βz


(16)
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The probability with which each state occurs in the model shown in Figure 12 can be
found by using Equations (17)–(24).

P(1)
EU =

βCCU βBU βEMU

(αCCU + βCCU)(αBU + βBU)(αEMU + βEMU)
(17)

P(2)
EU =

aCCUbBUbEMU

(aCCU + bCCU)(aBU + bBU)(aEMU + bEMU)
(18)

P(3)
EU =

βCCUαBU βEMU

(αCCU + βCCU)(αBU + βBU)(αEMU + βEMU)
(19)

P(4)
EU =

βCCU βBUαEMU

(αCCU + βCCU)(αBU + βBU)(αEMU + βEMU)
(20)

P(5)
EU =

αCCUαBU βEMU

(αCCU + βCCU)(αBU + βBU)(αEMU + βEMU)
(21)

P(6)
EU =

βCCUαBUαEMU

(αCCU + βCCU)(αBU + βBU)(αEMU + βEMU)
(22)

P(7)
EU =

αCCU βBUαEMU

(αCCU + βCCU)(αBU + βBU)(αEMU + βEMU)
(23)

P(8)
EU =

αCCUαBUαEMU

(αCCU + βCCU)(αBU + βBU)(αEMU + βEMU)
(24)

The EU will be functional provided that all the other units are functional, that is, as
represented by the equation P(1)

EU , which is, in turn, representing the availability of the
system. The remaining states, which represent at least one of the units in fault condition,
makes the system to enter into fault state. Thus, the unavailability of the EU, UEU, is the net
probability of these seven states and can be calculated from Equation (25). After eliminating
the fault states, the state space transition matrix reduces to the matrix SSPMQ given by
Equation (26).

UEU =
8

∑
i=2

Pi (25)

SSPMQ = [1− αCCU − αBU − αEMU ] (26)
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The mean time that the EU is available in State 1 is determined by using Equation (27).
The mean operating time of the EU, represented by EUMoT , is given by Equation (28). The
effective fault rate is, thus, given by Equations (29) and (30).

EUM =
[
1− SSPMQ

]−1 (27)

EUMoT =
1

αCCU + αBU + αEMU
(28)

αEU =
1

EUMoT
(29)

αEU = αCCU + αBU + αEMU (30)

The mean fault time, which is nothing but the mean time to restore the EU, is calculated
by using Equation (31). The effective restoration rate of EU can be obtained by using
Equations (32) and (33).

EUR =
1− EUA

EUAXαEU
(31)

βEU =
1

EUR
(32)

βEU =
EUAXαEU
1− EUA

(33)

4.2. Modeling and Analysis of Propulsion Unit (PU)

The propulsion system mainly consists of a power converter (PC), propulsion motor
(PM) and vehicle controller (VC). Each of these units can again be in either of two states,
that is the ‘system in operation state’ or ‘system in fault state’. The modeling and analysis
of the Propulsion Unit is similar to that of the modeling and analysis of the Energy Unit of
the electric vehicle shown in Figure 13. The availability of the PU is calculated by using
Equation (34). The failure rate and restoration rates of the PU are also calculated in the
same way as calculated for EU, given by Equations (35) and (36).

PPU =
βPCβPMβVC

(αPC + βPC)(αPM + βPM)(αVC + βVC)
(34)

αPU = αPC + αPM + αVC (35)

βPU =
PPUXαPU
1− PPU

(36)
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4.3. Modeling and Analysis of EV System

As seen in the previous sections, for a successful operation of an EV, there must be
successful operation of the two units of the EV, namely the EU and PU. The reliability
model of the EV can be built as shown in Figure 14. EV system’s functional states is directly
dependent on functional states of EU and PU systems. The transition matrix of the EV is
given in Equation (37). The availability of the EV is equal to the combined availability of
the EU and PU, and this is determined by Equation (38).

SSPMEV =


1− αEU − αPU αEU αPU 0

βEU 1− βEU − αPU 0 αPU
βPU 0 1− αEU − βPU αEU

0 βPU βEU 1− βEU − βPU

 (37)

PEV =
βEU βPU

(αEU + βEU)(αPU + βPU)
(38)

World Electr. Veh. J. 2022, 13, x FOR PEER REVIEW 14 of 22 
 

 
Figure 13. State space diagram of Propulsion Unit (PU). 

𝑃௉௎ = 𝛽௉஼𝛽௉ெ𝛽௏஼(𝛼௉஼ + 𝛽௉஼)(𝛼௉ெ + 𝛽௉ெ)(𝛼௏஼ + 𝛽௏஼) (34) 

𝛼௉௎ = 𝛼௉஼ + 𝛼௉ெ + 𝛼௏஼ (35) 

𝛽௉௎ = 𝑃௉௎𝑋𝛼௉௎1 − 𝑃௉௎  (36) 

4.3. Modeling and Analysis of EV System 
As seen in the previous sections, for a successful operation of an EV, there must be 

successful operation of the two units of the EV, namely the EU and PU. The reliability 
model of the EV can be built as shown in Figure 14. EV system’s functional states is di-
rectly dependent on functional states of EU and PU systems. The transition matrix of the 
EV is given in Equation (37). The availability of the EV is equal to the combined availabil-
ity of the EU and PU, and this is determined by Equation (38). 

𝑆𝑆𝑃𝑀ா௏ = ൦1 − 𝛼ா௎ − 𝛼௉௎ 𝛼ா௎ 𝛼௉௎ 0𝛽ா௎ 1 − 𝛽ா௎ − 𝛼௉௎ 0 𝛼௉௎𝛽௉௎ 0 1 − 𝛼ா௎ − 𝛽௉௎ 𝛼ா௎0 𝛽௉௎ 𝛽ா௎ 1 − 𝛽ா௎ − 𝛽௉௎
൪ (37) 

 
Figure 14. State space diagram of EV. Figure 14. State space diagram of EV.

The availability of the EV can be found by using Equation (39), considering the
available state only. Therefore, the mean time for first fault of an EV and the mean down
time can be determined by using Equations (40) and (41):

SSPMQEV = [1− αEU − αPU ] (39)

EVf ault = [1− SSPMQEV ]
−1 (40)

EVMDT =
1− PEV

PEV XαEV
(41)

Thus, the effective failure rate and repair rate of the EV are estimated by using
Equations (42) and (43).

αEV =
1

EVf ault
= αEU + αPU (42)

βEV =
1

EVMDT
=

PEV xαEV
1− PEV

(43)

5. Analysis of Diesel-Renewable-Powered Electric Vehicle Charging System (EVCS)

In this section, an attempt is made to develop a grid-connected electric vehicle charging
system to ensure surplus availability of the charging system to popularize the electric
vehicle and, thus, enhance the sustainable transportation. The grid-connected EVCS can
be considered as having an option of drawing/selling-back energy from/to the external
grid. The model is represented in Figure 15. The capital cost the grid-integrated EVCS is
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given in Table 2, and the sizing of the components and related information are provided in
Table 3. The capital-cost and component-related information is obtained from the Hybrid
Optimization of Multiple Energy Resources (HOMER) tool that has inbuilt algorithms to
evaluate and assess the technical feasibility of integration of various energy resources.
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Table 2. Cost data of energy supply resources.

Component Capital Cost ($) Replacement Cost ($) O&M Cost

PV 3000 2500 50 $/year
Wind 7000 7000 80 $/year

Diesel Generator 2250 2250 0.15 $/h
Battery 550 550 10 $/year

Converter 300 300 –

Table 3. Component sizing and other information.

Component Options on Size and Unit
Numbers Life Other Information

PV 10, 50, 100, 150, 200 kW 25 years Derating Factor = 88%
Wind 10, 20, 30, 40, 50 Units 20 years Hub Height = 24 m

Diesel Generator 10, 50, 100, 200, 500 kW 15,000 h Minimum Load Ratio = 25%
Battery 50, 100,200,500 Units 15 years Nominal Capacity = 167 Ah, 24 V

Converter 0, 10, 50, 100, 200, 500 kW 10 years Converter Efficiency = 90%
Rectifier Efficiency = 85%

Grid connection 10, 50,100, 500, 1000 kW – Purchase = 0.093 $/kWh
Sellback = 0.036 $/kWh

6. Results and Discussion
6.1. R-C Model

The trust-region reflective nonlinear least-squares algorithm was employed, as the
battery behavior is itself non-linear. The concept is to refine the parameters of interest with
successive iterations. SOC vs. OCV for the 1 R-C to 5 R-C equivalent circuit model is shown
in Figure 16. As the number of R-C branches increases, the accuracy increases. However,
as assured that EVs are not allowed for deep discharge and longer full capacity run of EV,
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limiting in the 20% to 85% of SOC, the 3 R-C equivalent model is sufficient to predict the
behavior of the battery. The results are validated with the experimental data in accordance
with standard drive cycles at different temperatures.
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6.2. Battery Ageing and Replacement

The proposed battery-replacement model results in the probability transition matrix
represented in Equation (44) which states that if 1% of the battery is replaced, as given in
Table 1, then the probability of replacement is 0.01, while the probability that it turns a
year old is 0.99. If a battery is already a year old, then the probability that it would turn
two years is 0.97, while having a probability of 0.03 for becoming 0 years on account of
replacement of the battery.
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p =



0.01 0.99 0 0 0 0 0 0
0.03 0 0.97 0 0 0 0 0
0.05 0 0 0.95 0 0 0 0
0.08 0 0 0 0.92 0 0 0
0.12 0 0 0 0 0.88 0 0
0.16 0 0 0 0 0 0.84 0
0.25 0 0 0 0 0 0 0.75
0.30 0 0 0 0 0 0 0


(44)

In accordance to electric vehicles, the steady-state probabilities are obtained by solving
Equations (45) and (46). The solution for the entire set of linear equations is obtained as in
Equation (47).

pj(1) = P(X1 = j) = ∑
1

P(X1 = j)|X0 = i)P(X0 = i) (45)

pj(1) = ∑
1

pi(0)pi,j (46)

[
p0
∗ p1

∗ p2
∗ p3

∗ p4
∗ p5

∗ p6
∗ p7

∗ ] =[
0.1532 0.1599 0.1645 0.1673 0.1678 0.1671 0.1706 0.2072

] (47)

The above calculation proclaims that 16% of batteries are one-year-old, and so on,
and gives the critical piece of information that the battery will not be worn out within the
stipulated ageing cycle, or the replacement period is small and is equal to 20%. It is evident
that the whole-sum policy of replacing the battery only after specified calendar years is
not reasonable, as many batteries are replaced in mid years of the specified time period.
The average age of the batteries is computed to be 5 years. The transition-state diagram of
battery-ageing model is given in Figure 17.
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6.3. EV Reliability and Maintainability

The reliability and maintainability of EV system at any time, ‘t’, can be determined by
using Equations (48) and (49):

R(t)EV = 1− e−αEV t (48)

M(t)EV = 1− e−βEV t (49)

The analysis justifies that the reliability and availability of EVs degrade with time, due
to various failures. However, with timely repair and replacement of faulty components, the
vehicle’s operational effectiveness can be improved significantly, as shown in Figure 18.
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6.4. Diesel-Renewable-Based EVCS

The monthly electricity production of diesel-based EVCS and the proposed diesel-
renewable-based EVCS is shown in Figures 19 and 20, and the CO2 emissions are shown
in Figure 21. The main objective of this work was to reduce emissions by using green
energy sources. By having multiple energy sources, the monthly electricity production also
increases, and, at the same time, the electrical transaction with grid ensures the reduction in
carbon emissions from 174,874 kg/year (diesel EVCS) to 76,525 kg/year (diesel-renewable-
based EVCS).
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Figure 19. Monthly electricity production of diesel-based EVCS.
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7. Conclusions

In this paper, an ECM model was analyzed and experimentally validated, and it was
found that the 3 R-C network is the best fit to represent the behavior of a battery. Stochastic
models were developed for the battery ageing and replacement, using Markov chain, which
provides a structured battery-replacement scheme. The significance of calendar ageing
was also presented. A battery-powered electric vehicle was modeled, considering vital
components of EV, and the reliability assessment was carried out to enhance the availability
of EVs. Lastly, a case study of a diesel-renewable-based Electric Vehicle Charging Station
(EVCS) in micro-grid was carried out. Technoeconomic and environment issues were
presented, and it was found that the reliability on the grid purchase was reduced. The
carbon emissions were reduced from 174,874 kg/year (diesel EVCS) to 76,525 kg/year
(diesel renewable based EVCS).
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Nomenclature

EV electric vehicle
BMS battery management system
ECM Equivalent Circuit Model
EVCS Electric Vehicle Charging Station
SOC state of charge
OCV Open Circuit Voltage
SEI Solid Electrolyte Interface
α probability of change in the system from state of operation to fault state
β probability of change in the system from state of fault to state of operation
r(t) reliability of the system
m(t) maintainability of the system
EU Energy Unit
PU Propulsion Unit
BU Battery Unit
CCU Charge Control Unit
EMU Energy Management Unit
PC power converter
PM propulsion motor
VC vehicle controller
SSPM state space transition matrix
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